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Reminders

 Homework 4: Multimodal Foundation Models
— Out: Thu, Mar 13
— Due: Mon, Mar 24 at 11:59pm
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Fig. 1. A chronological overview of several representative mixture-of-experts (MoE) models in recent years. The timeline is primarily structured
according to the release dates of the models. MoE models located above the arrow are open-source, while those below the arrow are proprietary
and closed-source. MoE models from various domains are marked with distinct colors: Natural Language Processing (NLP) in green , Computer

Vision in yellow , Multimodal in pink , and Recommender Systems (RecSys) in cyan .



The Linear Layer in LLMs

Dense LMs (OLMo, Liama...) It is common for more than half of the

Output ]
parameters in a Transformer LLM to reside
: within the feed-forward neural network layers
GPT-3
vocab 50,257
d_model 12288
n_heads 96
Norm S— n_Iayers 96
d ff 49152
T LayerNorm (B) 0.00
Multi-head Attention Embedding (B) 0.62
Attention (B) 57.99
Norm _"V’ Feed-forward (B) 115.97
L X
Input ' Total (B) 174.57

Figure from http://arxiv.org/abs/2409.02060



lg-4xt.y The Linear Layerin LLMs

How do you calculate the number It is common for more than half of the

of parameters for each layer? parameters in a Transformer LLM to reside
LayerNorm: within the feed-forward neural network layers
(( (G[M }2>'2) mfmyus
] GPT-3
—y Embedding: < ocab 50,257
Vocaw X Aw&\ d_model | d,, 12288
n_heads 96
Attention: n_layers 96
z d ff 49152
L} <<C‘-W\ > + iw\) V\/k ¢ LayerNorm (B) 0.00
(ad Embedding (B) 0.62
Feed-forward: Attention (B) 57.99
Feed-forward (B) 115.9
<Zxc1w\\<i5-{3 N Jm QJ;Q W\fa ) Total (B) ?5;>




Sparsely-Gated Mixture of Experts

Dense LMs (OLMo, Llama...)
Output

+

Feedforward
Network
(FFN)

Norm

+

Multi-head Attention

Norm

Input

Figure from http://arxiv.org/abs/2409.02060
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Breaking a Linear Layer into Experts

Linear Layer: 3 Experts (W|th same # of total parameters)
ttx2 4
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Note: In MoE models, each expert is not a linear layer, but rather a
feed-forward layer (e.g., neural network with one hidden layer). B



Breaking a Feed-forward Layer into Experts

Feed-forward Layer: 3 Experts: (with same # of total parameters)
X b W o 2 C Ut y X b, W, g 4 ¢ U,’ Y1
EI —» ] —> [ —» a > a EI —> —> —>
u = [ H T H a\'\
| | b, W, Z, C, U,T Y,
| | H * H —> a —> 7
by W 23 ¢ Uyt Y3
Z_:G‘(L\);&+lg> H %’H—Pa ;a /\
=z -
1 \/ B UZ t+C
y=Uadg(Wx+b)+c yi = U; a(Wix + by) + ¢ \ﬁ ULZL'I'C

|
The two computations above are eg u1va|ent if W = stack(W,, W,, W;) and b = stack(b,, b,, b3)

and UT = stack(U,", U,T, U;T) and andc=C +Cotcy ? 7 M? P




Dense Mixture of Experts

A dense mixture of experts gives every expert a (non-zero) voice in the output

N. - M
= 0mmm 6o ek B0
Dense MoE

 Dense Softmax
G(x) = softmax(x - W)

* Each expertis just a feed-forward network
EZ(X) = FFNRgeLu (X) = ReLU(le + bl)WQ —+ bg

Figure from http://arxiv.org/abs/2401.04088



Sparsely-Gated Mixture of Experts

Sparsely-Gated MoEs were originally introduced for RNNs, but
are generally applicable and now popular for Transformers

. =)

Yy = Z G(X)zEz (X) /MOE layer : N
1=1
Sparse MoE <® T Oa
* Softmax over Top-K Gating Erpert 1 cxpert3 |+ Expert
G(x) = softmax(topk(x - W, + by, k))
2 s,
= /

* Each expertis just a feed-forward network
EZ(X) = FFNRgeLu (X) = RELU(XW1 + b1)W2 —+ b2

[
&

Figure from http://arxiv.org/abs/2401.04088
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Sparsely-Gated Mixture of Experts

Definition of top-k: Example: Computing the gate
Topk(y, £) geR! bez, Vo= XW =1-%, 2 8 1]
) VeR! § El((v 2) J-o , 3, & )
~ = S\‘I‘V\X )- [O ﬁ[{’; exp (@)
= Vi Y Uis Bmo ”w G j ‘e /
3 ZCD %f ~k Jq?ﬁ velts i1V o 0) XFCS)) _%)Tt’ﬂ?m K

OMW (R
Example: Computmg the MoE

J = ;/5 &) = 6. LM
+ Gz EZ (ﬁ +6>£—3 ()
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Sparsely-Gated Mixture of Experts

Sparsely-Gated MoEs were originally introduced for RNNs, but
are generally applicable and now popular for Transformers

8 0

y = Z G(X)'LE’L (X) /MoE layer : \
1=1
Sparse MoE N : ~C
* Softmax over Top-K Gating Erpert 1 expert3 | Expert
G(x) = softmax(topk(x - W, + by, k))
\ Network j
 Each expert is just a feed-forward network Ej

EZ(X) = FFNRgeLu (X) = RELU(XWl + b1)W2 —+ bg

17
Figure from http://arxiv.org/abs/2401.04088




Sparsely-Gated Mixture of Experts

Sparsely-Gated MoEs were originally introduced for RNNs, but

are generally applicable and now popular for Transformers

N,
y = Z G(x);Ei(x)
1=1
Sparse MoE

* Softmax over Top-K Gating /
G (x) = softmax(topk(x - W, # b, + rnoise(x), k))
Tnoise(X) = N (0,1I) - sigma(xWhoise + bnoise)
* Each expertis just a feed-forward network
FE;(x) = FFNReLy(x) = ReLU(xW1 + b1 )Ws + bo

Figure from http://arxiv.org/abs/2401.04088
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Sparsely-Gated Mixture of Experts

Sparsely-Gated MoEs were originally introduced for RNNs, but
are generally applicable and now popular for Transformers

8 0

y = Z G(x)i Ei(x) (MoE layer !

+

Mixtral

Y,

Gx),| [Gx),4

* Softmax over Top-K Gating Erpert 1 expert3 | Expert
G (x) = softmax(topk(x - W, + b, + rnoise(x), k))
I'nhoise (X) — N(07 I) : Sigma(XWnoise + bnoise) Network

 Each expert is just a feed-forward network E;

F;(x) = SwiGLU(x) = Swish(xW + b) @r(XV + ¢)
~ —

L
/‘Pl‘lé«?/\ Z_{ oy 2

Figure from http://arxiv.org/abs/2401.04088



Sparsely-Gated Mixture of Experts

Sparsely-Gated MoEs were originally introd| Initialization:
are generally applicable and now popular f¢

* Weinitialize Wy and Wi to

N all zeros
y =) Gx)iEi(x) » Effectively provides no signal
1=1

and a small amount of noise
Mixtral

* Softmax over Top-K Gating @
G (x) = softmax(topk(x - W, + b, + rnoise(x), k))
Inoise (X) = N(0,1) - sigma(xWoise + bnoise)
Each expert is just a feed-forward network ij
F;(x) = SwiGLU(x) = Swish(xW + b) ® (xV + ¢)




Expert Parallelism

Each expert can be allocated to a different device (GPU)

Each tokenis routed to K experts

Load balancing issues if too many tokens are routed to the same expert

Example: 3 devices, capacity of 3 tokens/device, 6 tokens, K=1 experts per token

apacity E
e \QQ

Device-3

Wy

EX‘PeJ* l! EI(<)

Device-1

Mom

Device-2

Zz Kv)?jted C
—— )

wolJ

/

De

L
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Expert Parallelism

Each expert can be allocated to a different device (GPU)

Each tokenis routed to K experts

Load balancing issues if too many tokens are routed to the same expert
Example: 3 devices, capacity of 3 tokens/device, 4 tokens, K=2 experts per token

—_—

oohTwo) [0

token 3 was also assigned to
Device-1, but it’s already full!




Balancing Expert Utilization in an MoE

* Problem: left unchecked, the
expert gate tends to concentrate
on a small number of experts that

are popular early in training L=Lcp+alpp+ BLRz
* Solution: Ne
— Add two regularizers to the loss L1 = Ne Z fiPi
— Load Balance Term: encourages =1
distributed load over the experts ffz = fraction of tokens routed to expert i

within each batch

— Router Z-loss: penalizes large logits [Pi = probability to £; in current batch

to the router to stabilize training 1 N D "
Lrz = N, Z <10gZeXP($d ))
(this is the approach used by OIMoE, b b=1 d=1

but lots of variants exist)



Active Parameters

* In a transformer with MoE layers, we typically choose the
number k for the top-k to be rather small
— Mixtral: k=2, N, =8
— OIMOE: k=8, N, = 64

* The number of active parameters is the count of parameters
that are selected for computation by the router

* For an MokE (roughly)
— GPU memory requirement « # of total parameters
— FLOPS computation requirement « # of active parameters
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OIMoE Hyperparameters

OLMOE-1B-7B  JetMoE

OpenMoE | OLMo-1B (0724)

Dimension 2,048 2,048 2,048 2,048
Activation SwiGLU SwiGLU SwiGLU SwiGLU
FFN dimension 1,024 5,632 8,192 8,192
Vocab size 50,304 32,000 256,384 50,304
Attn heads 16 16 24 16

Num layers 16 24 32 16
Layer norm type RMSNorm RMSNorm RMSNorm | non-parametric
Layer norm eps 1.0E-05 1.0E-05 1.0E-06 1.0E-05
QK-Norm yes no no no

Pos emb. RoPE RoPE RoPE RoPE
RoPE 6 10,000 10,000 10,000 10,000
Attention variant full MoA full full
Biases - MLP & Attn - -
Weight tying no yes no no

Init dist trunc normal ? ? normal
Init std 0.02 0.02 varies varies
Init trunc 3xstd - - -

MoE layers Every Every Every 6th -

MOoE layer type dMoE dMoE ST-MoE -

# Experts 64 8 32 1

# Activated 8 2 2 1

# Vocab params 103M 66M 525M 103M
# Active params 1.3B 2.2B 2.6B 1.3B

# Total params 6.9B 8.5B 8.7B 1.3B

Sequence length
Batch size (samples)
Batch size (tokens)
warmup steps

peak LR

minimum LR
optimizer

weight decay

betal

beta2

AdamW epsilon

LR schedule
gradient clipping
gradient reduce dtype
optimizer state dtype
LBL weight

Router z-loss weight
Pretraining tokens
Annealing tokens
Annealing schedule
Annealing min LR

4,096

1,024

~4M
2,000
4.0E-04
5.0E-04
AdamW
0.1

09

0.95
1.0E-08
cosine
global 1.0
FP32
FP32
0.01
0.001
5,033B
100B
linear

0

4,096
1,024
~4M
2,500
5.0E-04
5.0E-05
AdamW
0.1

?

?

?

WSD
global 1.0
?

?

0.01
0.001
1,000B
250B

2,048
2,048
~4M
10,000
0.01

Adafactor
0.0
0.9

Inv Sq Root
global 1.0

?

?

0.01

0.0001
1,100B

4,096
512
~2M
2,000
4.0E-04
5.0E-05
AdamW
0.1

0.9

0.95
1.0E-05
cosine
global 1.0
FP32
FP32

2,000B
50B
linear
0

Table 10: Pretraining hyperparameters of OLMOE-1B-7B and comparable models trained
from scratch. We highlight rows where OLMOE-1B-7B differs from OLMo-1B. Active params
include vocab params. “?” = undisclosed settings, FFN = feed-forward network, Attn = Attention,
LR = learning rate, WSD = Weight-Stable-Decay [73], LBL = load balancing loss, Inv Sq Root =
Inverse Square Root decay [153], trunc = truncation, std = standard deviation, “varies” = stds that
are layer or weight-dependent.
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MoEs provide a
nice tradeoff
between
performance
and FLOPS cost

Figure from http://arxiv.org/abs/2409.02060

Performance vs. Cost
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Figure 1: Performance, cost, and degree of openness of open MoE and dense LMs. Model
names contain rounded parameter counts: model-active-total for MoEs and model-total for
dense LMs. #ckpts is the number of intermediate checkpoints available. We highlight MMLU as a
summary of overall performance; see §3 for more results. OLMOE-1B-7B performs best among
models with similar active parameter counts and is the most open MoE.

27



Performance vs. Cost

HellaSwag MMLU ARC-Challenge

1.\) Comparing two .
models with the 70 43
. 60
same active N 40 &
9 35
parameters: S0 . s
MoE wins on £ 30 5ol |
accuracy E COPA 40 WinoGrande
80
2. Comparing two 8 65
models with the 5 .
same total ° | —— OLMoE-1B-78 &
60 33 OLMo-1B (0724) &—
parameters: 0 —— OLMo-7B (0724) 4
MOoOE wins on I1x1072 4x10%7 7x10%7 1x10%3 Ix10%24x1077 7x10%7 1x10% 1x10%% 4x10%% 7x10°¢ 1x10
Training FLOPs
convergence
g . Figure 3: Evaluation of OLMOE-1B-7B and the current best OLMo models dur-
(meaSUl’ed n ing pretraining. OLMOE-1B-7B differs from the OLMo models in its MoE archi-
Training FLOPS) tecture, several training hyperparameters, and its training dataset, see §2. A version

of this plot with tokens as the x-axis and markers where annealing starts i1s in Ap-
pendix E. More results, logs, and configurations: https://wandb.ai/ai2-11m/olmoe/
reports/Plot-0LMoE-1B-7B-vs-0LMo-7B-vs-0LMo-1B--Vml11dzo40TcyMjEz
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Figure from http://arxiv.org/abs/2409.02060



How many experts to choose?

Early work with 55|
MoEs in LSTM-LMs 50
favored a very large >4
number of experts 240
E 35

30t

= After Training on 10B words |7
®-@® After Training on 100B words

\_\_\‘“

— @

10’ 10° 10° 10'° 10"
Model Parameters Excluding Embedding and Softmax

32, 256, 1024, 4096, 16384, 65536, and 131072 experts.

up to 137 billion parameters in the MoE layer.
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How many experts to choose?

Training loss

10 40 70 100130

Validation loss (C4)
3.5

3.2

3.0

2.8 I

60

40

—

HellaSwag

—

# experts
— 64

10 40 70 100130

Tokens (B)

10 40 70 100130

35

30

MMLU Vvar
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1,

10 40 70 100130

Figure 5: Expert granularity. We vary the number of experts in tandem with the FFN dimension
to ensure that active and total parameters and thus compute cost remain the same. For example, for
64 experts, the FFEN dimension is 1,024 and 8 experts are activated, while for 32 experts it is 2,048
with 4 activated experts. More results, logs, and configurations: https://wandb.ai/ai2-11m/
olmoe/reports/Plot-Granularity--Vmlldzo40TIx0TE4

More recent work on Transformer LMs has favored a
comparatively small number of experts

Figure from http://arxiv.org/abs/2401.04088
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Scaling Laws for Routed LMs

® S-BASE ® RL-R ® Hash ® Dense LM

a) Predicting Loss for Varying Expert Count b) Curves of Constant Loss Value ¢) Unified Model Scaling
3.2 15M e~ _. 3.2 .,
» 3.0 25M ..5‘.::\’\ 512 «n 3.0 N
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928 Te._ e li<e S 128 Q238
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S 2.6 T e ~e$T?| O 64 526
© 2.4 =~ e~ ~.‘ ® o 16 T 2.4
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1 2 4 81632 128 512 25M 55M 130M 370M .3B 100M 1B 10B
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Figure 1. (a) The performance achieved by Routing Networks when varying the number of experts for a fixed dense model size is
described by a bilinear function (Eq. 1), (b) whose level curves indicate how to trade model size with expert count to maintain a fixed
performance, (¢) and which can be manipulated to align dense and routed model performance under a shared power law.

Figure from https://proceedings.mlr.press/vi162/clark22a.html



