
Mixture of Experts

1

10-423/10-623 Generative AI

Matt Gormley & Pat Virtue
Lecture 16

Mar. 17, 2025

Machine Learning Department
School of Computer Science
Carnegie Mellon University



Reminders

• Homework 4: Multimodal Foundation Models
– Out: Thu, Mar 13
– Due: Mon, Mar 24 at 11:59pm

3



MoE 
Timeline

6

Figure from http://arxiv.org/abs/2407.06204



The Linear Layer in LLMs

7

GPT-3
vocab 50,257
d_model 12288
n_heads 96
n_layers 96
d_ff 49152
LayerNorm (B) 0.00
Embedding (B) 0.62
Attention (B) 57.99
Feed-forward (B) 115.97
Total (B) 174.57

Figure from http://arxiv.org/abs/2409.02060

It is common for more than half of the 
parameters in a Transformer LLM to reside 
within the feed-forward neural network layers



The Linear Layer in LLMs

8

GPT-3
vocab 50,257
d_model 12288
n_heads 96
n_layers 96
d_ff 49152
LayerNorm (B) 0.00
Embedding (B) 0.62
Attention (B) 57.99
Feed-forward (B) 115.97
Total (B) 174.57

How do you calculate the number 
of parameters for each layer?
LayerNorm: 

Embedding:

Attention:

Feed-forward:

It is common for more than half of the 
parameters in a Transformer LLM to reside 
within the feed-forward neural network layers



Sparsely-Gated Mixture of Experts

10
Figure from http://arxiv.org/abs/2409.02060



Breaking a Linear Layer into Experts

11

Linear Layer: 3 Experts: (with same # of total parameters)

Note: In MoE models, each expert is not a linear layer, but rather a 
feed-forward layer (e.g., neural network with one hidden layer).

x b W z x b1 W1 z1

b2 W2 z2

b3 W3 z3

zi = Wix + biz = Wx + b



Breaking a Feed-forward Layer into Experts

12

Feed-forward Layer:

The two computations above are equivalent if W = stack(W1, W2, W3) and b = stack(b1, b2, b3) 
and UT = stack(U1

T, U2
T, U3

T) and y = stack(y1, y2, y3) and c = _____________?

x b W z x b1 W1 z1

b2 W2 z2

b3 W3 z3

c UT y c1 U1
T y1

c2 U2
T y2

c3 U3
T y3

yi = Ui 𝜎(Wix + bi) + ciy = U 𝜎(Wx + b) + c

𝜎 𝜎

𝜎

𝜎

3 Experts: (with same # of total parameters)



Dense Mixture of Experts
A dense mixture of experts gives every expert a (non-zero) voice in the output

13
Figure from http://arxiv.org/abs/2401.04088 

Dense MoE
• Dense Softmax

• Each expert is just a feed-forward network

y =

Ne∑

i=1

G(x)iEi(x)

G(x) = softmax(x · Wg)

Ei(x) = FFNReLU(x) = ReLU(xW1 + b1)W2 + b2



Sparsely-Gated Mixture of Experts
Sparsely-Gated MoEs were originally introduced for RNNs, but 
are generally applicable and now popular for Transformers

14
Figure from http://arxiv.org/abs/2401.04088 

Sparse MoE
• Softmax over Top-K Gating

• Each expert is just a feed-forward network

y =

Ne∑

i=1

G(x)iEi(x)

G(x) = softmax(topk(x · Wg + bg, k))

Ei(x) = FFNReLU(x) = ReLU(xW1 + b1)W2 + b2



Sparsely-Gated Mixture of Experts

15

Definition of top-k: Example: Computing the gate

Example: Computing the MoE



Sparsely-Gated Mixture of Experts
Sparsely-Gated MoEs were originally introduced for RNNs, but 
are generally applicable and now popular for Transformers

17
Figure from http://arxiv.org/abs/2401.04088 

Sparse MoE
• Softmax over Top-K Gating

• Each expert is just a feed-forward network

y =

Ne∑

i=1

G(x)iEi(x)

G(x) = softmax(topk(x · Wg + bg, k))

Ei(x) = FFNReLU(x) = ReLU(xW1 + b1)W2 + b2



Sparsely-Gated Mixture of Experts
Sparsely-Gated MoEs were originally introduced for RNNs, but 
are generally applicable and now popular for Transformers

18
Figure from http://arxiv.org/abs/2401.04088 

Sparse MoE
• Softmax over Top-K Gating

• Each expert is just a feed-forward network

y =

Ne∑

i=1

G(x)iEi(x)

Ei(x) = FFNReLU(x) = ReLU(xW1 + b1)W2 + b2

G(x) = softmax(topk(x · Wg + bg + rnoise(x), k))
rnoise(x) = N(0, I) · sigma(xWnoise + bnoise)



Sparsely-Gated Mixture of Experts
Sparsely-Gated MoEs were originally introduced for RNNs, but 
are generally applicable and now popular for Transformers

19
Figure from http://arxiv.org/abs/2401.04088 

Mixtral
• Softmax over Top-K Gating

• Each expert is just a feed-forward network

y =

Ne∑

i=1

G(x)iEi(x)

Ei(x) = SwiGLU(x) = Swish(xW + b)! (xV + c)

G(x) = softmax(topk(x · Wg + bg + rnoise(x), k))
rnoise(x) = N(0, I) · sigma(xWnoise + bnoise)



Sparsely-Gated Mixture of Experts
Sparsely-Gated MoEs were originally introduced for RNNs, but 
are generally applicable and now popular for Transformers

20
Figure from http://arxiv.org/abs/2401.04088 

Mixtral
• Softmax over Top-K Gating

• Each expert is just a feed-forward network

y =

Ne∑

i=1

G(x)iEi(x)

G(x) = softmax(topk(x · Wg + bg + rnoise(x), k))
rnoise(x) = N(0, I) · sigma(xWnoise + bnoise)

Initialization:
• We initialize Wg and Wnoise to 

all zeros 
• Effectively provides no signal 

and a small amount of noise

Ei(x) = SwiGLU(x) = Swish(xW + b)! (xV + c)



Expert Parallelism
• Each expert can be allocated to a different device (GPU)
• Each token is routed to K experts
• Load balancing issues if too many tokens are routed to the same expert
• Example: 3 devices, capacity of 3 tokens/device, 6 tokens, K=1 experts per token

21

Device-1 Device-2 Device-3

Device-0

1 2 3 4 5 6

1 4 5 23 6

wasted capacity



Expert Parallelism
• Each expert can be allocated to a different device (GPU)
• Each token is routed to K experts
• Load balancing issues if too many tokens are routed to the same expert
• Example: 3 devices, capacity of 3 tokens/device, 4 tokens, K=2 experts per token

22

Device-1 Device-2 Device-3

Device-0

1 2 3 4

1 4 23 12 3 4

token 3 was also assigned to 
Device-1, but it’s already full!



Balancing Expert Utilization in an MoE
• Problem: left unchecked, the 

expert gate tends to concentrate 
on a small number of experts that 
are popular early in training

• Solution:
– Add two regularizers to the loss
– Load Balance Term: encourages 

distributed load over the experts 
within each batch

– Router Z-loss: penalizes large logits 
to the router to stabilize training

(this is the approach used by OlMoE, 
but lots of variants exist)

23

L = LCE + αLLB + βLRZ

LLB = Ne

Ne
)

i=1

fiPi

fi = fraction of tokens routed to expert i
Pi = probability toEi in current batch

LRZ =
1

Nb

Nb
)

b=1

(

log
D
)

d=1

exp(x(b)
d

)

)



Active Parameters

• In a transformer with MoE layers, we typically choose the 
number k for the top-k to be rather small
– Mixtral: k = 2, Ne = 8
– OlMoE: k=8, Ne = 64

• The number of active parameters is the count of parameters 
that are selected for computation by the router

• For an MoE (roughly)
– GPU memory requirement ∝ # of total parameters
– FLOPS computation requirement ∝ # of active parameters

24



Mixtral vs. Llama-2

25
Figure from http://arxiv.org/abs/2401.04088 



OlMoE Hyperparameters

26



Performance vs. Cost

MoEs provide a 
nice tradeoff 
between 
performance 
and FLOPS cost

27
Figure from http://arxiv.org/abs/2409.02060



Performance vs. Cost
1. Comparing two 

models with the 
same active 
parameters: 
MoE wins on 
accuracy

2. Comparing two 
models with the 
same total 
parameters: 
MoE wins on 
convergence 
(measured in 
Training FLOPS)

28
Figure from http://arxiv.org/abs/2409.02060



How many experts to choose?

Early work with 
MoEs in LSTM-LMs 
favored a very large 
number of experts

29



How many experts to choose?

More recent work on Transformer LMs has favored a 
comparatively small number of experts

30
Figure from http://arxiv.org/abs/2401.04088 



Scaling Laws for Routed LMs

31
Figure from https://proceedings.mlr.press/v162/clark22a.html 


