
Vision-Language Models (VLMs)

1

10-423/10-623 Generative AI

Matt Gormley & Pat Virtue
Lecture 14

March 10, 2025

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 3: Applying and Adapting LLMs
– Out: Sun, Feb 23
– Due: Thu, Mar 13 at 11:59pm

• Quiz 4
– in-class, Mon, Mar 17
– lectures 12 – 15

• Homework 4: Multimodal Foundation Models
– Out: Thu, Mar 13
– Due: Mon, Mar 24 at 11:59pm

3

VISION LANGUAGE MODELS (VLMS)
(Slides with blue titles from Henry Chai)

4

Multimodal
Models

� Previously: Text-to-image models – adapt generative

models for vision in order to guide their output toward
some desired target using natural language

� Output is still an image

� Today: visual language models (VLMs) – adapt

generative models for text in order to allow them to
interact with images (as well as text) as input

� Output is (typically) still text

5

VLM:
Tasks

� Common benchmarks for VLMs include

� Visual reasoning: given an image (or a pair of
images) determine if some natural language
statement about the image(s) is true or false

� Visual grounding: locate an object in some image
given a natural language description

� Visual question answering: given an image (or
images), respond to arbitrary, potentially open-

ended questions about the content.

� Caption generation: create natural language
descriptions of content of some image

6

VLM:
Tasks

� Common benchmarks for VLMs include

� Visual reasoning: given an image (or a pair of
images) determine if some natural language
statement about the image(s) is true or false

� Visual grounding: locate an object in some image
given a natural language description

� Visual question answering: given an image (or
images), respond to arbitrary, potentially open-

ended questions about the content.

� Caption generation: create natural language
descriptions of content of some image

7Source: https://aclanthology.org/P19-1644.pdf

https://aclanthology.org/P19-1644.pdf

VLM:
Tasks

� Common benchmarks for VLMs include

� Visual reasoning: given an image (or a pair of
images) determine if some natural language
statement about the image(s) is true or false

� Visual grounding: locate an object in some image
given a natural language description

� Visual question answering: given an image (or
images), respond to arbitrary, potentially open-

ended questions about the content.

� Caption generation: create natural language
descriptions of content of some image

8Source: https://arxiv.org/pdf/1608.00272

https://arxiv.org/pdf/1608.00272

VLM:
Tasks

� Common benchmarks for VLMs include

� Visual reasoning: given an image (or a pair of
images) determine if some natural language
statement about the image(s) is true or false

� Visual grounding: locate an object in some image
given a natural language description

� Visual question answering: given an image (or
images), respond to arbitrary, potentially open-

ended questions about the content.

� Caption generation: create natural language
descriptions of content of some image

9Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100153

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100153

VLM:
Tasks

� Common benchmarks for VLMs include

� Visual reasoning: given an image (or a pair of
images) determine if some natural language
statement about the image(s) is true or false

� Visual grounding: locate an object in some image
given a natural language description

� Visual question answering: given an image (or
images), respond to arbitrary, potentially open-

ended questions about the content.

� Caption generation: create natural language
descriptions of content of some image

10Source: https://dl.acm.org/doi/pdf/10.1145/3295748

https://dl.acm.org/doi/pdf/10.1145/3295748

VLM:
Architecture

� High-level idea: convert both the image and the text inputs

into embedding vectors, then pass those vectors into a
decoder-only transformer and do next (text) token prediction

� Two common encoders:

�VQ-VAE encoder followed
by an embedding layer that

converts the discrete
tokens into dense

numerical vectors

�CLIP encoder, that directly
learns an embedding

vector using a contrastive
pre-training objective 11Source: https://huggingface.co/blog/vlms

https://huggingface.co/blog/vlms

VLM:
Architecture

� High-level idea: convert both the image and the text inputs

into embedding vectors, then pass those vectors into a
decoder-only transformer and do next (text) token prediction

� Two common encoders:

�VQ-VAE encoder followed
by an embedding layer that

converts the discrete
tokens into dense

numerical vectors

�CLIP encoder, that directly
learns an embedding

vector using a contrastive
pre-training objective 12Source: https://huggingface.co/blog/vlms

https://huggingface.co/blog/vlms

CLIP

13

CLIP
• The text encoder is, e.g., an

encoder-only transformer
• The image encoder is, e.g., a

ResNet-like CNN or ViT
• Both are linearly projected

into same-dimensional
vectors i.e., the multi-modal
embedding space

15
Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020

https://arxiv.org/pdf/2103.00020

CLIP

Given a mini-batch of 𝑁 (image, caption) pairs, both encoders are simultaneously pre-
trained to maximize the cosine similarity of corresponding image-caption embedding
vectors and minimize all other pairwise cosine similarities

16
Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020

Incorrect (but intuitive)
objective function:

max









N
∑

i=1

I
!
i Ti −

N
∑

i=1

N
∑

j=1

j "=i

I
!
i Tj









https://arxiv.org/pdf/2103.00020

CLIP

Given a mini-batch of 𝑁 (image, caption) pairs, both encoders are simultaneously pre-
trained to maximize the cosine similarity of corresponding image-caption embedding
vectors and minimize all other pairwise cosine similarities

17
Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020

Correct objective function:

max
N
∑

i=1

[

log
exp

(

I!

i Ti

τ

)

∑N
j=1

exp
(

I!
i Tj

τ

)

+ log
exp

(

I!

i Ti

τ

)

∑N
j=1

exp
(

I!
j Ti

τ

)

]

https://arxiv.org/pdf/2103.00020

CLIP for Zero Shot Classification

18
Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020

https://arxiv.org/pdf/2103.00020

VLMS WITH TEXT-ONLY DECODERS

19

PaliGemma
• SigLIP is a

variant of CLIP
• Gemma is a 2B

LLM (open
source
counterpart to
Gemini)

20

W
ord

Em
bedding

Qwen-VL

21

Qwen-VL

22

Llama 3.2 Vision

23

VISION LANGUAGE MODELS (VLMS)

24

VLM:
Architecture

� High-level idea: convert both the image and the text inputs

into embedding vectors, then pass those vectors into a
decoder-only transformer and do next (text) token prediction

� Two common encoders:

�VQ-VAE encoder followed
by an embedding layer that

converts the discrete
tokens into dense

numerical vectors

�CLIP encoder, that directly
learns an embedding

vector using a contrastive
pre-training objective 25Source: https://huggingface.co/blog/vlms

https://huggingface.co/blog/vlms

VLM:
Architecture

� High-level idea: convert both the image and the text inputs

into integers, then pass those integers into a decoder-only
transformer and do next (text or image) token prediction

� Two common encoders:

�VQ-VAE encoder followed
by an embedding layer that

converts the discrete
tokens into dense

numerical vectors

�CLIP encoder, that directly
learns an embedding

vector using a contrastive
pre-training objective 26Source: https://huggingface.co/blog/vlms

Text + Image Decoder

11 42 7 3 52 78 56 89

https://huggingface.co/blog/vlms

Why VLMs with Integer Tokens?

27

VQ-VAES

28

Recall: Parti

29Source: https://arxiv.org/pdf/2206.10789

https://arxiv.org/pdf/2206.10789

Recall: Image
Tokenization

30Source: https://arxiv.org/pdf/2110.04627

https://arxiv.org/pdf/2110.04627

How can we
(pre-)train
these models
given the non-
differentiable
quantization
operation?

31Source: https://arxiv.org/pdf/2110.04627

https://arxiv.org/pdf/2110.04627

Vector-Quantized VAEs
32Source: https://arxiv.org/pdf/1711.00937

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
33Source: https://arxiv.org/pdf/1711.00937

� Embedding space consists of 𝐾 𝐷-dimensional latent

vectors {𝑒!, … , 𝑒"} which are learned during training

� The indices 1,… , 𝐾 of each latent vector correspond
to the “image tokens” in some fixed-length codebook

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
34Source: https://arxiv.org/pdf/1711.00937

� The encoder (e.g., a ResNet-like CNN) maps images

to 𝑁 𝐷-dimensional vectors

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
35Source: https://arxiv.org/pdf/1711.00937

� Each output vector

from the encoder is
mapped to the nearest
latent vector to get the

discretized encoding
𝑧# 𝑥 = 	 argmin

$	∈ $!,…,$"
𝑧$ 𝑥 − 𝑒)

)

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
36Source: https://arxiv.org/pdf/1711.00937

� The decoder takes the discretized representation and recreates the original image

https://arxiv.org/pdf/1711.00937

Wait, how would we take the gradient through the argmin?

37Source: https://arxiv.org/pdf/1711.00937

� Each output vector

from the encoder is
mapped to the nearest
latent vector to get the

discretized encoding
𝑧# 𝑥 = 	 argmin

$	∈ $!,…,$"
𝑧$ 𝑥 − 𝑒)

)

https://arxiv.org/pdf/1711.00937

Straight-through Estimator
38Source: https://arxiv.org/pdf/1711.00937

� Treat the gradient w.r.t. 𝑧# 𝑥 as an estimate of the gradient w.r.t. 𝑧$ 𝑥

https://arxiv.org/pdf/1711.00937

Straight-through Estimator
39Source: https://arxiv.org/pdf/1711.00937

� Intuition: the closer 𝑧# 𝑥 and 𝑧$ 𝑥 , the better the estimate (under certain assumptions)

https://arxiv.org/pdf/1711.00937

VQ-VAE
Objective
Function

� Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are
near the outputs of the encoder

� However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥)
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥)
)

where sg is the stop-gradient operator which fixes the
argument to be non-updated constant

40

VQ-VAE
Objective
Function

� Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are
near the outputs of the encoder

� However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥)
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥)
)

� The first term is the typical reconstruction error objective

41

VQ-VAE
Objective
Function

� Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are
near the outputs of the encoder

� However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥)
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥)
)

� The second term drives the latent vector to be closer to the
encoder output vector that was mapped to it

42

VQ-VAE
Objective
Function

� Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are
near the outputs of the encoder

� However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥)
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥)
)

� The third term drives the encoder to output vectors closer to
the latent vectors

43

CLIP vs. VQ-VAEs

� VLMs with VQ-VAE encoders (or any vector quantized

image model) can also generate images in addition to
text by defining a loss over the image codebook tokens

� CLIP does not discretize its image embedding so VLMs

with CLIP-based encoders cannot (naturally) define a
loss over images and thus, can only output text

� However, CLIP embeddings are more expressive than
the discrete VQ-VAE encodings so can lead to improved

performance in some settings

44

VLMS WITH TEXT AND IMAGE DECODERS

45

Large World Model

46
Figure from http://arxiv.org/abs/2402.08268

Large World Model

47
Figure from http://arxiv.org/abs/2402.08268

Gemini

48

Gemini

49

