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Reminders

• Homework 3: Applying and Adapting LLMs
– Out: Sun, Feb 23
– Due: Thu, Mar 13 at 11:59pm

• Quiz 4
– in-class, Mon, Mar 17
– lectures 12 – 15 

• Homework 4: Multimodal Foundation Models
– Out: Thu, Mar 13
– Due: Mon, Mar 24 at 11:59pm
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VISION LANGUAGE MODELS (VLMS)
(Slides with blue titles from Henry Chai)
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Multimodal 
Models

� Previously: Text-to-image models – adapt generative 

models for vision in order to guide their output toward 
some desired target using natural language 

� Output is still an image

� Today: visual language models (VLMs) – adapt 

generative models for text in order to allow them to 
interact with images (as well as text) as input

� Output is (typically) still text
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VLM: 
Tasks

� Common benchmarks for VLMs include

� Visual reasoning: given an image (or a pair of 
images) determine if some natural language 
statement about the image(s) is true or false

� Visual grounding: locate an object in some image 
given a natural language description

� Visual question answering: given an image (or 
images), respond to arbitrary, potentially open-

ended questions about the content.

� Caption generation: create natural language 
descriptions of content of some image
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VLM: 
Architecture

� High-level idea: convert both the image and the text inputs 

into embedding vectors, then pass those vectors into a 
decoder-only transformer and do next (text) token prediction

� Two common encoders:

�VQ-VAE encoder followed 
by an embedding layer that 

converts the discrete 
tokens into dense 

numerical vectors

�CLIP encoder, that directly 
learns an embedding 

vector using a contrastive 
pre-training objective 11Source: https://huggingface.co/blog/vlms 

https://huggingface.co/blog/vlms
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CLIP
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CLIP
• The text encoder is, e.g., an 

encoder-only transformer
• The image encoder is, e.g., a 

ResNet-like CNN or ViT
• Both are linearly projected 

into same-dimensional 
vectors i.e., the multi-modal 
embedding space
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Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020 
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CLIP

Given a mini-batch of 𝑁 (image, caption) pairs, both encoders are simultaneously pre-
trained to maximize the cosine similarity of corresponding image-caption embedding 
vectors and minimize all other pairwise cosine similarities
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Incorrect (but intuitive) 
objective function:
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CLIP for Zero Shot Classification
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Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020 
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VLMS WITH TEXT-ONLY DECODERS
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PaliGemma
• SigLIP is a 

variant of CLIP
• Gemma is a 2B 

LLM (open 
source 
counterpart to 
Gemini)
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Qwen-VL
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Llama 3.2 Vision
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VISION LANGUAGE MODELS (VLMS)
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VLM: 
Architecture

� High-level idea: convert both the image and the text inputs 

into embedding vectors, then pass those vectors into a 
decoder-only transformer and do next (text) token prediction

� Two common encoders:
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by an embedding layer that 

converts the discrete 
tokens into dense 

numerical vectors
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VLM: 
Architecture

� High-level idea: convert both the image and the text inputs 

into integers, then pass those integers into a decoder-only 
transformer and do next (text or image) token prediction

� Two common encoders:

�VQ-VAE encoder followed 
by an embedding layer that 

converts the discrete 
tokens into dense 

numerical vectors

�CLIP encoder, that directly 
learns an embedding 

vector using a contrastive 
pre-training objective 26Source: https://huggingface.co/blog/vlms 

Text + Image Decoder

11 42 7 3 52 78 56 89

https://huggingface.co/blog/vlms


Why VLMs with Integer Tokens?
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VQ-VAES
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Recall: Parti

29Source: https://arxiv.org/pdf/2206.10789 
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Recall: Image 
Tokenization

30Source: https://arxiv.org/pdf/2110.04627 
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How can we 
(pre-)train 
these models 
given the non-
differentiable 
quantization 
operation? 

31Source: https://arxiv.org/pdf/2110.04627 
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Vector-Quantized VAEs
32Source: https://arxiv.org/pdf/1711.00937 
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Vector-Quantized VAEs
33Source: https://arxiv.org/pdf/1711.00937 

� Embedding space consists of 𝐾 𝐷-dimensional latent 

vectors {𝑒!, … , 𝑒"} which are learned during training

� The indices 1,… , 𝐾  of each latent vector correspond 
to the “image tokens” in some fixed-length codebook

https://arxiv.org/pdf/1711.00937


Vector-Quantized VAEs
34Source: https://arxiv.org/pdf/1711.00937 

� The encoder (e.g., a ResNet-like CNN) maps images 

to 𝑁 𝐷-dimensional vectors 

https://arxiv.org/pdf/1711.00937


Vector-Quantized VAEs
35Source: https://arxiv.org/pdf/1711.00937 

� Each output vector 

from the encoder is 
mapped to the nearest 
latent vector to get the 

discretized encoding
𝑧# 𝑥 = 	 argmin

$	∈ $!,…,$"
𝑧$ 𝑥 − 𝑒 )

)

https://arxiv.org/pdf/1711.00937


Vector-Quantized VAEs
36Source: https://arxiv.org/pdf/1711.00937 

� The decoder takes the discretized representation and recreates the original image

https://arxiv.org/pdf/1711.00937


Wait, how would we take the gradient through the argmin? 

37Source: https://arxiv.org/pdf/1711.00937 

� Each output vector 

from the encoder is 
mapped to the nearest 
latent vector to get the 
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Straight-through Estimator 
38Source: https://arxiv.org/pdf/1711.00937 

� Treat the gradient w.r.t. 𝑧# 𝑥  as an estimate of the gradient w.r.t. 𝑧$ 𝑥  

https://arxiv.org/pdf/1711.00937


Straight-through Estimator 
39Source: https://arxiv.org/pdf/1711.00937 

� Intuition: the closer 𝑧# 𝑥  and 𝑧$ 𝑥 , the better the estimate (under certain assumptions)

https://arxiv.org/pdf/1711.00937


VQ-VAE 
Objective 
Function

� Intuition: we want the latent vectors to correspond to 

relevant points in the embedding space i.e., ones that are 
near the outputs of the encoder

� However, we also want the encoder to respect the latent 

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some 

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥 )
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥 )
)

where sg is the stop-gradient operator which fixes the 
argument to be non-updated constant 
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� The first term is the typical reconstruction error objective
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VQ-VAE 
Objective 
Function

� Intuition: we want the latent vectors to correspond to 

relevant points in the embedding space i.e., ones that are 
near the outputs of the encoder

� However, we also want the encoder to respect the latent 

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some 

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥 )
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥 )
)

� The second term drives the latent vector to be closer to the 
encoder output vector that was mapped to it
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VQ-VAE 
Objective 
Function

� Intuition: we want the latent vectors to correspond to 

relevant points in the embedding space i.e., ones that are 
near the outputs of the encoder

� However, we also want the encoder to respect the latent 

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some 

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥 )
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥 )
)

� The third term drives the encoder to output vectors closer to 
the latent vectors
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CLIP vs. VQ-VAEs

� VLMs with VQ-VAE encoders (or any vector quantized 

image model) can also generate images in addition to 
text by defining a loss over the image codebook tokens

� CLIP does not discretize its image embedding so VLMs 

with CLIP-based encoders cannot (naturally) define a 
loss over images and thus, can only output text

� However, CLIP embeddings are more expressive than 
the discrete VQ-VAE encodings so can lead to improved 

performance in some settings
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VLMS WITH TEXT AND IMAGE DECODERS
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Large World Model
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Figure from http://arxiv.org/abs/2402.08268 



Large World Model
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Figure from http://arxiv.org/abs/2402.08268 



Gemini
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Gemini
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