
Direct Preference Optimization (DPO)
+

Latent Diffusion Models
(and other text-to-image models)

1

10-423/10-623 Generative AI

Matt Gormley & Pat Virtue
Lecture 12

Feb. 24, 2025

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Quiz 3
– In class, Wed, Feb 26
– Lectures 9, 10, 11, and only RLHF/DPO portion of 12

• Homework 3: Applying and Adapting LLMs
– Out: Sun, Feb 23
– Due: Thu, March 13 at 11:59pm
– You are not expected to work on HW3 over Spring Break

3

Project
• Goals:
– Explore a generative

modeling technique of your
choosing

– Deeper understanding of
methods in real-world
application

– Work in teams of 3 students
• Project description on course

website

5

RLHF (CONTINUED)

6

RLHF

7
Figure from https://arxiv.org/pdf/2203.02155.pdf

Recall…

https://arxiv.org/pdf/2203.02155.pdf

RLHF

8
Figure from https://arxiv.org/pdf/2203.02155.pdf

• Step 1 performs instruction
fine-tuning on 13k training
examples

• This aligns the model
behavior with what we
would expect of a chat
agent

• But the diversity of the
interactions might still be
limited by the contents of
the training data

Recall…

https://arxiv.org/pdf/2203.02155.pdf

RLHF

9
Figure from https://arxiv.org/pdf/2203.02155.pdf

• In Step 2, takes 33k
prompts and samples a
collection of responses
from the instruction
fine-tuned model for
each one

• The human labeler
ranks the K ∈ {4,…,9}
responses

Recall…

https://arxiv.org/pdf/2203.02155.pdf

RLHF

10
Figure from https://arxiv.org/pdf/2203.02155.pdf

• In Step 2, takes 33k
prompts and samples a
collection of responses
from the instruction
fine-tuned model for
each one

• The human labeler
ranks the K ∈ {4,…,9}
responses

• The reward model is a
copy of the Step-1 LLM,
but with the softmax
over words replaced so
that it outputs a single
scalar value, i.e. the
reward

• The model is trained so
that rewards of the
higher ranking
(winning) responses
are larger than those of
the lower ranking
(losing) responses

Recall…

https://arxiv.org/pdf/2203.02155.pdf

RLHF

11
Figure from https://arxiv.org/pdf/2203.02155.pdf

Recall…

https://arxiv.org/pdf/2203.02155.pdf

RLHF

13
Figure from https://arxiv.org/pdf/2203.02155.pdf

• Step 3 trains the model from Step 1 using
reinforcement learning

• Instead of having a human or some expert model
provide rewards, we take the reward model from
Step 2 as ”ground truth” for the rewards

• Reinforcement learning uses (state, action,
reward) tuples as training data
• state = prompt
• action = response
• reward = scalar from regression reward model
• each episode lasts exactly one turn

• RL objective is combined with pre-training
objective:
objective(φ) = E(x,y)∼D

πRL
φ

)

rθ(x, y)− β log

[

πRL
φ (y|x)

πSFT
φ (y|x)

]]

+ γEx∼Dpretrain

[

log
(

πRL
φ (x)

)]

Recall…

https://arxiv.org/pdf/2203.02155.pdf

RLHF Objective Function

14

The objective function used here is modeled off of the (rather popular) PPO algorithm. That algorithm,
in turn, is a type of policy gradient method and motivated by the objective functions for trust region
policy optimization (TRPO). But the (super high level) intuition behind the objective function is as
follows:
1. The expectation of the reward says that on samples from the RL trained model πRL, we want the

probability of that sample πRL to be high when the reward rθ is high and for it to be low otherwise.
2. The expectation of the beta term says that we don't want the RL trained model probabilities πRL to

stray to far from the supervised fine-tuned (SFT) model πSFT -- this is instantiated as a KL divergence
penalty.

3. The expectation under the pretraining distribution Dpretrain is just the standard log-likelihood of a
training sample that we use for supervised fine-tuning, but applied here to the RL trained model as
well.

Note that in practice, we don't compute these expectations exactly, we approximate each with a
Monte Carlo approximation (i.e. a sum over a very small number of samples).

objective(φ) = E(x,y)∼D
πRL
φ

)

rθ(x, y)− β log

[

πRL
φ (y|x)

πSFT
φ (y|x)

]]

+ γEx∼Dpretrain

[

log
(

πRL
φ (x)

)]

Recall…

https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477

PROXIMAL POLICY OPTIMIZATION
(Slides from Henry Chai)

15

Reinforcement
Learning:
Problem
Formulation
for Fine-tuning
LLMs

� State space, 𝒮 = all	possible	sequences	of	tokens

� Action space, 𝒜 = vocabulary	of	next	tokens

� Reward function

� Stochastic, 𝑝 𝑟	 𝑠, 𝑎)

� Deterministic reward based on reward model
trained on human feedback, 𝑅!
� 𝑅! is a bit of weird reward function from an RL

perspective: it returns 0 ∀	𝑎 ≠	EOS and

𝑟! 𝑥, 𝑠, 𝑎 − 𝑥 otherwise

� Transition function

� Stochastic, 𝑝 𝑠"	 𝑠, 𝑎)

� Deterministic, 𝛿 𝑠, 𝑎 = 𝑠, 𝑎 1610/2/24

Reinforcement
Learning:
Object of
Interest for
Fine-tuning
LLMs

� The LLM to be fine-tuned, 𝜋# 𝑎	 𝑠

� Specifies a distribution over next tokens given any input
sequence

� An episode τ = 𝑥, 𝑎$, 𝑠%, 𝑎%, … , 𝑠& is one completion of
the prompt 𝑥, ending in an EOS token

� The LLM induces a distribution over possible completions

𝑝# τ = 𝑝 𝑎$, 𝑠%, 𝑎%, … , 𝑠& 	|	𝑥 ≔ 𝑠$

𝑝' τ =I
()$

&*%

𝜋# 𝑎(𝑠(
1710/7/24

𝑠(𝜙

𝑝 𝑎%|𝑠(; 𝜙 ≔ 𝜋# 𝑎% 𝑠(
𝑝 𝑎+|𝑠(; 𝜙 ≔ 𝜋# 𝑎+ 𝑠(

𝑝 𝑎 𝒜 |𝑠(; 𝜙 ≔ 𝜋# 𝑎 𝒜 𝑠(
⋮

Model:

Policy
Gradient
Methods

10/2/24 18

∇#ℓ 𝜙 = ∇# −𝔼-! . 𝑅! τ = ∇# −P𝑅! τ 𝑝# τ 	𝑑τ

∇#ℓ 𝜙 = −P𝑅! τ ∇# I
()$

&*%

𝜋# 𝑎(𝑠(𝑑τ

� Issue: ∇#𝑝# τ 	involves taking the gradient of a (hideous) product

Objective function: ℓ 𝜙 = −𝔼-! . 𝑅! τ , the negative expected reward of a response

Likelihood
Ratio
Method
a.k.a.
REINFORCE
(Williams,
1992)

10/2/24 19

Objective function: ℓ 𝜙 = −𝔼-! . 𝑅! τ , the negative expected reward of a response

Source: https://link.springer.com/article/10.1007/bf00992696

∇#ℓ 𝜙 = ∇# −𝔼-! . 𝑅! τ = ∇# −P𝑅! τ 𝑝# τ 	𝑑τ

∇#ℓ 𝜙 = −P𝑅! τ ∇# I
()$

&*%

𝜋# 𝑎(𝑠(𝑑τ

� Insight:

∇#𝑝# τ =
𝑝# τ
𝑝# τ

∇#𝑝# τ = 𝑝# τ ∇# log 𝑝# τ

log 𝑝# τ = S
()$

&*%

log 𝜋# 𝑎(𝑠(

∇# log 𝑝# τ = S
()$

&*%

∇# log 𝜋# 𝑎(𝑠(

Likelihood
Ratio
Method
a.k.a.
REINFORCE
(Williams,
1992)

10/7/24 21

Objective function: ℓ 𝜙 = −𝔼-! . 𝑅! τ , the negative expected reward of a response

∇#ℓ 𝜙 = ∇# −𝔼-! . 𝑅! τ = ∇# −P𝑅! τ 𝑝# τ 	𝑑τ

∇#ℓ 𝜙 = −P𝑅! τ ∇#𝑝# τ 𝑑τ = −P𝑅! τ ∇# log 𝑝# τ 𝑝# τ 𝑑τ

∇#ℓ 𝜙 = −𝔼-! . 𝑅! τ ∇# log 𝑝# τ

∇#ℓ 𝜙 ≈ −
1
𝑁
S
/)%

0

𝑅! τ / ∇# log 𝑝# τ /

(where τ / = 𝑎$
/ , 𝑠%

/ , 𝑎%
/ , … , 𝑠& "

/ 	is a sampled completion of 𝑥)

∇#ℓ 𝜙 = −
1
𝑁S
/)%

0

𝑟! 𝑥, 𝑎$
/ , … , 𝑎& "

/ S
()$

& " *%

∇# log 𝜋# 𝑎(
/ 𝑠(

/

Proximal Policy
Optimization
(Schulman et
al., 2017)

10/7/24 23

� There are two high-level modifications to get from

REINFORCE to proximal policy optimization (PPO):

1. Sampled trajectories/rewards can be highly variable,
which leads to unstable estimates of the expectation

� Instead of working with 𝑅!, PPO considers a
trajectory’s advantage over some baseline

� The baseline is typically defined in terms of the
value function at each state in the trajectory

Source: https://arxiv.org/pdf/1707.06347

https://arxiv.org/pdf/1707.06347

Proximal Policy
Optimization
(Schulman et
al., 2017)

10/7/24 24

� There are two high-level modifications to get from

REINFORCE to proximal policy optimization (PPO):

2. Policy gradient methods are on-policy: the policy
being optimized is also being used to generate the

trajectories used in training

� This can also lead to instability/poor convergence if

the policy ever becomes bad

� Intuition: ensure that the policy 𝜋#12 τ remains

“close to” some policy known to be good

� In RLHF, we can just use the original
(instruction fine-tuned) LLM 𝜋34& τ !

Source: https://arxiv.org/pdf/1707.06347

https://arxiv.org/pdf/1707.06347

Reinforcement
Learning from
Human
Feedback:
PPO

10/7/24 25Source: https://arxiv.org/pdf/2203.02155

• Step 3 fine-tunes the LLM’s parameters

using the PPO objective plus a pre-
training loss term:

ℓ 𝜙 = −𝔼-! . 𝑅! τ + 𝛽 log
𝜋#12 τ
𝜋34& τ

ℓ 𝜙 = −𝛾𝔼5	∼	8#$%&$'(" log 𝜋#
12 x

https://arxiv.org/pdf/2203.02155

Alright, so
what does all
of this get us?

10/7/24 26Source: https://arxiv.org/pdf/2203.02155

https://arxiv.org/pdf/2203.02155

� Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness
(“context distilled” corresponds to an instruction fine-
tuned LLM, tune for helpfulness and harmlessness)Reinforcement

Learning from
Human
Feedback:
Results

10/7/24 27Source: http://arxiv.org/abs/2204.05862

Recall…

http://arxiv.org/abs/2204.05862

Reinforcement
Learning from
Human
Feedback:
Results

10/7/24 28Source: http://arxiv.org/abs/2204.05862

� Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

2. does not (significantly) decrease zero-shot or few-
shot performance on most tasks

Recall…

http://arxiv.org/abs/2204.05862

Man,
reinforcement
learning seems
hard; couldn’t
we do
something
easier?

10/7/24 29Source: http://arxiv.org/abs/2204.05862

� Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

2. does not (significantly) decrease zero-shot or few-
shot performance on most tasks

Recall…

http://arxiv.org/abs/2204.05862

DIRECT PREFERENCE OPTIMIZATION
(Slides from Henry Chai)

30

Direct
Preference
Optimization
(Rafailov et al.,
2023)

� Intuition: in some sense, the reinforcement learning

problem we defined for fine-tuning LLMs to human
preferences is very “simple”

� All of the dynamics (the state space, action space,

transition function, reward model) are all known
a priori and deterministic

� Idea: instead of optimizing a learned reward model,
fine-tune the LLM using the stated preferences directly

� Increase the likelihood of higher-ranking
responses, 𝑦9, and decrease the likelihood of
lower-ranking responses, 𝑦:.

10/7/24 31Source: https://arxiv.org/pdf/2305.18290

https://arxiv.org/pdf/2305.18290

Direct
Preference
Optimization
(Rafailov et al.,
2023)

� Assume there exists a (universal) latent reward model, 𝑟∗,
that is responsible for the observed preferences according to

𝑝 𝑦9 ≻ 𝑦:	|	𝑥 =
exp 𝑟∗ 𝑥, 𝑦9

exp 𝑟∗ 𝑥, 𝑦9 + exp 𝑟∗ 𝑥, 𝑦:

� If we knew this true reward model, the objective function
RLHF would try to optimize (without the pre-training loss) is

ℓ 𝜙 = −𝔼-! <|5 𝑟∗ 𝑥, 𝑦 − 𝛽 log
𝜋# 𝑦|𝑥
𝜋34& 𝑦|𝑥

� It can be shown that the optimal policy satisfies

𝜋#∗ 𝑦|𝑥 =
1

𝑍 𝑥
𝜋34& 𝑦|𝑥 exp

𝑟∗ 𝑥, 𝑦
𝛽

for some normalizing factor 𝑍 𝑥
10/7/24 32Source: https://arxiv.org/pdf/2305.18290

https://arxiv.org/pdf/2305.18290

Direct
Preference
Optimization
(Rafailov et al.,
2023)

� Assume there exists a (universal) latent reward model, 𝑟∗,
that is responsible for the observed preferences according to

𝑝 𝑦9 ≻ 𝑦:	|	𝑥 =
exp 𝑟∗ 𝑥, 𝑦9

exp 𝑟∗ 𝑥, 𝑦9 + exp 𝑟∗ 𝑥, 𝑦:

� If we knew this true reward model, the objective function
RLHF would try to optimize (without the pre-training loss) is

ℓ 𝜙 = −𝔼-! <|5 𝑟∗ 𝑥, 𝑦 − 𝛽 log
𝜋# 𝑦|𝑥
𝜋34& 𝑦|𝑥

� It can be shown that the optimal policy satisfies

𝜋#∗ 𝑦|𝑥 =
1

𝑍 𝑥
𝜋34& 𝑦|𝑥 exp

𝑟∗ 𝑥, 𝑦
𝛽

solving this for 𝑟∗ and plugging it into the probability above…
10/7/24 33Source: https://arxiv.org/pdf/2305.18290

https://arxiv.org/pdf/2305.18290

Direct
Preference
Optimization
(Rafailov et al.,
2023)

10/7/24 34Source: https://arxiv.org/pdf/2305.18290

� Assume that the LLM 𝜋#∗
that is responsible for the observed preferences according to

𝑝 𝑦9 ≻ 𝑦:	|	𝑥 =
1

1 + exp 𝛽 log
𝜋#∗ 𝑦:|𝑥
𝜋34& 𝑦:|𝑥

− 𝛽 log
𝜋#∗ 𝑦9|𝑥
𝜋34& 𝑦9|𝑥

� “Your language model is secretly a reward model”

� Key takeaway: we can directly optimize the LLM parameters,
𝜙, by maximizing this probability over samples 𝑥, 𝑦9, 𝑦:

from the human labelled preferences dataset 𝒟!

https://arxiv.org/pdf/2305.18290

Direct
Preference
Optimization
(Rafailov et al.,
2023)

10/7/24 35Source: https://arxiv.org/pdf/2305.18290

• “For summarization, we use reference summaries in the test

set as the baseline; for dialogue, we use the preferred
response in the test dataset as the baseline”

• Key caveat: “we evaluate algorithms with their win rate

against a baseline policy, using GPT-4 as a proxy for human
evaluation…”

https://arxiv.org/pdf/2305.18290

CONDITIONAL IMAGE GENERATION

36

Image Generation
• Class-conditional generation
• Super resolution
• Image Editing
• Style transfer
• Text-to-image (TTI) generation

37

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023)

Class Conditional Generation

38

• Task: Given a class
label indicating the
image type, sample a
new image from the
model with that type

• Image classification is
the problem of taking
in an image and
predicting its label
p(y|x)

• Class conditional
generation is doing
this in reverse p(x|y)

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019)

Super Resolution

39
Figure from Li et al. (2021)

• Given a low
resolution image,
generate a high
resolution
reconstruction of
the image

• Compelling on low
resolution inputs
(see example to the
left) but also
effective on high
resolution inputs

Image Editing

40
Figure from Saharia et al. (2022)

A variety of tasks involve
automatic editing of an
image:
• Inpainting fills in the (pre-

specified) missing pixels
• Colorization restores

color to a greyscale image
• Uncropping creates a

photo-realistic
reconstruction of a
missing side of an image

Style Transfer

41

• The goal of style transfer is to blend
two images

• Yet, the blend should retain the
semantic content of the source
image presented in the style of
another image

Figure from Gatys et al. (2016)

Text-to-Image Generation

42

• Given a text description, sample an
image that depicts the prompt

• The following images are samples from
SDXL with refinement

Prompt: A propaganda poster depicting a
cat dressed as french emperor napoleon
holding a piece of cheese.

Figure from Podell et al. (2023)

Timeline: Text-to-Image Generation

47
Figure from Bie et al. (2023) http://arxiv.org/abs/2309.00810

Timeline: Text-to-Image Generation

48
Figure from Bie et al. (2023) http://arxiv.org/abs/2309.00810

TEXT-TO-IMAGE: GANS

49

Class-conditional GANs

50

z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple
differentiable function

• We chose G and D to be
differentiable neural networks

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃

Real/fake images from Huang et al. (2017)

label

Add a label as input
to the generator, so
that it can learn to
generate specific
types of images

Generative adversarial text to image synthesis

52
Figure from Reed et al. (2016)

TEXT-TO-IMAGE: AUTOREGRESSIVE MODELS

53

Parti

54
Figure adapted from https://arxiv.org/pdf/2206.10789

The Pathways Autoregressive
Text-to-Image (Parti) model:
• Step 1: Image tokenization

(ViT-VQGAN)
– pre-train a model to convert

images into image tokens
(discrete set of embeddings)

• Step 2: Training
– treat image generation as a

sequence-to-sequence
problem

– text prompt is input to
encoder (pretrained BERT)

– sequence of image tokens is
output of decoder

• Step 3: Generation
– ViT-VQGAN takes in the image

tokens and generates a high-
quality image

Parti

55
Figure adapted from https://arxiv.org/pdf/2206.10789 and https://arxiv.org/pdf/2110.04627

The Pathways Autoregressive
Text-to-Image (Parti) model:
• Step 1: Image tokenization

(ViT-VQGAN)
– pre-train a model to convert

images into image tokens
(discrete set of embeddings)

• Step 2: Training
– treat image generation as a

sequence-to-sequence
problem

– text prompt is input to
encoder (pretrained BERT)

– sequence of image tokens is
output of decoder

• Step 3: Generation
– ViT-VQGAN takes in the image

tokens and generates a high-
quality image

https://arxiv.org/pdf/2206.10789
https://arxiv.org/pdf/2110.04627

Parti

56
Figure adapted from https://arxiv.org/pdf/2206.10789

The Pathways Autoregressive
Text-to-Image (Parti) model:
• Step 1: Image tokenization

(ViT-VQGAN)
– pre-train a model to convert

images into image tokens
(discrete set of embeddings)

• Step 2: Training
– treat image generation as a

sequence-to-sequence
problem

– text prompt is input to
encoder (pretrained BERT)

– sequence of image tokens is
output of decoder

• Step 3: Generation
– ViT-VQGAN takes in the image

tokens and generates a high-
quality image

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

Parti

57
Figure adapted from https://arxiv.org/pdf/2206.10789

The Pathways Autoregressive
Text-to-Image (Parti) model:
• Step 1: Image tokenization

(ViT-VQGAN)
– pre-train a model to convert

images into image tokens
(discrete set of embeddings)

• Step 2: Training
– treat image generation as a

sequence-to-sequence
problem

– text prompt is input to
encoder (pretrained BERT)

– sequence of image tokens is
output of decoder

• Step 3: Generation
– ViT-VQGAN takes in the image

tokens and generates a high-
quality image

TEXT-TO-IMAGE: DIFFUSION MODELS

58

CLIP (background for Dall-E 2)

59
Figure from Radford et al. (2021)

Dall-E 2• First pre-train a CLIP model
– text encoder (trained

then frozen): encode text
as embedding using CLIP

– img encoder (trained
then discarded): though
used to create CLIP image
embeddings

• Second, train the
prior/decoder of the Dall-E
2 model:
– prior (trained): train a

Gaussian diffusion model
to generate CLIP image
embeddings, conditioned
on CLIP text embedding

– decoder (trained): train
an image diffusion model
generate an image,
conditioned on CLIP
image embedding

60
Figure adapted from Ramesh et al. (2022)

Imagen
• Imagen uses a text-

to-image diffusion
model coupled with
a super-resolution
diffusion model

• All the models
operate in pixel
space

• While effective, the
compute
requirements are
very high

61

LATENT DIFFUSION MODEL (LDM)

62

Latent Diffusion Model
Motivation:
• diffusion models typically operate in pixel

space
• yet, training typically takes hundreds of GPU

days
– 150 – 1000 V100 days [Guided Diffusion]

(Dhariwal & Nichol, 2021)
– 256 TPU-v4s for 4 days = 1000 TPU days [Imagen]

(Sharia et al., 2022)
• inference is also slow

– 50k samples in 5 days on A100 GPU [Guided
Diffusion] (Dhariwal & Nichol, 2021)

– 15 seconds per image

Key Idea:
• train an autoencoder (i.e. encoder-decoder

model) that learns an efficient latent space
that is perceptually equivalent to the data
space

• keeping the autoencoder fixed, train a
diffusion model on the latent
representations of real images z0 =
encoder(x)
– forward model: latent representation z0 à noise

zT

– reverse model: noise zT à latent representation
z0

• to generate an image:
– sample noise zT

– apply reverse diffusion model to obtain a latent
representation z0

– decode the latent representation to an image x
• condition on prompt via cross attention in

latent space
63

Latent Diffusion Model 68

Latent Diffusion Model (LDM)

70

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

LDM: Autoencoder

71

z

z

Encoder

Decoder

x̃

xE

D

pixel spacelatent space

LDM: Autoencoder
• The autoencoder is chosen so that it can project

high dimensional images (e.g. 1024x1024) down to
low dimensional latent space and faithfully project
back up to pixel space

• The original LDM paper considers two options:
1. a VAE-like model (regularizes the noise towards a

Gaussian)
2. a VQGAN (performs vector quantization in the decoder;

i.e., it uses a discrete codebook)

• This model is trained ahead of time just on raw
images (no text prompts) and then frozen

• The frozen encoder-decoder can be reused for all
subsequent LDM training

72

z

Encoder

Decoder

x̃

xE

D

pixel spacelatent space

LDM: Autoencoder
• After trying a zoo of autoencoder options, the original

paper picked one that offered a good level of
compression without much loss of information

73

z

Encoder

Decoder

x̃

xE

D

pixel spacelatent space

LDM: the Prompt Model

• The prompt model is just a Transformer LM
• We learn its parameters alongside the diffusion

model
• The goal is to build up good representations of

the text prompts such that they inform the latent
diffusion process

74

prompt space

LLM

τθ

orange cat

ŷ

y

LDM: with DDPM

75

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

prompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

LDM: with DDPM

76

Forward Process:

qφ(z1:T) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T) = pθ(zT)
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT) ∼ N (0, I), just like pθ(xT).

Herewe let z0 = z, the output of the encoder from our autoencoder

LDM: with DDPM

77

Forward Process:

qφ(z1:T) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T) = pθ(zT)
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT) ∼ N (0, I), just like pθ(xT).

Herewe let z0 = z, the output of the encoder from our autoencoder

Question: How do
we define the

mean to condition
on the prompt

representation?

Properties of forward and exact reverse processes

78

Property #1:

q(xt | x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
t∏

s=1

αs

⇒ we can sample xt from x0 at any timestep t

efÏciently in closed form

⇒ xt =
√
ᾱtx0 + (1− ᾱt)εwhere ε ∼ N (0, I)

Property #2: Estimating q(xt−1 | xt) is intractable
because of its dependence on q(x0). However,
conditioning on x0 we can efÏciently work with:

q(xt−1 | xt, x0) = N (µ̃q(xt, x0),σ
2
t I)

where µ̃q(xt, x0) =

√
ᾱt(1− αt)

1− ᾱt

x0 +

√
αt(1− ᾱt)

1− ᾱt

xt

= α
(0)
t x0 + α

(t)
t xt

σ
2
t =

(1− ᾱt−1)(1− αt)

1− ᾱt

Property #3: Combining the two previous prop‐
erties, we can obtain a different parameteriza‐
tion of µ̃q which has been shown empirically to
help in learning pθ.

Rearranging xt =
√

ᾱtx0 + (1 − ᾱt)ε we have
that:

x0 = (x0 + (1− ᾱt)ε) /
√

ᾱt

Substituting this definition of x0 into property
#2’s definition of µ̃q gives:

µ̃q(xt, x0) = α
(0)
t x0 + α

(t)
t xt

= α
(0)
t

(

(x0 + (1− ᾱt)ε) /
√

ᾱt

)

+ α
(t)
t xt

=
1

√

αt

(

xt −
(1− αt)
√

1− ᾱt

ε

)

Recall…

Parameterizing the learned reverse process

79

Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Laterwewill showthatgivena train‐
ing sample x0, we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)

Intuitively, thismakes sense: if the
learned reverseprocess is supposed
to subtract away the noise, then
wheneverwe’reworkingwith a spe‐
cific x0 it should subtract it away
exactly as exact reverseprocesswould
have.

Idea #1: Rather than learn Σθ(xt, t) just use what we
knowabout q(xt−1 | xt, x0) ∼ N (µ̃q(xt, x0),σ

2
t I):

Σθ(xt, t) = σ2
t I

Idea #2: Choose µθ based on q(xt−1 | xt, x0), i.e. we
want µθ(xt, t) to be close to µ̃q(xt, x0). Here are
three ways we could parameterize this:

Option C: Learnanetwork that approximates the
ε that gave rise to xt from x0 in the forward
process from xt and t:

µθ(xt, t) = α
(0)
t x(0)

θ (xt, t) + α
(t)
t xt

where x(0)
θ (xt, t) = (x0 + (1− ᾱt)εθ(xt, t)) /

√
ᾱt

where εθ(xt, t) = UNetθ(xt, t)

Recall…

LDM: Noise Model

LLM

τθ

orange cat

ŷ

y

prompt space

• The noise model
includes cross
attention (yellow
boxes) to the
representation of
the prompt text

• During training we
optimize both the
parameters of the
UNet noise model
and the parameters
of the LLM
simultaneously

µθ(zt, t, τθ(y)) = f(UNet(zt, t, τθ(y)))

LDM: Cross-Attention in Noise Model
• The cross-attention is placed within

a larger Transformer layer
• The cross-attention modifies the keys and

values to be the prompt representation
• The queries are the current layer of UNet

82

Transformer Layer inside UNet

Figure from http://arxiv.org/abs/2112.10752

LDM: Learning the Diffusion Model + LLM

83

Algorithm 1 Training
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0, y ∈ D do
4: t ∼ Uniform(1, . . . , T)
5: ε ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtε

7: #t(θ)← ‖ε− εθ(xt, t, τθ(y))‖2
8: θ ← θ −∇θ#t(θ)

Given a training sample z0, we want

pθ(zt−1 | zt, τθ(y))

to be as close as possible to

q(zt−1 | zt, z0)

Intuitively, this makes sense: if the
learned reverse process is supposed
to subtract away the noise, then
whenever we’re working with a spe‐
cific z0 it should subtract it away
exactly as exact reverse process would
have.

Objective Function:

Latent Diffusion Model (LDM)

84

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

LDM Results

85
Figure from http://arxiv.org/abs/2112.10752

LDM Results
• The result models obtain

very high quality FID / IS
scores with many fewer
parameters than
competing models

• The models are much
more efficient than
vanilla diffusion models
because the most
computationally intensive
step happens in low
dimensional latent space,
instead of high
dimensional pixel space

86
Figure from http://arxiv.org/abs/2112.10752

