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Reminders

• Quiz 3
– In class, Wed, Feb 26
– Lectures 9, 10, 11, and only RLHF/DPO portion of 12

• Homework 3: Applying and Adapting LLMs
– Out: Sun, Feb 23
– Due: Thu, March 13 at 11:59pm
– You are not expected to work on HW3 over Spring Break
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Project
• Goals:
– Explore a generative 

modeling technique of your 
choosing

– Deeper understanding of 
methods in real-world 
application

– Work in teams of 3 students
• Project description on course 

website
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RLHF (CONTINUED)
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RLHF

7
Figure from https://arxiv.org/pdf/2203.02155.pdf 

Recall…

https://arxiv.org/pdf/2203.02155.pdf


RLHF

8
Figure from https://arxiv.org/pdf/2203.02155.pdf 

• Step 1 performs instruction 
fine-tuning on 13k training 
examples

• This aligns the model 
behavior with what we 
would expect of a chat 
agent

• But the diversity of the 
interactions might still be 
limited by the contents of 
the training data

Recall…

https://arxiv.org/pdf/2203.02155.pdf


RLHF

9
Figure from https://arxiv.org/pdf/2203.02155.pdf 

• In Step 2, takes 33k 
prompts and samples a 
collection of responses 
from the instruction 
fine-tuned model for 
each one

• The human labeler 
ranks the K ∈ {4,…,9} 
responses

Recall…

https://arxiv.org/pdf/2203.02155.pdf


RLHF

10
Figure from https://arxiv.org/pdf/2203.02155.pdf 

• In Step 2, takes 33k 
prompts and samples a 
collection of responses 
from the instruction 
fine-tuned model for 
each one

• The human labeler 
ranks the K ∈ {4,…,9} 
responses

• The reward model is a 
copy of the Step-1 LLM, 
but with the softmax 
over words replaced so 
that it outputs a single 
scalar value, i.e. the 
reward

• The model is trained so 
that rewards of the 
higher ranking 
(winning) responses 
are larger than those of 
the lower ranking 
(losing) responses

Recall…

https://arxiv.org/pdf/2203.02155.pdf


RLHF

11
Figure from https://arxiv.org/pdf/2203.02155.pdf 

Recall…

https://arxiv.org/pdf/2203.02155.pdf


RLHF

13
Figure from https://arxiv.org/pdf/2203.02155.pdf 

• Step 3 trains the model from Step 1 using 
reinforcement learning

• Instead of having a human or some expert model 
provide rewards, we take the reward model from 
Step 2 as ”ground truth” for the rewards

• Reinforcement learning uses (state, action, 
reward) tuples as training data
• state = prompt
• action = response
• reward = scalar from regression reward model
• each episode lasts exactly one turn

• RL objective is combined with pre-training 
objective:
objective(φ) = E(x,y)∼D

πRL
φ

)

rθ(x, y)− β log

[

πRL
φ (y|x)

πSFT
φ (y|x)

]]

+ γEx∼Dpretrain

[

log
(

πRL
φ (x)

)]

Recall…

https://arxiv.org/pdf/2203.02155.pdf


RLHF Objective Function 

14

The objective function used here is modeled off of the (rather popular) PPO algorithm. That algorithm, 
in turn, is a type of policy gradient method and motivated by the objective functions for trust region 
policy optimization (TRPO). But the (super high level) intuition behind the objective function is as 
follows:
1. The expectation of the reward says that on samples from the RL trained model πRL, we want the 

probability of that sample πRL to be high when the reward rθ is high and for it to be low otherwise.
2. The expectation of the beta term says that we don't want the RL trained model probabilities πRL to 

stray to far from the supervised fine-tuned (SFT) model πSFT -- this is instantiated as a KL divergence 
penalty.

3. The expectation under the pretraining distribution Dpretrain is just the standard log-likelihood of a 
training sample that we use for supervised fine-tuning, but applied here to the RL trained model as 
well.

Note that in practice, we don't compute these expectations exactly, we approximate each with a 
Monte Carlo approximation (i.e. a sum over a very small number of samples).

objective(φ) = E(x,y)∼D
πRL
φ

)

rθ(x, y)− β log

[

πRL
φ (y|x)

πSFT
φ (y|x)

]]

+ γEx∼Dpretrain

[

log
(

πRL
φ (x)

)]

Recall…

https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477


PROXIMAL POLICY OPTIMIZATION
(Slides from Henry Chai)
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Reinforcement 
Learning: 
Problem 
Formulation 
for Fine-tuning 
LLMs

� State space, 𝒮 = all	possible	sequences	of	tokens

� Action space, 𝒜 = vocabulary	of	next	tokens

� Reward function 

� Stochastic, 𝑝 𝑟	 𝑠, 𝑎)

� Deterministic reward based on reward model 
trained on human feedback, 𝑅!
� 𝑅! is a bit of weird reward function from an RL 

perspective: it returns 0 ∀	𝑎 ≠	EOS and 

𝑟! 𝑥, 𝑠, 𝑎 − 𝑥  otherwise

� Transition function

� Stochastic, 𝑝 𝑠"	 𝑠, 𝑎)

� Deterministic, 𝛿 𝑠, 𝑎 = 𝑠, 𝑎 1610/2/24



Reinforcement 
Learning: 
Object of 
Interest for 
Fine-tuning 
LLMs

� The LLM to be fine-tuned, 𝜋# 𝑎	 𝑠

� Specifies a distribution over next tokens given any input 
sequence

� An episode τ = 𝑥, 𝑎$, 𝑠%, 𝑎%, … , 𝑠&  is one completion of 
the prompt 𝑥, ending in an EOS token

� The LLM induces a distribution over possible completions

𝑝# τ = 𝑝 𝑎$, 𝑠%, 𝑎%, … , 𝑠& 	|	𝑥 ≔ 𝑠$

𝑝' τ =I
()$

&*%

𝜋# 𝑎( 𝑠(
1710/7/24

𝑠( 𝜙

𝑝 𝑎%|𝑠(; 𝜙 ≔ 𝜋# 𝑎% 𝑠(
𝑝 𝑎+|𝑠(; 𝜙 ≔ 𝜋# 𝑎+ 𝑠(

𝑝 𝑎 𝒜 |𝑠(; 𝜙 ≔ 𝜋# 𝑎 𝒜 𝑠(
⋮

Model:



Policy 
Gradient
Methods

10/2/24 18

∇#ℓ 𝜙 = ∇# −𝔼-! . 𝑅! τ = ∇# −P𝑅! τ 𝑝# τ 	𝑑τ

∇#ℓ 𝜙 = −P𝑅! τ ∇# I
()$

&*%

𝜋# 𝑎( 𝑠( 𝑑τ

� Issue: ∇#𝑝# τ 	involves taking the gradient of a (hideous) product 

Objective function: ℓ 𝜙 = −𝔼-! . 𝑅! τ , the negative expected reward of a response



Likelihood 
Ratio 
Method 
a.k.a. 
REINFORCE 
(Williams, 
1992)

10/2/24 19

Objective function: ℓ 𝜙 = −𝔼-! . 𝑅! τ , the negative expected reward of a response

Source: https://link.springer.com/article/10.1007/bf00992696

∇#ℓ 𝜙 = ∇# −𝔼-! . 𝑅! τ = ∇# −P𝑅! τ 𝑝# τ 	𝑑τ

∇#ℓ 𝜙 = −P𝑅! τ ∇# I
()$

&*%

𝜋# 𝑎( 𝑠( 𝑑τ

� Insight:

∇#𝑝# τ =
𝑝# τ
𝑝# τ

∇#𝑝# τ = 𝑝# τ ∇# log 𝑝# τ

log 𝑝# τ = S
()$

&*%

log 𝜋# 𝑎( 𝑠(

∇# log 𝑝# τ = S
()$

&*%

∇# log 𝜋# 𝑎(	 𝑠(



Likelihood 
Ratio 
Method 
a.k.a. 
REINFORCE 
(Williams, 
1992)

10/7/24 21

Objective function: ℓ 𝜙 = −𝔼-! . 𝑅! τ , the negative expected reward of a response

∇#ℓ 𝜙 = ∇# −𝔼-! . 𝑅! τ = ∇# −P𝑅! τ 𝑝# τ 	𝑑τ

∇#ℓ 𝜙 = −P𝑅! τ ∇#𝑝# τ 𝑑τ = −P𝑅! τ ∇# log 𝑝# τ 𝑝# τ 𝑑τ

∇#ℓ 𝜙 = −𝔼-! . 𝑅! τ ∇# log 𝑝# τ

∇#ℓ 𝜙 ≈ −
1
𝑁
S
/)%

0

𝑅! τ / ∇# log 𝑝# τ /

(where τ / = 𝑎$
/ , 𝑠%

/ , 𝑎%
/ , … , 𝑠& "

/ 	is a sampled completion of 𝑥)

∇#ℓ 𝜙 = −
1
𝑁S
/)%

0

𝑟! 𝑥, 𝑎$
/ , … , 𝑎& "

/ S
()$

& " *%

∇# log 𝜋# 𝑎(
/ 𝑠(

/



Proximal Policy 
Optimization 
(Schulman et 
al., 2017) 

10/7/24 23

� There are two high-level modifications to get from 

REINFORCE to proximal policy optimization (PPO): 

1. Sampled trajectories/rewards can be highly variable, 
which leads to unstable estimates of the expectation

� Instead of working with 𝑅!, PPO considers a 
trajectory’s advantage over some baseline

� The baseline is typically defined in terms of the 
value function at each state in the trajectory

Source: https://arxiv.org/pdf/1707.06347 

https://arxiv.org/pdf/1707.06347


Proximal Policy 
Optimization 
(Schulman et 
al., 2017) 

10/7/24 24

� There are two high-level modifications to get from 

REINFORCE to proximal policy optimization (PPO): 

2. Policy gradient methods are on-policy: the policy 
being optimized is also being used to generate the 

trajectories used in training

� This can also lead to instability/poor convergence if 

the policy ever becomes bad

� Intuition: ensure that the policy 𝜋#12 τ  remains 

“close to” some policy known to be good

� In RLHF, we can just use the original 
(instruction fine-tuned) LLM 𝜋34& τ ! 

Source: https://arxiv.org/pdf/1707.06347 

https://arxiv.org/pdf/1707.06347


Reinforcement 
Learning from 
Human 
Feedback: 
PPO

10/7/24 25Source: https://arxiv.org/pdf/2203.02155 

• Step 3 fine-tunes the LLM’s parameters 

using the PPO objective plus a pre-
training loss term:

ℓ 𝜙 = −𝔼-! . 𝑅! τ + 𝛽 log
𝜋#12 τ
𝜋34& τ

ℓ 𝜙 = −𝛾𝔼5	∼	8#$%&$'(" log 𝜋#
12 x

https://arxiv.org/pdf/2203.02155


Alright, so 
what does all 
of this get us?

10/7/24 26Source: https://arxiv.org/pdf/2203.02155 

https://arxiv.org/pdf/2203.02155


� Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness
(“context distilled” corresponds to an instruction fine-
tuned LLM, tune for helpfulness and harmlessness)Reinforcement 

Learning from 
Human 
Feedback: 
Results

10/7/24 27Source: http://arxiv.org/abs/2204.05862 

Recall…

http://arxiv.org/abs/2204.05862


Reinforcement 
Learning from 
Human 
Feedback: 
Results

10/7/24 28Source: http://arxiv.org/abs/2204.05862 

� Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

2. does not (significantly) decrease zero-shot or few-
shot performance on most tasks

Recall…

http://arxiv.org/abs/2204.05862


Man, 
reinforcement 
learning seems 
hard; couldn’t 
we do 
something 
easier?

10/7/24 29Source: http://arxiv.org/abs/2204.05862 

� Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

2. does not (significantly) decrease zero-shot or few-
shot performance on most tasks

Recall…

http://arxiv.org/abs/2204.05862


DIRECT PREFERENCE OPTIMIZATION
(Slides from Henry Chai)

30



Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 

� Intuition: in some sense, the reinforcement learning 

problem we defined for fine-tuning LLMs to human 
preferences is very “simple”

� All of the dynamics (the state space, action space, 

transition function, reward model) are all known 
a priori and deterministic

� Idea: instead of optimizing a learned reward model, 
fine-tune the LLM using the stated preferences directly 

� Increase the likelihood of higher-ranking 
responses, 𝑦9, and decrease the likelihood of 
lower-ranking responses, 𝑦:.

10/7/24 31Source: https://arxiv.org/pdf/2305.18290 

https://arxiv.org/pdf/2305.18290


Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 

� Assume there exists a (universal) latent reward model, 𝑟∗, 
that is responsible for the observed preferences according to

𝑝 𝑦9 ≻ 𝑦:	|	𝑥 =
exp 𝑟∗ 𝑥, 𝑦9

exp 𝑟∗ 𝑥, 𝑦9 + exp 𝑟∗ 𝑥, 𝑦:

� If we knew this true reward model, the objective function 
RLHF would try to optimize (without the pre-training loss) is

ℓ 𝜙 = −𝔼-! <|5 𝑟∗ 𝑥, 𝑦 − 𝛽 log
𝜋# 𝑦|𝑥
𝜋34& 𝑦|𝑥

� It can be shown that the optimal policy satisfies 

𝜋#∗ 𝑦|𝑥 =
1

𝑍 𝑥
𝜋34& 𝑦|𝑥 exp

𝑟∗ 𝑥, 𝑦
𝛽

for some normalizing factor 𝑍 𝑥
10/7/24 32Source: https://arxiv.org/pdf/2305.18290 

https://arxiv.org/pdf/2305.18290


Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 

� Assume there exists a (universal) latent reward model, 𝑟∗, 
that is responsible for the observed preferences according to

𝑝 𝑦9 ≻ 𝑦:	|	𝑥 =
exp 𝑟∗ 𝑥, 𝑦9

exp 𝑟∗ 𝑥, 𝑦9 + exp 𝑟∗ 𝑥, 𝑦:

� If we knew this true reward model, the objective function 
RLHF would try to optimize (without the pre-training loss) is

ℓ 𝜙 = −𝔼-! <|5 𝑟∗ 𝑥, 𝑦 − 𝛽 log
𝜋# 𝑦|𝑥
𝜋34& 𝑦|𝑥

� It can be shown that the optimal policy satisfies 

𝜋#∗ 𝑦|𝑥 =
1

𝑍 𝑥
𝜋34& 𝑦|𝑥 exp

𝑟∗ 𝑥, 𝑦
𝛽

solving this for 𝑟∗ and plugging it into the probability above… 
10/7/24 33Source: https://arxiv.org/pdf/2305.18290 

https://arxiv.org/pdf/2305.18290


Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 

10/7/24 34Source: https://arxiv.org/pdf/2305.18290 

� Assume that the LLM 𝜋#∗  
that is responsible for the observed preferences according to 

𝑝 𝑦9 ≻ 𝑦:	|	𝑥 =
1

1 + exp 𝛽 log
𝜋#∗ 𝑦:|𝑥
𝜋34& 𝑦:|𝑥

− 𝛽 log
𝜋#∗ 𝑦9|𝑥
𝜋34& 𝑦9|𝑥

� “Your language model is secretly a reward model”

� Key takeaway: we can directly optimize the LLM parameters, 
𝜙, by maximizing this probability over samples 𝑥, 𝑦9, 𝑦:  

from the human labelled preferences dataset 𝒟!

https://arxiv.org/pdf/2305.18290


Direct 
Preference 
Optimization 
(Rafailov et al., 
2023) 

10/7/24 35Source: https://arxiv.org/pdf/2305.18290 

• “For summarization, we use reference summaries in the test 

set as the baseline; for dialogue, we use the preferred 
response in the test dataset as the baseline” 

• Key caveat: “we evaluate algorithms with their win rate 

against a baseline policy, using GPT-4 as a proxy for human 
evaluation…”

https://arxiv.org/pdf/2305.18290


CONDITIONAL IMAGE GENERATION

36



Image Generation
• Class-conditional generation
• Super resolution
• Image Editing
• Style transfer
• Text-to-image (TTI) generation

37

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023)



Class Conditional Generation

38

• Task: Given a class 
label indicating the 
image type, sample a 
new image from the 
model with that type

• Image classification is 
the problem of taking 
in an image and 
predicting its label 
p(y|x)

• Class conditional 
generation is doing 
this in reverse p(x|y)

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019)



Super Resolution

39
Figure from Li et al. (2021)

• Given a low 
resolution image, 
generate a high 
resolution 
reconstruction of 
the image

• Compelling on low 
resolution inputs 
(see example to the 
left) but also 
effective on high 
resolution inputs



Image Editing

40
Figure from Saharia et al. (2022)

A variety of tasks involve 
automatic editing of an 
image:
• Inpainting fills in the (pre-

specified) missing pixels
• Colorization restores 

color to a greyscale image
• Uncropping creates a 

photo-realistic 
reconstruction of a 
missing side of an image



Style Transfer

41

• The goal of style transfer is to blend 
two images

• Yet, the blend should retain the 
semantic content of the source 
image presented in the style of 
another image

Figure from Gatys et al. (2016)



Text-to-Image Generation

42

• Given a text description, sample an 
image that depicts the prompt

• The following images are samples from 
SDXL with refinement

Prompt: A propaganda poster depicting a 
cat dressed as french emperor napoleon 
holding a piece of cheese.

Figure from Podell et al. (2023)



Timeline: Text-to-Image Generation

47
Figure from Bie et al. (2023) http://arxiv.org/abs/2309.00810



Timeline: Text-to-Image Generation

48
Figure from Bie et al. (2023) http://arxiv.org/abs/2309.00810



TEXT-TO-IMAGE: GANS

49



Class-conditional GANs

50

z ~ pnoise(·)

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

y’

D𝜙(x)
x = G𝜃(z)G𝜃

p(real | image)

D𝜙

D𝜙(x’)
x’ ~ pdata(·) D𝜙

1

y

0

J = log(1 – D𝜙(G𝜃(z)))

J’ = log(D𝜙(x’))

loss = J+J’

𝜃 𝜙

• Objective function is a simple 
differentiable function 

• We chose G and D to be 
differentiable neural networks 

Training alternates between:
• Keep G𝜃 fixed and backprop through D𝜙

• Keep D𝜙 fixed and backprop through G𝜃 

Real/fake images from Huang et al. (2017)

label

Add a label as input 
to the generator, so 
that it can learn to 
generate specific 
types of images 



Generative adversarial text to image synthesis

52
Figure from Reed et al. (2016) 



TEXT-TO-IMAGE: AUTOREGRESSIVE MODELS

53



Parti

54
Figure adapted from https://arxiv.org/pdf/2206.10789

The Pathways Autoregressive 
Text-to-Image (Parti) model:
• Step 1: Image tokenization 

(ViT-VQGAN)
– pre-train a model to convert 

images into image tokens 
(discrete set of embeddings)

• Step 2: Training
– treat image generation as a 

sequence-to-sequence 
problem

– text prompt is input to 
encoder (pretrained BERT)

– sequence of image tokens is 
output of decoder

• Step 3: Generation
– ViT-VQGAN takes in the image 

tokens and generates a high-
quality image



Parti

55
Figure adapted from https://arxiv.org/pdf/2206.10789 and https://arxiv.org/pdf/2110.04627 

The Pathways Autoregressive 
Text-to-Image (Parti) model:
• Step 1: Image tokenization 

(ViT-VQGAN)
– pre-train a model to convert 

images into image tokens 
(discrete set of embeddings)

• Step 2: Training
– treat image generation as a 

sequence-to-sequence 
problem

– text prompt is input to 
encoder (pretrained BERT)

– sequence of image tokens is 
output of decoder

• Step 3: Generation
– ViT-VQGAN takes in the image 

tokens and generates a high-
quality image

https://arxiv.org/pdf/2206.10789
https://arxiv.org/pdf/2110.04627


Parti

56
Figure adapted from https://arxiv.org/pdf/2206.10789

The Pathways Autoregressive 
Text-to-Image (Parti) model:
• Step 1: Image tokenization 

(ViT-VQGAN)
– pre-train a model to convert 

images into image tokens 
(discrete set of embeddings)

• Step 2: Training
– treat image generation as a 

sequence-to-sequence 
problem

– text prompt is input to 
encoder (pretrained BERT)

– sequence of image tokens is 
output of decoder

• Step 3: Generation
– ViT-VQGAN takes in the image 

tokens and generates a high-
quality image

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)



Parti

57
Figure adapted from https://arxiv.org/pdf/2206.10789

The Pathways Autoregressive 
Text-to-Image (Parti) model:
• Step 1: Image tokenization 

(ViT-VQGAN)
– pre-train a model to convert 

images into image tokens 
(discrete set of embeddings)

• Step 2: Training
– treat image generation as a 

sequence-to-sequence 
problem

– text prompt is input to 
encoder (pretrained BERT)

– sequence of image tokens is 
output of decoder

• Step 3: Generation
– ViT-VQGAN takes in the image 

tokens and generates a high-
quality image



TEXT-TO-IMAGE: DIFFUSION MODELS
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CLIP (background for Dall-E 2)

59
Figure from Radford et al. (2021) 



Dall-E 2• First pre-train a CLIP model
– text encoder (trained 

then frozen): encode text 
as embedding using CLIP

– img encoder (trained 
then discarded): though 
used to create CLIP image 
embeddings

• Second, train the 
prior/decoder of the Dall-E 
2 model:
– prior (trained): train a 

Gaussian diffusion model 
to generate CLIP image 
embeddings, conditioned 
on CLIP text embedding

– decoder (trained): train 
an image diffusion model 
generate an image, 
conditioned on CLIP 
image embedding

60
Figure adapted from Ramesh et al. (2022) 



Imagen
• Imagen uses a text-

to-image diffusion 
model coupled with 
a super-resolution 
diffusion model

• All the models 
operate in pixel 
space

• While effective, the 
compute 
requirements are 
very high

61



LATENT DIFFUSION MODEL (LDM)

62



Latent Diffusion Model
Motivation:
• diffusion models typically operate in pixel 

space
• yet, training typically takes hundreds of GPU 

days 
– 150 – 1000 V100 days [Guided Diffusion] 

(Dhariwal & Nichol, 2021)
– 256 TPU-v4s for 4 days = 1000 TPU days [Imagen] 

(Sharia et al., 2022)
• inference is also slow

– 50k samples in 5 days on A100 GPU [Guided 
Diffusion] (Dhariwal & Nichol, 2021)

– 15 seconds per image

Key Idea:
• train an autoencoder (i.e. encoder-decoder 

model) that learns an efficient latent space 
that is perceptually equivalent to the data 
space

• keeping the autoencoder fixed, train a 
diffusion model on the latent 
representations of real images z0 = 
encoder(x)
– forward model: latent representation z0 à noise 

zT

– reverse model: noise zT à latent representation 
z0

• to generate an image:
– sample noise zT

– apply reverse diffusion model to obtain a latent 
representation z0

– decode the latent representation to an image x
• condition on prompt via cross attention in 

latent space
63



Latent Diffusion Model 68



Latent Diffusion Model (LDM)

70

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT )

z1…zT
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Decoder
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LDM: Autoencoder
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LDM: Autoencoder
• The autoencoder is chosen so that it can project 

high dimensional images (e.g. 1024x1024) down to 
low dimensional latent space and faithfully project 
back up to pixel space

• The original LDM paper considers two options:
1. a VAE-like model (regularizes the noise towards a 

Gaussian)
2. a VQGAN (performs vector quantization in the decoder; 

i.e., it uses a discrete codebook)

• This model is trained ahead of time just on raw 
images (no text prompts) and then frozen

• The frozen encoder-decoder can be reused for all 
subsequent LDM training
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LDM: Autoencoder
• After trying a zoo of autoencoder options, the original 

paper picked one that offered a good level of 
compression without much loss of information
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LDM: the Prompt Model

• The prompt model is just a Transformer LM
• We learn its parameters alongside the diffusion 

model
• The goal is to build up good representations of 

the text prompts such that they inform the latent 
diffusion process
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LDM: with DDPM
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LDM: with DDPM
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Forward Process:

qφ(z1:T ) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T ) = pθ(zT )
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT ) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT ) ∼ N (0, I), just like pθ(xT ).

Herewe let z0 = z, the output of the encoder from our autoencoder



LDM: with DDPM

77

Forward Process:

qφ(z1:T ) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T ) = pθ(zT )
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT ) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT ) ∼ N (0, I), just like pθ(xT ).

Herewe let z0 = z, the output of the encoder from our autoencoder

Question: How do 
we define the 

mean to condition 
on the prompt 

representation?



Properties of forward and exact reverse processes
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Property #1:

q(xt | x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
t∏

s=1

αs

⇒ we can sample xt from x0 at any timestep t

efÏciently in closed form

⇒ xt =
√
ᾱtx0 + (1− ᾱt)εwhere ε ∼ N (0, I)

Property #2: Estimating q(xt−1 | xt) is intractable
because of its dependence on q(x0). However,
conditioning on x0 we can efÏciently work with:

q(xt−1 | xt, x0) = N (µ̃q(xt, x0),σ
2
t I)

where µ̃q(xt, x0) =

√
ᾱt(1− αt)

1− ᾱt

x0 +

√
αt(1− ᾱt)

1− ᾱt

xt

= α
(0)
t x0 + α

(t)
t xt

σ
2
t =

(1− ᾱt−1)(1− αt)

1− ᾱt

Property #3: Combining the two previous prop‐
erties, we can obtain a different parameteriza‐
tion of µ̃q which has been shown empirically to
help in learning pθ.

Rearranging xt =
√

ᾱtx0 + (1 − ᾱt)ε we have
that:

x0 = (x0 + (1− ᾱt)ε) /
√

ᾱt

Substituting this definition of x0 into property
#2’s definition of µ̃q gives:

µ̃q(xt, x0) = α
(0)
t x0 + α

(t)
t xt

= α
(0)
t

(

(x0 + (1− ᾱt)ε) /
√

ᾱt

)

+ α
(t)
t xt

=
1

√

αt

(

xt −
(1− αt)
√

1− ᾱt

ε

)

Recall…



Parameterizing the learned reverse process
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Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Laterwewill showthatgivena train‐
ing sample x0, we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)

Intuitively, thismakes sense: if the
learned reverseprocess is supposed
to subtract away the noise, then
wheneverwe’reworkingwith a spe‐
cific x0 it should subtract it away
exactly as exact reverseprocesswould
have.

Idea #1: Rather than learn Σθ(xt, t) just use what we
knowabout q(xt−1 | xt, x0) ∼ N (µ̃q(xt, x0),σ

2
t I):

Σθ(xt, t) = σ2
t I

Idea #2: Choose µθ based on q(xt−1 | xt, x0), i.e. we
want µθ(xt, t) to be close to µ̃q(xt, x0). Here are
three ways we could parameterize this:

Option C: Learnanetwork that approximates the
ε that gave rise to xt from x0 in the forward
process from xt and t:

µθ(xt, t) = α
(0)
t x(0)

θ (xt, t) + α
(t)
t xt

where x(0)
θ (xt, t) = (x0 + (1− ᾱt)εθ(xt, t)) /

√
ᾱt

where εθ(xt, t) = UNetθ(xt, t)

Recall…



LDM: Noise Model
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• The noise model 
includes cross 
attention (yellow 
boxes) to the 
representation of 
the prompt text

• During training we 
optimize both the 
parameters of the 
UNet noise model 
and the parameters 
of the LLM 
simultaneously 

µθ(zt, t, τθ(y)) = f(UNet(zt, t, τθ(y)))



LDM: Cross-Attention in Noise Model
• The cross-attention is placed within 

a larger Transformer layer
• The cross-attention modifies the keys and 

values to be the prompt representation
• The queries are the current layer of UNet
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Transformer Layer inside UNet

Figure from http://arxiv.org/abs/2112.10752 



LDM: Learning the Diffusion Model + LLM

83

Algorithm 1 Training
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0, y ∈ D do
4: t ∼ Uniform(1, . . . , T )
5: ε ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtε

7: #t(θ)← ‖ε− εθ(xt, t, τθ(y))‖2
8: θ ← θ −∇θ#t(θ)

Given a training sample z0, we want

pθ(zt−1 | zt, τθ(y))

to be as close as possible to

q(zt−1 | zt, z0)

Intuitively, this makes sense: if the
learned reverse process is supposed
to subtract away the noise, then
whenever we’re working with a spe‐
cific z0 it should subtract it away
exactly as exact reverse process would
have.

Objective Function:



Latent Diffusion Model (LDM)
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LDM Results
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Figure from http://arxiv.org/abs/2112.10752 



LDM Results
• The result models obtain 

very high quality FID / IS 
scores with many fewer 
parameters than 
competing models

• The models are much 
more efficient than 
vanilla diffusion models 
because the most 
computationally intensive 
step happens in low 
dimensional latent space, 
instead of high 
dimensional pixel space
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Figure from http://arxiv.org/abs/2112.10752 


