10-423/10-623 Generative Al

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Direct Preference Optimization (DPO)
+

Latent Diffusion Models
(and other text-to-image models)

Matt Gormley & Pat Virtue
Lecture 12
Feb. 24, 2025



Reminders

* Quiz3

— In class, Wed, Feb 26

— Lectures 9, 10, 11, and only RLHF/DPO portion of 12
* Homework 3: Applying and Adapting LLMs

— Out: Sun, Feb 23

— Due: Thu, March 13 at 11:59pm

— You are not expected to work on HW3 over Spring Break




Project

e Goals:

— Explore a generative
modeling technique of your
choosing

— Deeper understanding of
methods in real-world
application

— Work in teams of 3 students

* Project description on course
website




RLHF (CONTINUED)



RLHF

Step1 Step 2 Step 3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using

reinforcement learning.

A promptis A prompt and A new prompt »
sampled from our Explain e moon several model Explain 9 moon Is sampled from Write a story
prompt dataset. landing to a 6 year old outputs are landing to a 6 year old the dataset. about frogs
sampled.
I o o | y
A labeler D G The policy PPO
.0
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behavior. Some people went Y *
to the moon.. A labeler ranks
¢ the outputs from @ UL
This data is used - best to worst. 0-60-0-0 /
to fine-tune GPT-3 5 The reward model o
with supervised '\\5‘3(/‘ | calculates a 2
e e o o
learning. 7 h ‘ \ reward for N
@@@ This data is used M the output.
to train our 058, ‘
o/)?oﬂo _ Y
I’eward mOdel W The reward is
—
0-0-0-0 used to update rk
the policy
using PPO.

Figure from


https://arxiv.org/pdf/2203.02155.pdf

Figure from

Step1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

V4

Some people went
to the moon...

SFT
. _o
.@.
V4
SIE[E

RLHF

Step 1 performs instruction
fine-tuning on 13k training
examples

This aligns the model
behavior with what we
would expect of a chat
agent

But the diversity of the
interactions might still be
limited by the contents of
the training data



https://arxiv.org/pdf/2203.02155.pdf

Figure from https://arxiv.org/pdf/2203.02155.pdf

RLHF

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This datais used
to train our
reward model.

Explain the moon
landing to a 6 year old

Explain granity... Explain war.,

Maoon s natural People went to

AN

satelbte of.. the moon..

J

¥
Q
0-0-0-0

.

RM

.%’

0-0-0-0



https://arxiv.org/pdf/2203.02155.pdf

Figure from

RLHF

The reward model is a
copy of the Step-1 LLM,
but with the softmax
over words replaced so
that it outputs a single
scalar value, i.e. the
reward

The model is trained so
that rewards of the
higher ranking
(winning) responses
are larger than those of
the lower ranking
(losing) responses

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

Eaxplain gravity Eaplain war,
Moo Is natural People went to
satelite of the moon

In Step 2, takes 33k
prompts and samples a
collection of responses
from the instruction
fine-tuned model for
each one

The human labeler
ranks the K € {3,...,9}
responses
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Figure from

RLHF

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

0 o

Explain grinity Explasin war

\

o (0]

Maoon Is natural People went to
satelize of. the moon

J

e}

0-0-0-0
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RLHF

Step 3 trains the model from Step 1 using
reinforcement learning
Instead of having a human or some expert model
provide rewards, we take the reward model from
Step 2 as ”’ground truth” for the rewards
Reinforcement learning uses (state, action,
reward) tuples as training data

* state = prompt

e action =response

* reward = scalar from regression reward model

* each episode lasts exactly one turn
RL objective is combined with pre-training
objective:

RL
objective(¢) = E(w,y)ND,rgL [Te(w,y) _ Bl ( Ty (ylz) )]

w35 (yl)

—l_ ,YEmNDpretrain [log (ﬂ-glj (x))]

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

is sampled from Write a story
the dataset. about frogs
The policy _—
generates 258
./)?.S\\.
an output. \.\52{/
0 upon a tim
The reward model .
o @
calculates a A
reward for ‘W‘

the output.

The reward is
used to update

the poli
usihg PPO.
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RLHF Objective Function

- Ty (ylr)
objective(¢) = E(zy)~p p. |7o(,y) = Blog w3 (y|w)

+ W]ESUNDpretrain [log (ﬂ-(fL (CC))]

The objective function used here is modeled off of the (rather popular) . That algorithm,
in turn, is a type of policy gradient method and motivated by the objective functions for

. But the (super high level) intuition behind the objective functionis as
follows:

1. The expectation of the reward says that on samples from the RL trained model TRt we want the
probability of that sample TRt to be high when the reward rg is high and for it to be low otherwise.

2. The expectation of the beta term says that we don't want the RL trained model probabilities TR- to
stray to far from the supervised fine-tuned (SFT) model t>FT - this is instantiated as a KL divergence
penalty.

3. The expectation under the pretraining distribution Dpretrain is just the standard log-likelihood of a
training sample that we use for supervised fine-tuning, but applied here to the RL trained model as
well.

Note that in practice, we don't compute these expectations exactly, we approximate each with a

[/ Monte Carlo approximation (i.e. a sum over a very small number of samples).



https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477

PROXIMAL POLICY OPTIMIZATION



Reinforcement
Learning:

Problem
Formulation
for Fine-tuning
LLMs

10/2/24

- State space, § = {all possible sequences of tokens}
* Action space, A = {vocabulary of next tokens}

* Reward function

* Stochastic, p(r | s, a)
* Deterministic reward based on reward model

trained on human feedback, Rg

° Rg is a bit of weird reward function from an RL
perspective: it returns 0 V a # EOS and

rg(x, [s,a] — x) otherwise

* Transition function

» Stochastic, p(s' | s,a)

* Deterministic, §(s,a) = [s, a]

16



Reinforcement
Learning:

Object of
Interest for
Fine-tuning
LLMs

10/7/24

* The LLM to be fine-tuned, 74 (a | s)

- Specifies a distribution over next tokens given any input

sequence

— plaqlss; @) = 7T¢(a1|5t)

— plazlss P) = 7T¢(a2|5t)
Model: s, — -

— p(aulse @) = my(aa|se)

r

r /
* An episode T = {x, ay, S1,a4, ..., ST} is one completion of

the prompt x, ending in an EOS token

—e——

* The LLM induces a distribution over possible completions

p¢(T) — p({a(), S1,A1, ---;ST} | X = SO)

T T-1

= 1_[7T¢(at|5t)

=0

17



Objective function: £(¢) = —Ep, o) |[Rg(1)], the negative expected reward of a response

V() = Vg (~Ep,o[Re(D]) = V4 (— | Ro(ps (@ dr>

Policy (T‘l )
Gradient f 0(DVs g”qb(“tlst) E

MEthOdS * |ssue: V¢p¢ (t) involves taking the gradient of a (hideous) product

10/2/24
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Objective function: £(¢) = —Ep, o) |[Rg(1)], the negative expected reward of a response

Vet (@) =V (—IEp¢(r) [Re (T)]) =V <— f Ro(T)pg (1) dT)

Likelihood - —
Ratio = — f Rg(T)Vy (l:()[ 7T¢(at|5t)> dt

, [
MEthOd * Insight: \2;/\&\ — :

Py (D) Ve (1) = g (1)Vg(log pg (1)

a.k.a. Vo (0) =
REINFORCE PPON = D (D)

T-1

Williams
( : logpy () = z logmy (aclse)
t=0

1992)

T-1

V¢(log p¢(r)) = Z Vg logme(as | s¢)
t=0

10/2/24 Source: https://link.springer.com/article/10.1007/bf00992696
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Objective function: £(¢) = —Ep, o) |[Rg(1)], the negative expected reward of a response

Vet (@) =V (—IEp¢(r) [Re (T)]) =V <— f Ro(T)pg (1) dT)

Likelihood = — | Rg(DVypy()dt = — | Rg(V)Vy(log pe (D) )py(D)dT
Ratio f—e*vd)‘bq j ? L¢( ? )L.%f:¢

Method = ~Epy0[Re(V (logpy (D)} Moale Cor

REINFORCE [[UIE S N

1
(Williams, N L\d%
1992) (where 7 = {a(?, 5™, a{" sﬂ%}'sw
1 N (M) _1
~ 2, o e [o8” - )] (Z g logmy (4" (")))

=

S
I

10/7/24



Proximal Policy
Optimization

(Schulman et
al., 2017)

10/7/24

* There are two high-level modifications to get from
REINFORCE to proximal policy optimization (PPO):

1. Sampled trajectories/rewards can be highly variable,

which leads to unstable estimates of the expectation

* Instead of working with Ry, PPO considers a

trajectory’s advantage over some baseline

* The baseline is typically defined in terms of the

value function at each state in the trajectory

Source: https://arxiv.org/pdf/1707.06347

23
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* There are two high-level modifications to get from
REINFORCE to proximal policy optimization (PPO):

2. Policy gradient methods are on-policy: the policy

_ _ being optimized is also being used to generate the
Proximal Policy

Optimization

trajectories used in training

* This can also lead to instability/poor convergence if

(Schulman et
al., 2017)

the policy ever becomes bad
* Intuition: ensure that the policy T[(I;L(T) remains
“close to” some policy known to be good

* In RLHF, we can just use the original

(instruction fine-tuned) LLM 7>fT (1)!

10/7/24 Source: https://arxiv.org/pdf/1707.06347 24
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* Step 3 fine-tunes the LLM'’s parameters
using the PPO objective plus a pre-

. training loss term:
Reinforcement

g RL
Learning from 69) = ~Epy 1o RH(T)+31087T$:T((TT))

Human
Feedback: ~YEx~Dyretrain 108 T (Xﬂ
PPO

10/7/24 Source: https://arxiv.org/pdf/2203.0215¢

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

is sampled from wm:mw
the dataset. sbout froge
The policy PPO
. ]

generates .&.&.
an output. A2

Once upon a time...
The reward model :M
calculates a ey
reward for ’\}Q{'/’
the output. *
The reward is
used to update i
the policy
using PPO.
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Alright, so

what does all
of this get us?

10/7/24

Step1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our Bxplein e
prompt dataset. landing to a 6 year old

'

A labeler

demonstrates the @
desired output
Z
behavior. e
to the moon...
This data is used SFT
to fine-tune GPT-3
with supervised
learning. 2
BEB

Source: https://arxiv.org/pdf/2203.0215¢

Step 2
Collect comparison data,
and train a reward model.
A prompt and
several model - .
outputs are landing to a 6 year old
sampled.
(4] o
Exphoen graviny Eaghaen e
(c] (0]
| |

A labeler ranks
the outputs from
best to worst.

This data is used

to train our
reward model. N

{ Step 3

-

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy

sing >

B

Write a story
about frogs

Once upon a time..,

v
237

26
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* Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

(“context distilled” corresponds to an instruction fine-
Reinforcement tuned LLM, tune for helpfulness and harmlessness)

- Helpfulness Scores Harmlessness Scores (52B)
Le a r n I n g fro m Professional Writers F90%

300 —— Cont.ext Distilled +

Human SRR | I
—k— Online Helpful RLHF (52B) ’

Feedback:

Results

200 -
- 70%
100 A

-— - 60%

0 1 (] - 50%
- 40%
—100 A
+ - 30%
—200 A

10° 10%°
Parameters

Elo Scores
Crowdworker Preference Frequency

- 20%

10/7/24 Source: http://arxiv.org/abs/2204.05862 27
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* Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

. 2. does not (significantly) decrease zero-shot or few-
Reinforcement shot performance on most tasks
Learning from

H u m a n Mean Zero-Shot Accuracy Mean Few-Shot Accuracy
—8— Plain Language Model 0.7 1 —@— Plain Language Model
0671 —o— RLHF —o— RLHF
[ ]
Feedback
v 0.5
9 9
< <os
© T
> >
Results £ 04 :
c c
© ©04
s =
0.3 03
0.2 0.2
107 108 10° 1010 107 108 10° 10%°

Number of Parameters Number of Parameters

10/7/24 Source: http://arxiv.org/abs/2204.05862 28
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Man,
reinforcement
learning seems

hard; couldn’t
we do
something
easier?

10/7/24

* Reinforcement learning from human feedback

1. increases perceived helpfulness and harmlessness

2. does not (significantly) decrease zero-shot or few-

shot performance on most tasks

Mean Zero-Shot Accuracy Mean Few-Shot Accuracy

—8— Plain Language Model 0.7 1 —@— Plain Language Model
061 _o— RLHF —e— RLHF
0.6 A

0.5 1
g 5
< <05
© ©
> >
@ 0.4 o
C C
g g 041
s s

0.3 A 0.3

0.2 4 0.2

107 108 10° 1010 107 108 10° 10%°
Number of Parameters Number of Parameters
Source: http://arxiv.org/abs/2204.05862 29
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DIRECT PREFERENCE OPTIMIZATION



* Intuition: in some sense, the reinforcement learning
problem we defined for fine-tuning LLMs to human
preferences is very “simple”

Direct * All of the dynamics (the state space, action space,

Preference transition function, reward model) are all known

Optimization a priori and deterministic
(Rafallov et al'r * Idea: instead of optimizing a learned reward model,
2023) fine-tune the LLM using the stated preferences directly

* Increase the likelihood of higher-ranking

responses, Y, and decrease the likelihood of

lower-ranking responses, y;. B
\/W/ y/e

10/7/24 Source: https://arxiv.org/pdf/2305.18290 31



https://arxiv.org/pdf/2305.18290

Direct
Preference

Optimization
(Rafailov et al.,
2023)

10/7/24

- Assume there exists a (universal) latent reward model, 7,

that is responsible for the observed preferences according to

exp 7 (X, Yi)
exp 7*(x, yw) + expr*(x, y;)

p(yw >yl|x) —

* If we knew this true reward model, the objective function

RLHF would try to optimize (without the pre-training loss) is

) e (y|x)
£(¢p) = —Ep,yin) [’” (x,y) — B log nSﬁT(ylx)]

* It can be shown that the optimal policy satisfies

r*(x, y))

1
My (Y|x) = —— " (y|x) exp( 3

Z(x)

for some normalizing factor Z(x)

Source: https://arxiv.org/pdf/2305.18290
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Direct
Preference

Optimization
(Rafailov et al.,
2023)

10/7/24

- Assume there exists a (universal) latent reward model, 7,

that is responsible for the observed preferences according to

exp r*gx,ég,)
p(yw =Y | X) — N N
expr*(x, yy) + expr*(x, y;)

* If we knew this true reward model, the objective function

RLHF would try to optimize (without the pre-training loss) is

* ey (¥]x)
t(9) = —Ep,yix) [’" (x,y) = 'BlognSiT(ﬂx)]

* It can be shown that the optimal policy satisfies

r*(x, y))

1
My (Y|x) = —— " (y|x) exp( 3

Z(x)

solving this for r* and plugging it into the probability above...

Source: https://arxiv.org/pdf/2305.18290
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Direct
Preference

Optimization
(Rafailov et al.,
2023)

10/7/24

- Assume that the LLM TT g

is responsible for the observed preferences according to

p(yw =y | x) =
1

gy (V1|x) Tg: Yw|X)
1+ exp (,B logn%(yllx) - ﬁlognsprT(;:Hx)

- “Your language model is secretly a reward model”

- Key takeaway: we can directly optimize the LLM parameters,

¢, by maximizing this probability over samples (x, v, ;)

from the human labelled preferences dataset D!

Source: https://arxiv.org/pdf/2305.18290
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TL:DR Summarization Win Rate vs Reference Anthropic-HH Dialogue Win Rate vs Chosen

0.7 1 ~}— DPO  —4— Preferred-FT —f— GPTJ
—f—= PPO == SFT —f— Best of 128 0.6

o
o
)

o

n
o
wn

[J) [}
- -+t
© o4 © 0.4
£ c
< 03 = 0.3
Direct : —
0.2 A1
0.1 == DPO =4=— Preferred-FT
P refe re n Ce - —F— Best of 128  =J— Pythia-2.8B
0.0 T T T T T . T T T
0.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Sampling temperature Sampling temperature

Optimization
(Rafailov et al.,
2023)

* “For summarization, we use reference summaries in the test
set as the baseline; for dialogue, we use the preferred
response in the test dataset as the baseline”

* Key caveat: “we evaluate algorithms with their win rate

against a baseline policy, using GPT-4 as a proxy for human

evaluation...”

10/7/24 Source: https://arxiv.org/pdf/2305.18290
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CONDITIONAL IMAGE GENERATION



Image Generation

“A sunset behind
a mountain range”

* (lass-conditional generation
* Super resolution

* Image Editing '

* Style transfer \ l

* Text-to-image (TTI) generation [ Super J { RE { Style }
resolution transfer

Seéa anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023) .



Class Conditional Generation

e Task: Given a class
label indicating the
image type, sample a
new image from the sea anemone
model with that type

* Image classification is brain coral
the problem of taking
in an image and
predicting its label slug

p(y|x)
 (Class conditional

generation is doin
this in reverse p(xﬁl)

goldfinch

Figure from Razavi et al. (2019)
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Figure from Li et al. (2021)

Super Resolution

»

SRDiff

e Given alow

resolution image,
generate a high
resolution
reconstruction of
the image

Compelling on low
resolution inputs
(see example to the
left) but also
effective on high
resolution inputs

39



Image Editing

A variety of tasks involve

automatic editing of an

image:

* Inpainting fills in the (pre-
specified) missing pixels

* Colorization restores
color to a greyscale image

* Uncropping creates a
photo-realistic
reconstruction of a
missing side of an image

Inpainting

Colorization

Uncropping

40

Figure from Saharia et al. (2022)



Style Transfer

* The goal of style transfer is to blend
two images

* Yet, the blend should retain the
semantic content of the source
image presented in the style of
another image

Figure 3. Images that combine the content of a photograph with the style of several well-known artworks. The images were created by
finding an image that simultaneously matches the content representation of the photograph and the style representation of the artwork.
The original photograph depicting the Neckarfront in Tiibingen, Germany, is shown in A (Photo: Andreas Praefcke). The painting that
provided the style for the respective generated image is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur
by J.M.W. Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch, 1893. E Femme nue assise by
Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky, 1913.

Figure from Gatys et al. (2016)



Text-to-Image Generation

* Given a text description, sample an
image that depicts the prompt

* The following images are samples from
SDXL with refinement

Prompt: A propaganda poster depicting a
cat dressed as french emperor napoleon
holding a piece of cheese.

Figure from Podell et al. (2023)




Timeline: Text-to-Image Generation

PARTI-20B

® DALLE
® GAN method p—

® Imagen ® Muse3B
® Transformer method ® Cocview?
9 ® Muse900M
® Glide ® DALLE2
@ Diffusion method ® Make.ascone - ot
® Cogview ® PARTI-3B
® ControlNet
LDM
®sD
® GigaGAN
® PARTI-750M
® DALLE-MINI
® VvQ-Diffusion*®
® PARTI-350M
® GALIP
® LAFITE
XMC-GAN ® VQ-Diffusion-S*
® BridgeGAN
® StackGAN ® StackGAN++ PSOUCa
® GAN-CLS ® StyleGAN ® AttnGAN © DMGAN

2016 2018 2020 2022

Fig. 5. Timeline of TTI model development, where green dots are GAN TTI models, blue dots are autoregressive Transformers and orange dots
are Diffusion TTI models. Models are separated by their parameter, which are in general counted for all their components. Models with asterisk are
calculated without the involvement of their text encoders.

Figure from Bie et al. (2023) http://arxiv.org/abs/2309.00810



Timeline: Text-to-Image Generation

A comparison of the text to image methods discussed highlighting their date published, model configuration and evaluation results. For the model
type, green dot refers to the GAN model TTI, blue dot refers to the autoregressive TTI and orange dot indicates the Diffusion TTI. For evaluation
metrics, IS and FID score are provided under the evaluation of MSCOCO dataset in a zero-shot fashion. The last column provides the specific
model size in scale of Million(M) or Billion(B); x : no zero-shot results found, use standard results instead.

Method Date Model Type Data Size  Open Source IS evaluation  FID evaluation = Model size
AttnGAN [33] 11/2017 ® 120K X 20.80 35.49 x 13M
StyleGAN [34] 11/2017 @ 120K X 20.80 35.49 * -
Obj-GAN [220] 09/2019 ® 120K v 24.09 36.52 x 34M
Control-GAN [221] 09/2019 ® 120K v 23.61 33.10 % -
DM-GAN [35] 04/2019 ® 120K v 32.32 27.34 % 21IM
XMC-GAN [165] 01/2021 @ 120K X 30.45 9.33 % 90M
LAFITE [44] 11/2021 &) - v 26.02 26.94 150M
Retreival-GAN [208]  08/2022 8 120K X 29.33 9.13 % 25M
GigaGAN [46] 01/2023 B - X s 10.24 650M
GALIP [45] 03/2023 s 3M-12M v - 12.54 240M
DALLE [39] 02/2021 E} 250M X g 27.5 12B
Cogview [189] 06/2021 o 300M v - 27.1 4B
Make-A-Scene 03/2022 o 35M X - 11.84 4B
Cogview?2 [43] 05/2022 o 300M v - 24.0 6B
PARTI-350M [5] 06/2022 o ~1000M X - 14.10 350M
PARTI-20B [5] 06/2022 o ~1000M X - 7.23 20B
DALLE-mini [187] 07/2021 E 250M X : - ~500M
MUSE-3B [31] 03/2023 o ~1000M X - 7.88 7.6B
GLIDE [40] 12/2021 ® 250M v - 12.24 5B
VQ-diffusion-F [68] 11/2021 ® >7M v - 13.86 * 370M
DALLE-2 [4] 04/2022 5 250M X - 10.39 5.2B
Imagen [30] 05/2022 & ~860M X - 7.27 7.6B
LDM [3] 08/2022 5 400M v 30.29 12.63 1.45B
eDiff-I [197] 11/2022 % 1000M X : 6.95 9B
Shift Diffusion[158] 08/2022 900M v - 10.88 -
Re-Imagen[203] 09/2022 5 50M X - 6.88 ~8B
ControlNet [159] 03/2023 - v - - ~2.2B

Figure from Bie et al. (2023) http://arxiv.org/abs/2309.00810



TEXT-TO-IMAGE: GANS



Class-conditional GANs

* Objective function is a simple Training alternates between:

differentiable function
e We chose Gand D to be

* Keep Gy fixed and backprop through D

differentiable neural networks * Keep D, fixed and backprop through G,

Generator

7

Add a label as input
to the generator, so
that it can learn to
generate specific

types of images

—

‘ ( Dy(x)

LDiscriminator p(real | image)

y
fake image 0 / \

J =log(1-Dg(Ge(2)))

X’ ~ pdata(') DCP

loss = J+)’

y’ )’ =log(Dy(x’))

D,(x") /
| % LDiscriminator p(real | image) \
/

real image )

Real/fake images from Huang et al. (2017)
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Generative adversarial text to image synthesis

This flower has small, round violet This flower has small, round violet
tals with a dark purple center

%_lm

. e L
2~ NODT -1 |-
| N a"‘ - '.“l ----- -E

Generator Network Discriminator Network

Figure 2. Our text-conditional convolutional GAN architecture. Text encoding (%) is used by both generator and discriminator. It is
projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing.

Figure from Reed et al. ( )



TEXT-TO-IMAGE: AUTOREGRESSIVE MODELS



The Pathways Autoregressive

Text-to-Image (Parti) model:

* Step 1: Image tokenization
(ViT-VQGAN)

— pre-train a model to convert
images into image tokens
(discrete set of embeddings)

* Step 2: Training
— treatimage generation as a

sequence-to-sequence
problem

— text promptisinput to
encoder (pretrained BERT)

— sequence of image tokens is
output of decoder

* Step 3: Generation

— VIiT-VQGAN takes in the image
tokens and generates a high-
quality image

Figure adapted from https://arxiv.org/pdf/2206.10789

Parti

ViT-VQGANT

3
{ Image Detokenizer

(Transformer) ‘
4

*
i]_ 'i2 23 <eQs>
t 1 1 |

_,—» Transformer Decoder
Transformer Encoder

A A R A £

t1 tg tN <S0Ss> i] ig Z',w

Two dogs running in a field T

N
Image Tokenizer ‘
(Transformer)
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The Pathways Autoregressive .
Text-to-Image (Parti) model: Parti

* Step 1: Image tokenization
(ViT-VQGAN)

— pre-train a model to convert
images into image tokens
(discrete set of embeddings)

* Step 2: Training
— treatimage generation as a

sequence-to-sequence
problem

— text promptisinput to
encoder (pretrained BERT) _
— sequence of image tokensis =
output of decoder \ i | ]
* Step 3: Generation s 4
— VIiT-VQGAN takes in the image

tokens and generates a high-
quality image

Reconstruction

Figure adapted from and


https://arxiv.org/pdf/2206.10789
https://arxiv.org/pdf/2110.04627

The Pathways Autoregressive

Text-to-Image (Parti) model:

* Step 1: Image tokenization
(ViT-VQGAN)

— pre-train a model to convert
images into image tokens
(discrete set of embeddings)

* Step 2: Training
— treatimage generation as a

sequence-to-sequence
problem

— text promptisinput to
encoder (pretrained BERT)

— sequence of image tokens is
output of decoder

* Step 3: Generation

— VIiT-VQGAN takes in the image
tokens and generates a high-
quality image

Figure adapted from https://arxiv.org/pdf/2206.10789

Parti e-togpw|

/K

[ 2. ] [ 2,(,) ] [ 24(,°) ] [ 2,() ]

_,—> Transformer Decoder
Transformer Encoder

(R I 1
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(Transformer)
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The Pathways Autoregressive

Text-to-Image (Parti) model:

* Step 1: Image tokenization
(ViT-VQGAN)

— pre-train a model to convert
images into image tokens
(discrete set of embeddings)

* Step 2: Training

— treatimage generation as a
sequence-to-sequence
problem

— text promptisinput to
encoder (pretrained BERT)

— sequence of image tokens is
output of decoder

* Step 3: Generation

— VIiT-VQGAN takes in the image
tokens and generates a high-
quality image

Figure adapted from https://arxiv.org/pdf/2206.10789

Parti

ViT-VQGANT

N\
Image Detokenizer
(Transformer)

Transforr

Transformer Encoder —|—>

(R A O

t] tg tN <S0S: i] ig
s . A
Two dogs running in a field \f J
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TEXT-TO-IMAGE: DIFFUSION MODELS



CLIP (background for Dall-E 2)

(1) Contrastive pre-training (2) Create dataset classifier from label text

Pepper the N Text |
aussie pup L—-P eod 3 A photo of > Text
L l l l l A . Encoder J

T

e | |2 | [ = Tn ‘ e
I ;I Ty | 1T | 1,-T I,'T
—» h i el ety "IN gz
(3) Use for zero-shot prediction v v v v
—" I? l:'Tl lz‘Tz l[w T'; lz TN Tl T_j_ T3 TN
Imag |
L > 1 I3Ty | 3T, | T - | I§T l
Encod g ]2 2 Image |, |, LTy | 1T [ IeTs| - [ 1TN
Encoder l
— N -
I 7 )
L I | [T [INT2 [INT3 | -~ [INTN i i
=)

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training

examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

Figure from Radford et al. (2021)



* First pre-train a CLIP model

— text encoder (trained
then frozen): encode text
as embedding using CLIP

— img encoder (trained
then discarded): though
used to create CLIP image
embeddings

e Second, train the
prior/decoder of the Dall-E
2 model:
— prior (trained): train a
Gaussian diffusion model
to generate CLIP image

embeddings, conditioned
on CLIP text embedding

— decoder (trained): train
an image diffusion model
generate an image,
conditioned on CLIP
image embedding

Figure adapted from Ramesh et al. (2022)

“a corgi
playing a
flame
throwing
trumpet”

“a corgi
playing a
flame
throwing
trumpet”

Dall-E 2

D i CLIP objective
- £

SO0

Q
O+0)~»

p

@D

img

encoder/

decoder
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* Imagen uses a text-
to-image diffusion
model coupled with
a super-resolution
diffusion model

* All the models
operate in pixel
space

* While effective, the
compute
requirements are
very high

Imagen

“A Golden Retriever dog wearing a blue

Text 5
7 checkered beret and red dotted turtleneck.

Y

Frozen Text Encoder

Text Embedding

4 x 64 Image

256 x 256 Image

Super-Resolution
Diffusion Model

!

1024 x 1024 Image
——

Figure A.4: Visualization of Imagen. Imagen uses a frozen text encoder to encode the input text
into text embeddings. A conditional diffusion model maps the text embedding into a 64 x 64 image.
Imagen further utilizes text-conditional super-resolution diffusion models to upsample the image,
first 64 x 64 — 256 x 256, and then 256 x 256 — 1024 x 1024.
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LATENT DIFFUSION MODEL (LDM)



Latent Diffusion Model

Motivation:

diffusion models typically operate in pixel
space

yet, training typically takes hundreds of GPU
days

— 150 — 1000 V100 days [Guided Diffusion]
(Dhariwal & Nichol, 2021)

— 256 TPU-v4s for 4 days = 1000 TPU days [Imagen]
(Sharia et al., 2022)

inference is also slow

— 50k samples in 5 days on A100 GPU [Guided
Diffusion] (Dhariwal & Nichol, 2021)

— 15 seconds per image

Key Idea:

train an autoencoder (i.e. encoder-decoder
model) that learns an efficient latent space
that is perceptually equivalent to the data
space

keeping the autoencoder fixed, train a
diffusion model on the latent
representations of real images z, =

encoder(x)
— forward model: l[atent representation z, = noise
Z7
— reverse model: noise z; = latent representation
ZO

to generate an image:
— sample noise z;

— apply reverse diffusion model to obtain a latent
representation z,

— decode the latent representation to an image x

condition on prompt via cross attention in
latent space



Latent Diffusion Model




UNet w/cross
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Latent Diffusion Model (LDM)
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LDM: Autoencoder

latent space pixel space




LDM: Autoencoder

* The autoencoderis chosen so that it can project
high dimensional images (e.g. 1024x1024) down to
low dimensional latent space and faithfully project
back up to pixel space

* The original LDM paper considers two options:

1. a VAE-like model (regularizes the noise towards a
Gaussian)

2. aVQGAN (performs vector quantization in the decoder;
i.e., it uses a discrete codebook)

* This model is trained ahead of time just on raw
images (no text prompts) and then frozen

e The frozen encoder-decoder can be reused for all
subsequent LDM training

latent space

pixel space
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LDM: Autoencoder

* After trying a zoo of autoencoder options, the original
paper picked one that offered a good level of
compression without much loss of information

f 2| (¢) RFID| RISt PSNRT  PSIM|  SSIM+
16 VOGAN [23] 16384 1256  4.98 N 199 234 183 2042 051 2o1s
16 VQGAN [23] 1024 256 7.9 - 194 233 198 2043 050 2o.1s

32.01 - 22.8 +2.1 1.95 +051 0.73 +oaa

8 DALL-E [60] 8192

32 16384 16 31.83 40.40 +1.07 1745 +2.900  2.58 +0.48 041 +o.1s
16 16384 8 5.15 14455 +a7a 2083 +3e61  1.73 2043 0.54 to.s
8 16384 4 1.14 201.92 +3.97  23.07 +390 1.17 x0.36  0.65 +o0.16
8 256 4 1.49 194.20 +a.87 2235 +3s1 1.26 +0.37  0.62 +o.16
4 8192 3 0.58 22478 +5.35 2743 426  0.53 2021 0.82 £o.10
4t 8192 3 1.06 221.94 £a5s 2521 +aa7 072 +026  0.76 +o.12
4 256 3 047 22381 +ass 2643 422  0.62 +0.24  0.80 £o.11
2 2048 2 0.16 23275 +5.09  30.85 412 0.27 2012 091 to.05
2 64 2 0.40 226.62 +asz  29.13 346  0.38 £0.13  0.90 +o.05
32 KL 64 2.04 189.53 +3.6s 2227 43903 141 2040 0.6 +0.17
32 KL 16 7.3 132.75 271 2038 +356  1.88 +0.45  0.53 £o.1s
16 KL 16 0.87 21031 £3.97 2408 £a22  1.07 +0.36  0.68 +o0.15
16 KL 8 2.63 178.68 +a.08 2194 1302 149 1042 059 +0.17
8 KL 4 0.90 209.90 492 2419 410 1.02 035 0.69 +o.15
4 KL 3 0.27 22757 +ase 2753 454 0.55 2024  0.82 o1
2 KL 2 0.086 232,66 +5.16 3247 419 0.20 £0.09  0.93 £o.04

Table 8. Complete autoencoder zoo trained on Openlmages, evaluated on ImageNet-Val. { denotes an attention-free autoencoder.

latent space

pixel space




LDM: the Prompt Model

* The prompt model is just a Transformer LM

* We learn its parameters alongside the diffusion
model

* The goal is to build up good representations of
the text prompts such that they inform the latent
diffusion process
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attention
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4 up-conv 2x2
= conv 1x1
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LDM: with DDPM

Noise schedule:

We choose a; to follow a fixed schedule s.t. g4 (x7) ~ N (0, I), just like pg(x7).

Here we let zg = z, the output of the encoder from our autoencoder

Forward Process:
q(zo) = data distribution

Qe (2t | 2t—1) ~ N(Vayzi—1, (1 — ap)l)

T
%ZlT —QZOH Zt’Ztl

(Learned) Reverse Process:
T

po(z1.7) = po(zr) | [ po(zi—1 | 26, 70(v)) po(zr) ~ N(0,1)
t=1 po(zt—1 | 22, 79(y)) ~ N (o (ze,t, 70(y)), Xo(2e, 1))



LDM: with DDPM

Noise schedule:

We choose a; to follow a fixed schedule s.t. g4 (x7) ~ N (0, I), just like pg(x7).

Here we let zg = z, the output of the encoder from our autoencoder

Forward Process: QLIEStiOI‘l: How do
q(zo) = data| we define the
mean to condition
Z 7+ ~J N
ToBe | %2-1) Y on the prompt
representation?

T
%ZlT —QZOH Zt’Ztl

(Learned) Reverse Process:

po(zr) = po(ar) [[ po(@1 | 2, 70(1)) po(zr) ~ N0, 1) Q
=1 Po(zi—1 | 26, 7o (y)) ~ N (1o(2¢,t,70(y)), Xo(2¢, 1))



Properties of forward and exact reverse proces

Property #1:
q(x¢ | x0) ~ N (Vauixo, (1 — a)I)

t
where a; = H Qg
s=1

= we can sample x; from x( at any timestep ¢
efficiently in closed form

= x; = /X + (1 — a;)e where € ~ N(0,1)

Property #2: Estimating q(x;_1 | x;) isintractable
because of its dependence on ¢(x(). However,
conditioning on xy we can efficiently work with:

q(x¢—1 | X¢,%0) = N (fig(x¢,X0), 071)

— -
where fio (x1. x0) = \/Ozif( = Oét)XO N \/ozi( = &t)xt
- e - e

(0)

t
= oy "X —|—a§ )xt

o2 (1—a1)(1 — o)
¢ 1— ay

Property #3: Combining the two previous prop-
erties, we can obtain a different parameteriza-
tion of [, which has been shown empirically to
help in learning py.

Rearranging x; = y/ayxg + (1 — a;)e we have
that:

xg = (X0 + (1 — a¢)€) [/

Substituting this definition of xy into property
#2’s definition of 1, gives:

fiq(X¢,X0) = ago)xo + agt)xt

— a{” ((x0 + (1 — @)e) /Var) + oix,




Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Later we will show that given a train-
ing sample xq, we want

pe(Xt—l | Xt)

to be as close as possible to

Q(Xt—l ‘ Xt XO)

Intuitively, this makes sense: if the
learned reverse processis supposed

to subtract away the noise, then
whenever we’re working with a spe-
cific x¢ it should subtract it away
exactly as exact reverse process would
have.

Idea #1: Rather than learn ¥y (x;,t) just use what we

know about ¢(x;_1 | x¢,%xg) ~ N{( ,o21):

EQ(Xt,t) = 0'752]:

Idea #2: Choose g based on g(x;_1 | x¢,Xg), i.e. we

want pg(x¢, t) to be close to fi,(x¢,Xp). Here are
three ways we could parameterize this:

Learn anetwork that approximates the

e that gave rise to x; from xg in the forward
process from x; and ¢:

o (Xs,t) = ago)xéo) (x¢,1) + ozit)xt

where x{” (x;, ) = (xo + (1 — a)eg (x4, 1)) /v

where €y(x;,t) = UNetg(xy, t)
€ @{ —




LDM: Noise Model
1o (Ztv t, Ty (y)) — f(UNEt(Ztv t, Ty (y)))

———

AN

NN * The noise model
includes cross
. t [ ]
"‘I”r%i (> N bt bl b gggiﬂfamaﬁon attention (
e EEEIL ) to the
representation of
the prompt text

* During training we
optimize both the
parameters of the

=» conv 3x3, RelLU

copy and crop UNet noise model
¥ max pool 2x2
# up-conv 2x2 and the parameters
=» conv 1x1
of the LLM

simultaneously



LDM: Cross-Attention in Noise Model

* The cross-attention is placed within

a larger Transformer layer

Transformer Layer inside UNet

input RhXxwXxe
LayerNorm RhxwXxec
Convlxl RhXwXd-np
Reshape Rhur Xd-nyp,

SelfAttentio Rh-wxd-np

T 4 MLP Rh-w Xd-np

(CrossAttention
Reshape ]Rh XwXd-ny

Convlixl RhxwXe

Rh-ur Xd-nyp

Figure from http://arxiv.org/abs/2112.10752

The cross-attention modifies the keys and
values to be the prompt representation

The queries are the current layer of UNet

Attention(Q, K, V') = softmax (Q\I/{(_IT) -V, with

Q=Wg ¢i(z), K =Wy -1(y), V=W - 7(y).

Here, p;(z:) € RNV %4 denotes a (flattened) intermediate

representation of the UNet implementing ¢y and I«’V‘(}) €

Réxd W) e RI*4- & Wi € R?*9" are learnable pro-
jection matrices [36,97]. See Fig. 3 for a visual depiction.
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LDM: Learning the Diffusion Model + LLM

Given a training sample zg, wewant  Objective Function:
po(zi—1 | 2¢,70(y)) Lipy = Eg(a),y,e~N(0,1) [Hf_f()(«f t,mo(y))|5 }

to be as close as possible to

Algorithm 1 Training

Q(Zt—l ‘ Zt,Zo) 1: initialize 6

2: foree {1,...,E}do
for zg,y € Ddo
t ~ Uniform(1,...,7T)

Intuitively, this makes sense: if the
learnedreverse process is supposed 3
to subtract away the noise, then

whenever we’re working with a spe- e ~N(0,1)
Xi < \/O_étXO + 1 — Ol €

cific zg it should subtract it away
exactly as exact reverse process would
have.

Kt(ﬁ) — ||€ — €9<Xt7 t TQ(Y))HQ
60— Vyl,(0)
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LDM Results

Text-to-Image Synthesis on LAION. 1.45B Model.

‘A street sign that reads ‘A zombie in the 'An image of an animal "‘An illustration of a slightly ‘A painting of a 'A watercolor painting of a ‘A shirt with the inscription:

“Latent Diffusion” ' style of Picasso’ half mouse half octopus’ conscious neural network’ squirrel eating a burger’ chair that looks like an octopus’ “I' love generative models!” '

LATENT
DIFFUSION

Generative

'DIFFUSION
R P Models!

3 €
.".’_ur\ s e

Figure 5. Samples for user-defined text prompts from our model for text-to-image synthesis, LDM-8 (KL), which was trained on the
LAION [7%] database. Samples generated with 200 DDIM steps and = 1.0. We use unconditional guidance [32] with s = 10.0.
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The result models obtain
very high quality FID /IS
scores with many fewer
parameters than
competing models

The models are much
more efficient than
vanilla diffusion models
because the most
computationally intensive
step happens in low
dimensional latent space,
instead of high

dimensional pixel space

Figure from http://arxiv.org/abs/2112.10752

LDM Results

Text-Conditional Image Synthesis

Method FID | ISt Nparams

CogView' [17] 27.10 18.20 4B self-ranking, rejection rate 0.017
LAFITET [109] 26.94 26.02 75M

GLIDE* [5Y] 12.24 E 6B 277 DDIM steps, c.f.g. [12] s = 3
Make-A-Scene™ [20] 11.84 - 4B c.f.g for AR models [V5] s = 5
LDM-KL-8 2331 20.03+033 1.45B 250 DDIM steps
LDM-KL-8-G* 1263 30.29+0.42 1.45B 250 DDIM steps, c.f.g. [12] s = 1.5

Table 2. Evaluation of text-conditional image synthesis on the
256 x 256-sized MS-COCO [51] dataset: with 250 DDIM [#4]
steps our model 1s on par with the most recent diffusion [5Y] and
autoregressive [26] methods despite using significantly less pa-
rameters. '/*:Numbers from [109]/ [26]
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