

10-418/10-618 Machine Learning for Structured Data

MACHINE LEARNING DEPARTMENT

Machine Learning Department School of Computer Science Carnegie Mellon University

Belief Propagation

+

Learning fully observable MRFs and CRFs

Matt Gormley Lecture 9 Sep. 28, 2022

Reminders

- Homework 2: Learning to Search for RNNs
 - Out: Sun, Sep 18
 - Written (except for Empirical Questions)
 - Due: Thu, Sep 29 at 11:59pm
 - Programming + Empirical Questions
 - Due: NEVER?
- Homework 3: General Graph CRF Module
 - Out: Thu, Sep 29
 - Due: Mon, Oct 10 at 11:59pm

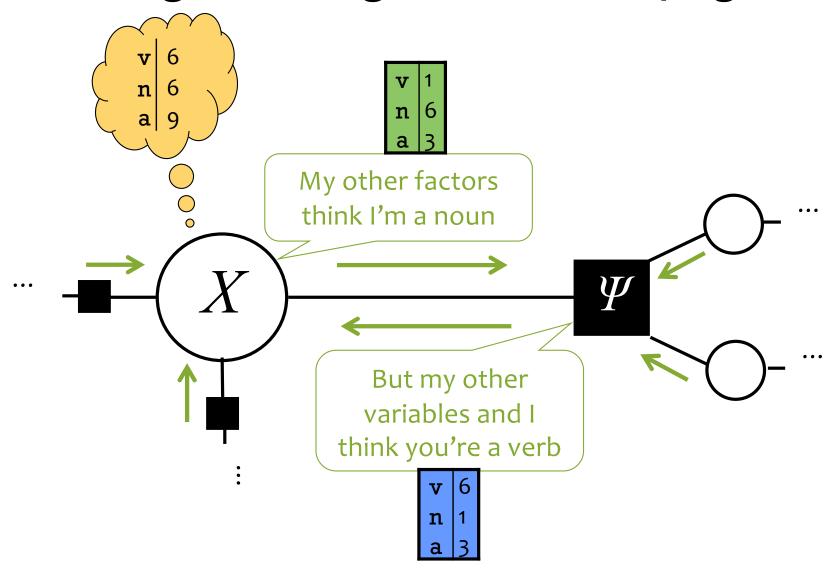
Reminders

- Homework 2: Learning to Search for RNNs
 - Out: Sun, Sep 18
 - Written (except for Empirical Questions)
 - Due: Thu, Sep 29 at 11:59pm
 - Programming + Empirical Questions
 - Due: Mon, Oct 24 at 9:00am
- Homework 3: General Graph CRF Module
 - Out: Thu, Sep 29
 - Due: Mon, Oct 10 at 11:59pm

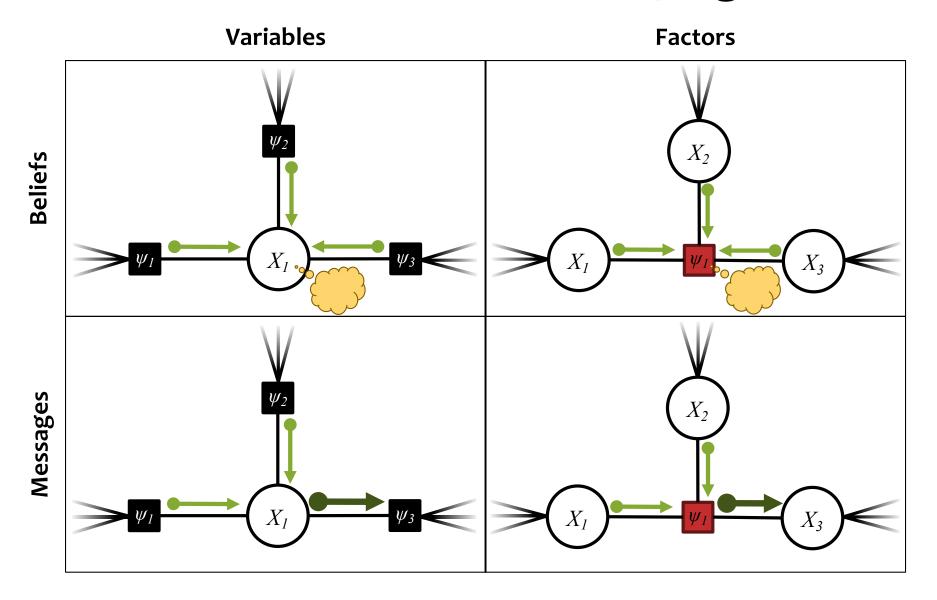
Exact marginal inference for factor trees

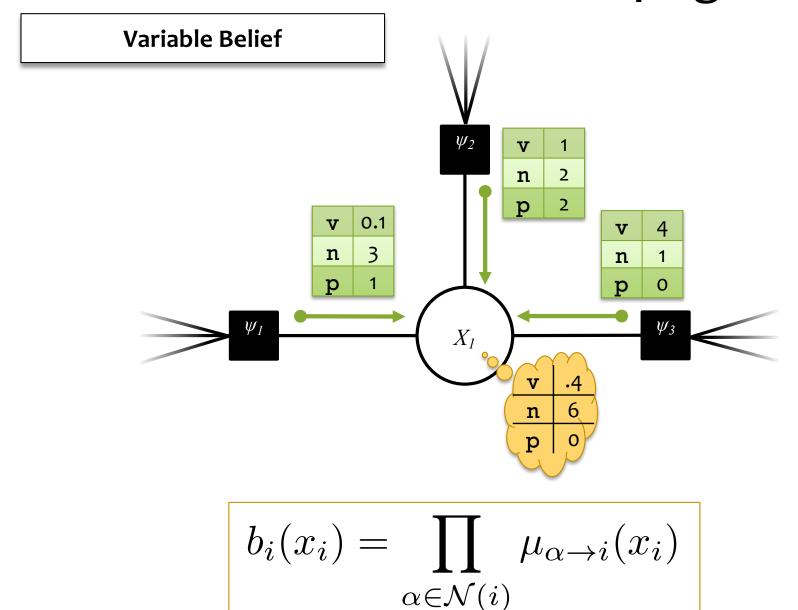
SUM-PRODUCT BELIEF PROPAGATION

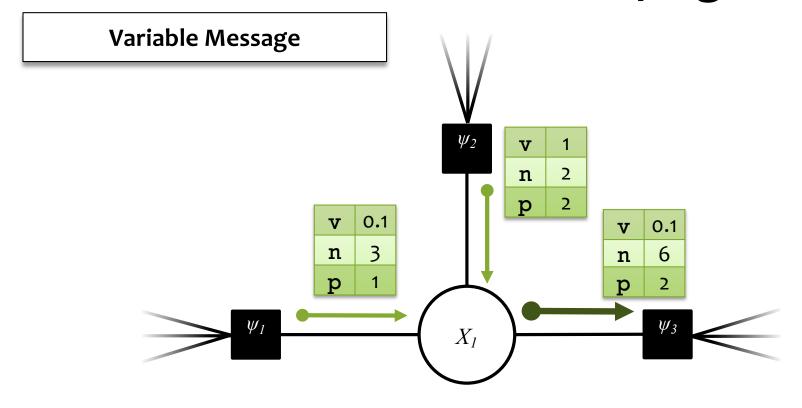
Message Passing in Belief Propagation



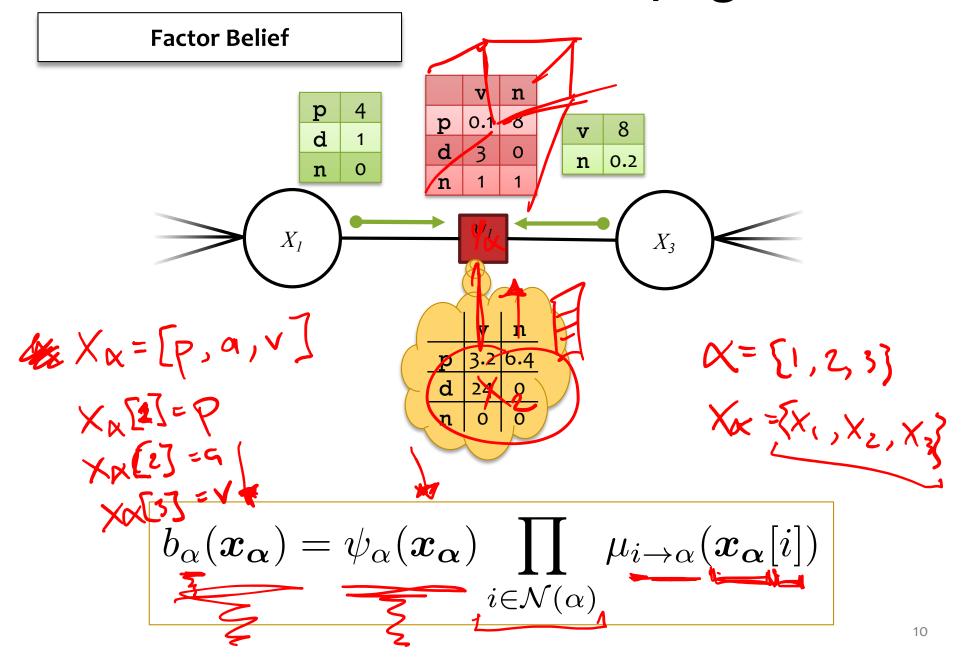
Both of these messages judge the possible values of variable X. Their product = belief at X = product of all 3 messages to X.

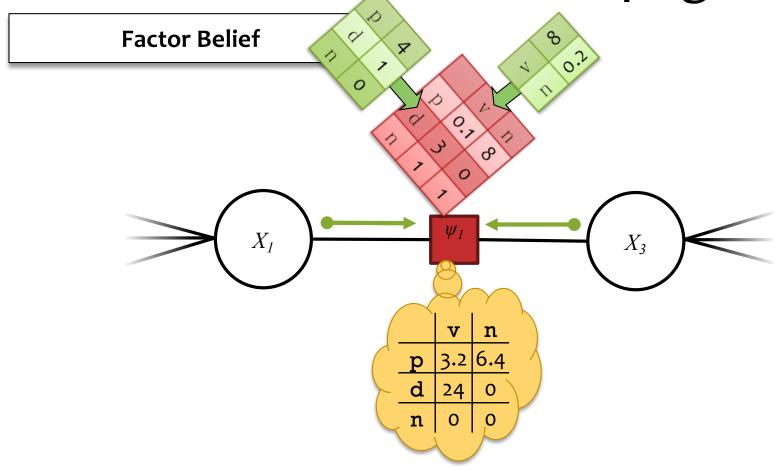






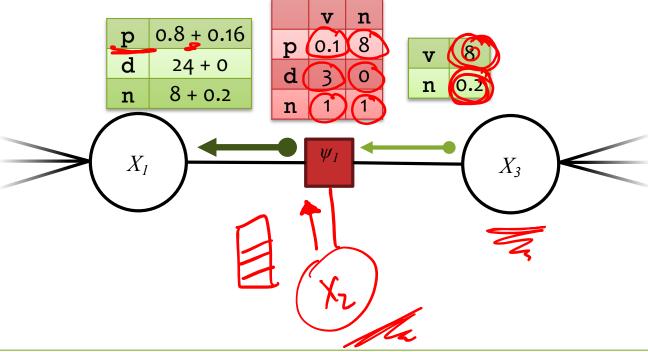
$$\mu_{i\to\alpha}(x_i) = \prod_{\alpha\in\mathcal{N}(i)\setminus\alpha} \mu_{\alpha\to i}(x_i)$$



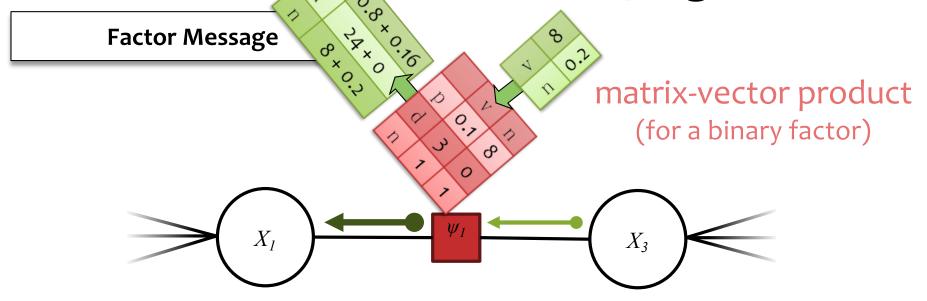


$$b_{\alpha}(\boldsymbol{x}_{\alpha}) = \psi_{\alpha}(\boldsymbol{x}_{\alpha}) \prod_{i \in \mathcal{N}(\alpha)} \mu_{i \to \alpha}(\boldsymbol{x}_{\alpha}[i])$$

Factor Message



$$\mu_{\alpha \to i}(x_i) = \sum_{\boldsymbol{x_{\alpha}}} \psi_{\alpha}(\boldsymbol{x_{\alpha}}) \prod_{j \in \mathcal{N}(\alpha)} \mu_{j \to \alpha}(\boldsymbol{x_{\alpha}}[i])$$



$$\mu_{\alpha \to i}(x_i) = \sum_{\boldsymbol{x_{\alpha}}: \boldsymbol{x_{\alpha}}[i] = x_i} \psi_{\alpha}(\boldsymbol{x_{\alpha}}) \prod_{j \in \mathcal{N}(\alpha) \setminus i} \mu_{j \to \alpha}(\boldsymbol{x_{\alpha}}[i])$$

Input: a factor graph with no cycles

Output: exact marginals for each variable and factor

Algorithm:

Initialize the messages to the uniform distribution.

$$\mu_{i \to \alpha}(x_i) = 1 \quad \mu_{\alpha \to i}(x_i) = 1$$

- 1. Choose a root node.
- 2. Send messages from the **leaves** to the **root**. Send messages from the **root** to the **leaves**.

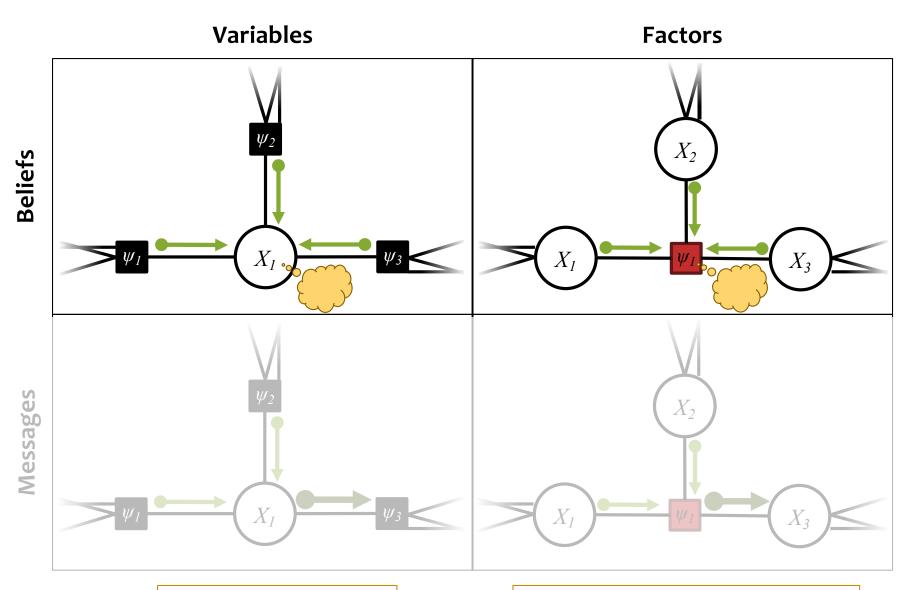
$$\mu_{i \to \alpha}(x_i) = \prod_{\alpha \in \mathcal{N}(i) \setminus \alpha} \mu_{\alpha \to i}(x_i) \left| \mu_{\alpha \to i}(x_i) = \sum_{\boldsymbol{x_{\alpha}}: \boldsymbol{x_{\alpha}}[i] = x_i} \psi_{\alpha}(\boldsymbol{x_{\alpha}}) \prod_{j \in \mathcal{N}(\alpha) \setminus i} \mu_{j \to \alpha}(\boldsymbol{x_{\alpha}}[i]) \right|$$

1. Compute the beliefs (unnormalized marginals).

$$b_i(x_i) = \prod_{\alpha \in \mathcal{N}(i)} \mu_{\alpha \to i}(x_i) \quad b_{\alpha}(\boldsymbol{x_{\alpha}}) = \psi_{\alpha}(\boldsymbol{x_{\alpha}}) \prod_{i \in \mathcal{N}(\alpha)} \mu_{i \to \alpha}(\boldsymbol{x_{\alpha}}[i])$$

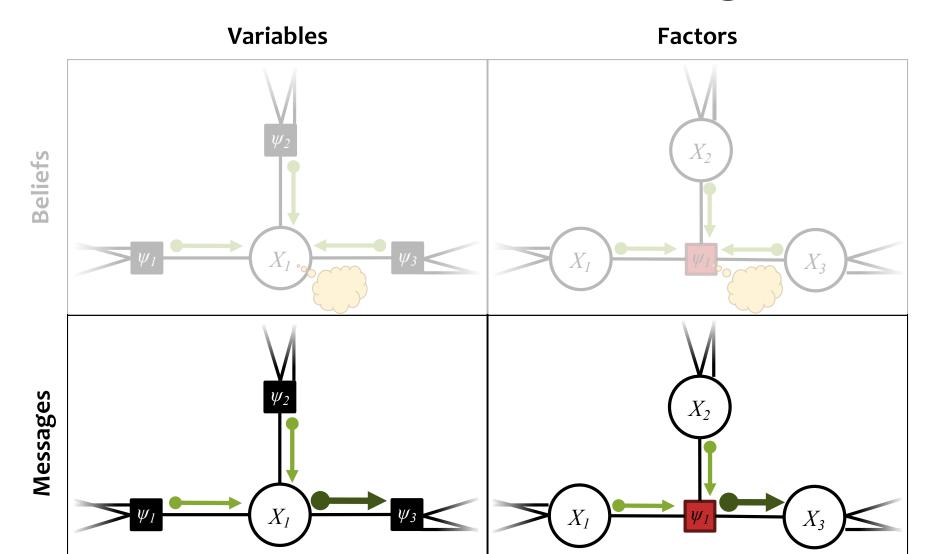
2. Normalize beliefs and return the **exact** marginals.

$$p_i(x_i) \propto b_i(x_i)$$
 $p_{\alpha}(\boldsymbol{x_{\alpha}}) \propto b_{\alpha}(\boldsymbol{x_{\alpha}})$



$$b_i(x_i) = \prod_{\alpha \in \mathcal{N}(i)} \mu_{\alpha \to i}(x_i)$$

$$b_{\alpha}(\boldsymbol{x}_{\alpha}) = \psi_{\alpha}(\boldsymbol{x}_{\alpha}) \prod_{i \in \mathcal{N}(\alpha)} \mu_{i \to \alpha}(\boldsymbol{x}_{\alpha}[i])$$

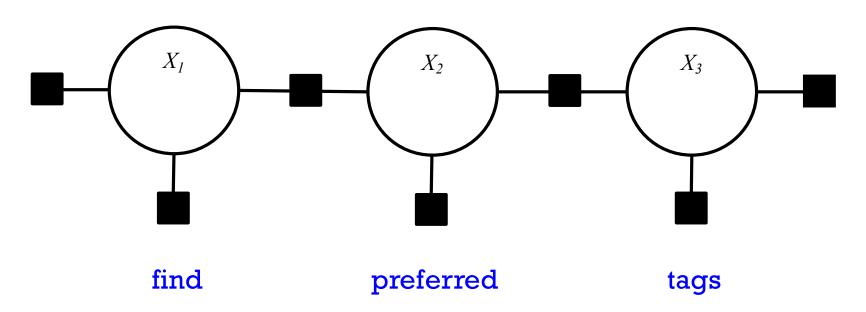


$$\mu_{i \to \alpha}(x_i) = \prod_{\alpha \in \mathcal{N}(i) \setminus \alpha} \mu_{\alpha \to i}(x_i)$$

$$\mu_{\alpha \to i}(x_i) = \sum_{\boldsymbol{x}_{\alpha}: \boldsymbol{x}_{\alpha}[i] = x_i} \psi_{\alpha}(\boldsymbol{x}_{\alpha}) \prod_{j \in \mathcal{N}(\alpha) \setminus i} \mu_{j \to \alpha}(\boldsymbol{x}_{\alpha}[i])$$

FORWARD BACKWARD AS SUM-PRODUCT BP

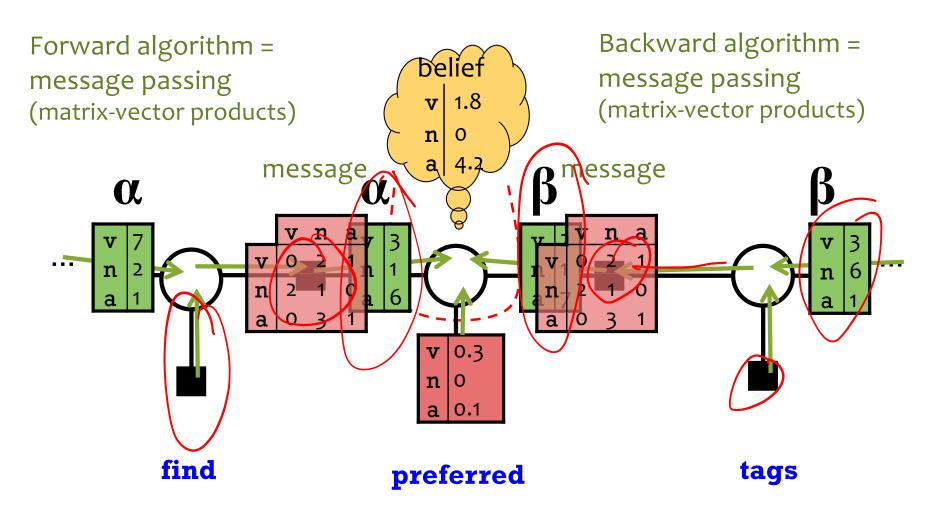
CRF Tagging Model



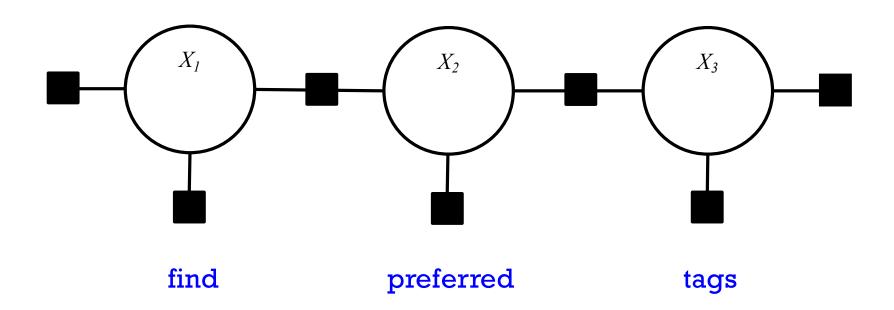
Could be verb or noun

Could be adjective or verb Could be noun or verb

CRF Tagging by Belief Propagation



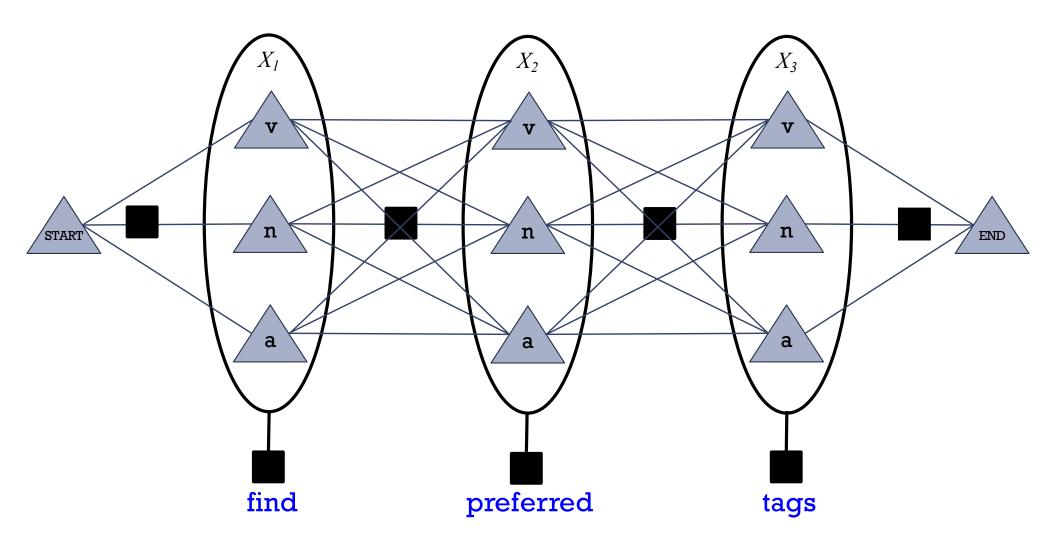
- Forward-backward is a message passing algorithm.
- It's the simplest case of belief propagation.



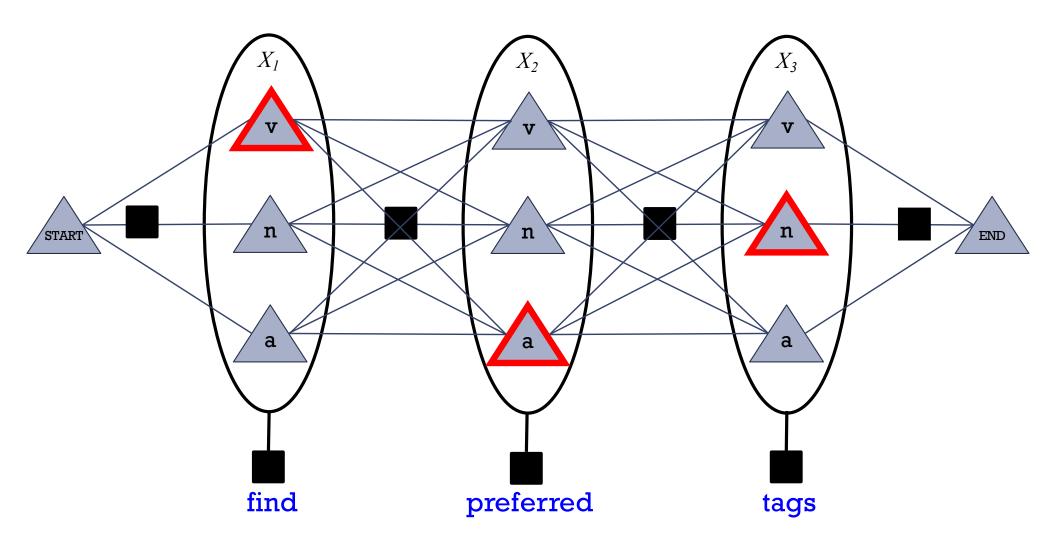
Could be adjective or verb Could be noun or verb

Could be verb or noun

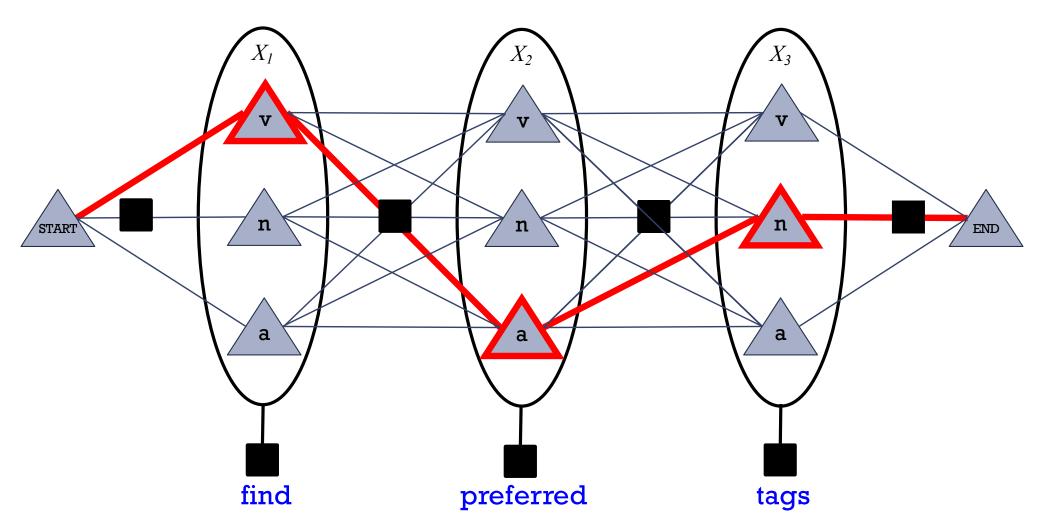
20



• Show the possible *values* for each variable

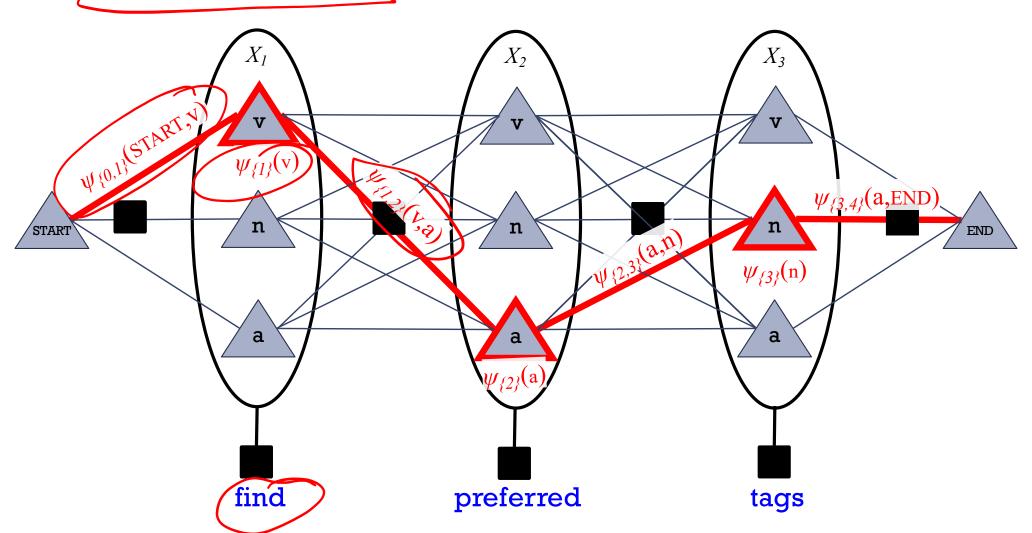


- Let's show the possible values for each variable
- One possible assignment



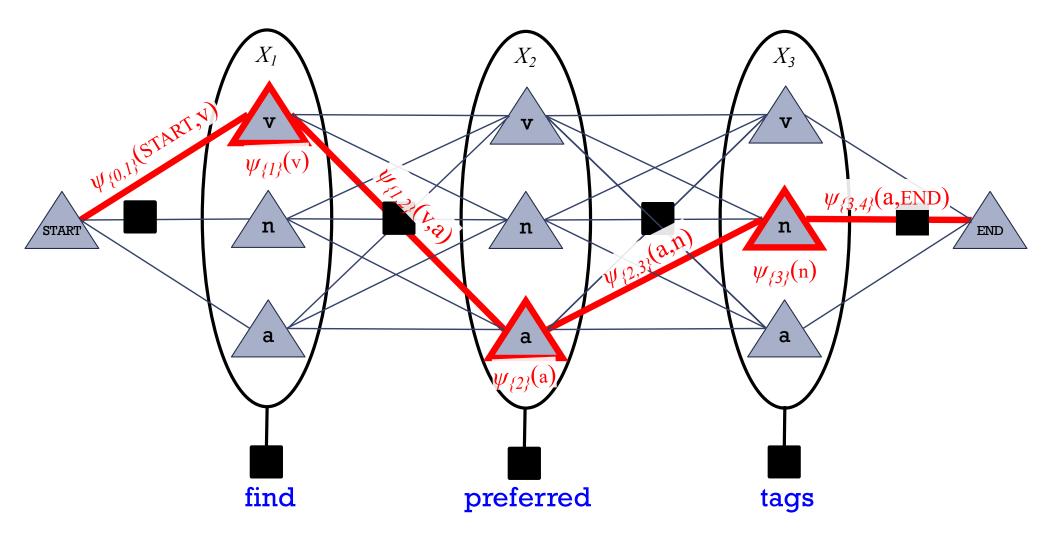
- Let's show the possible values for each variable
- One possible assignment
- And what the 7 factors think of it ...

Viterbi Algorithm: Most Probable Assignment

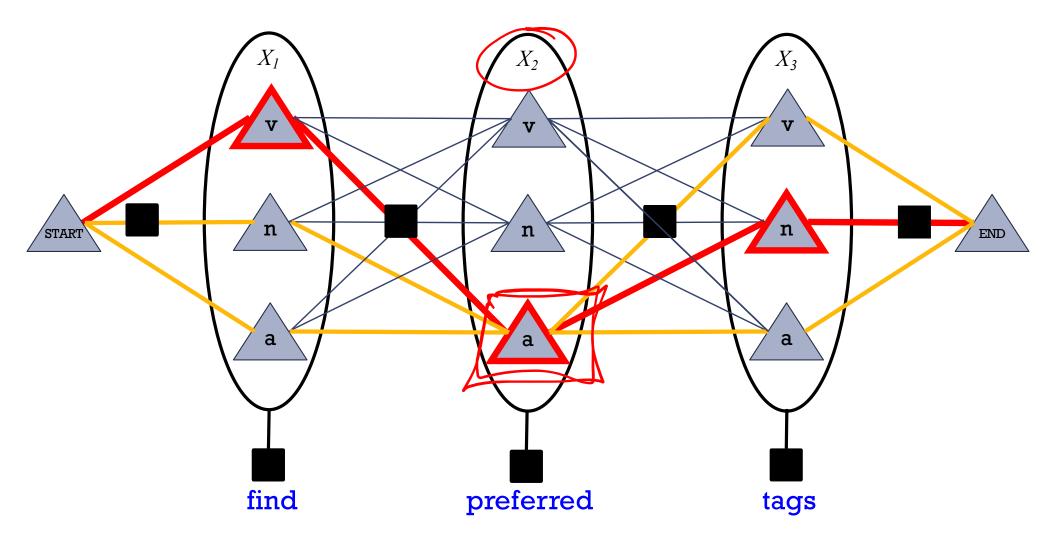


- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product of 7 numbers$
- Numbers associated with edges and nodes of path
- Most probable assignment = path with highest product

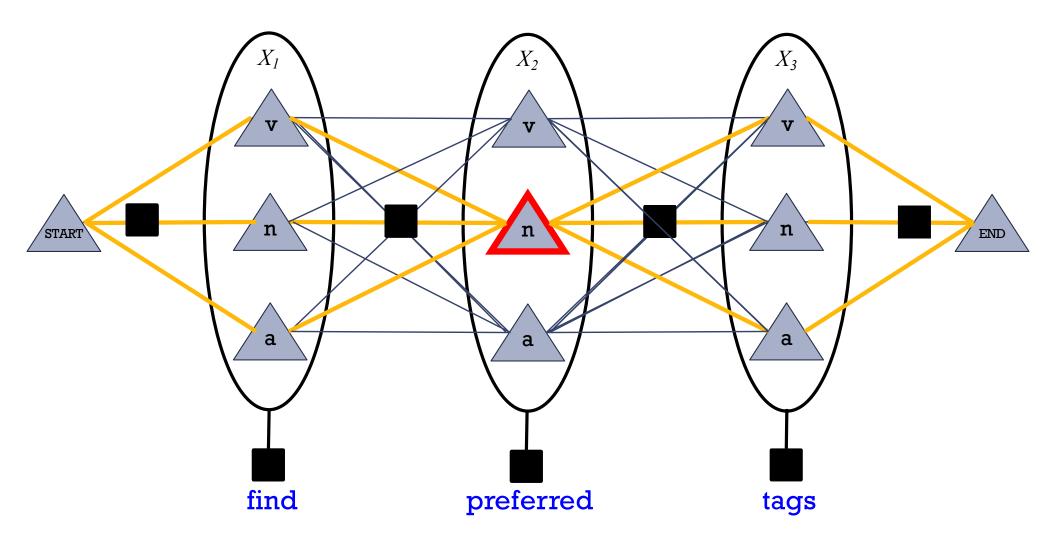
Viterbi Algorithm: Most Probable Assignment



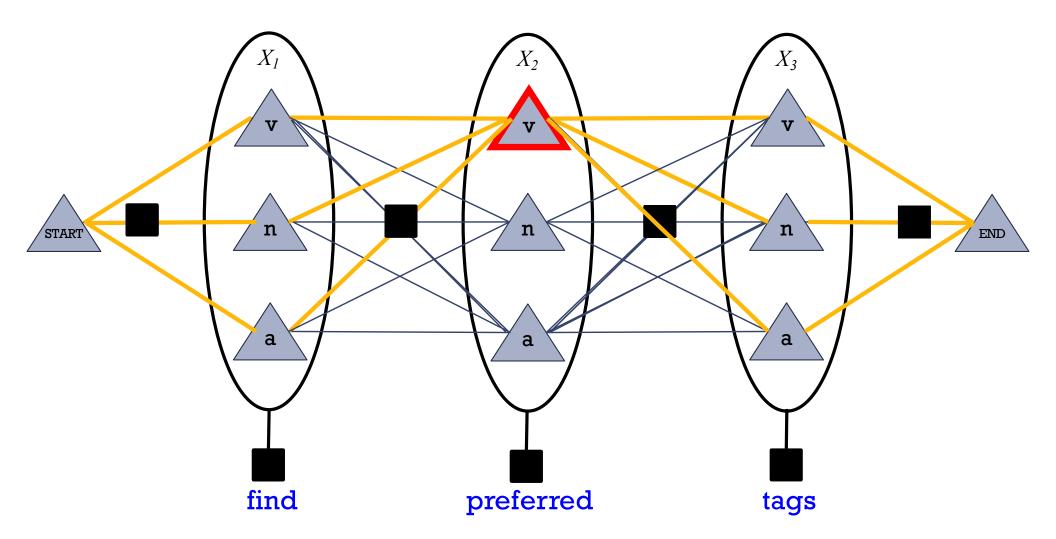
• So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$



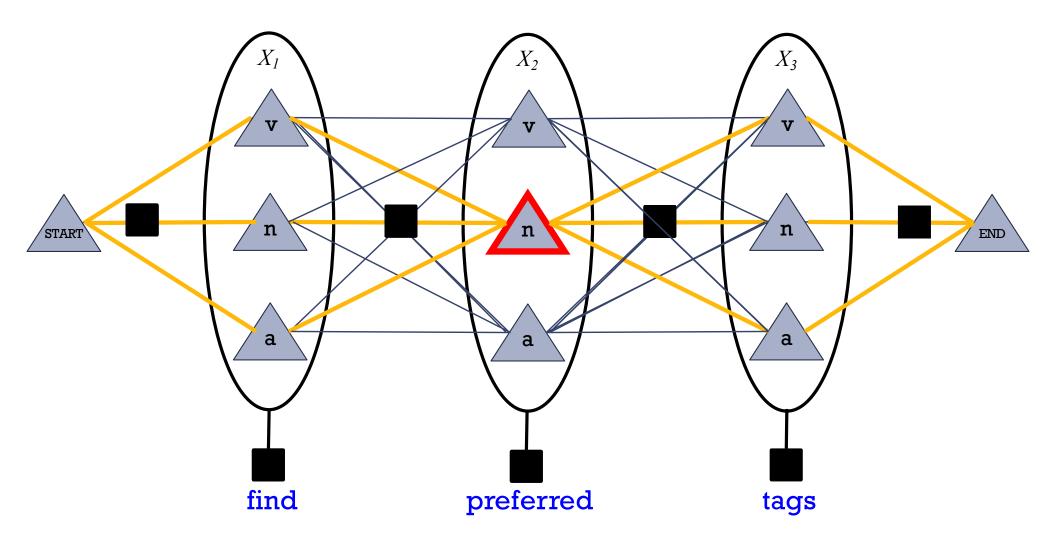
- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$
- Marginal probability $p(X_2 = a)$ = (1/Z) * total weight of all paths through a



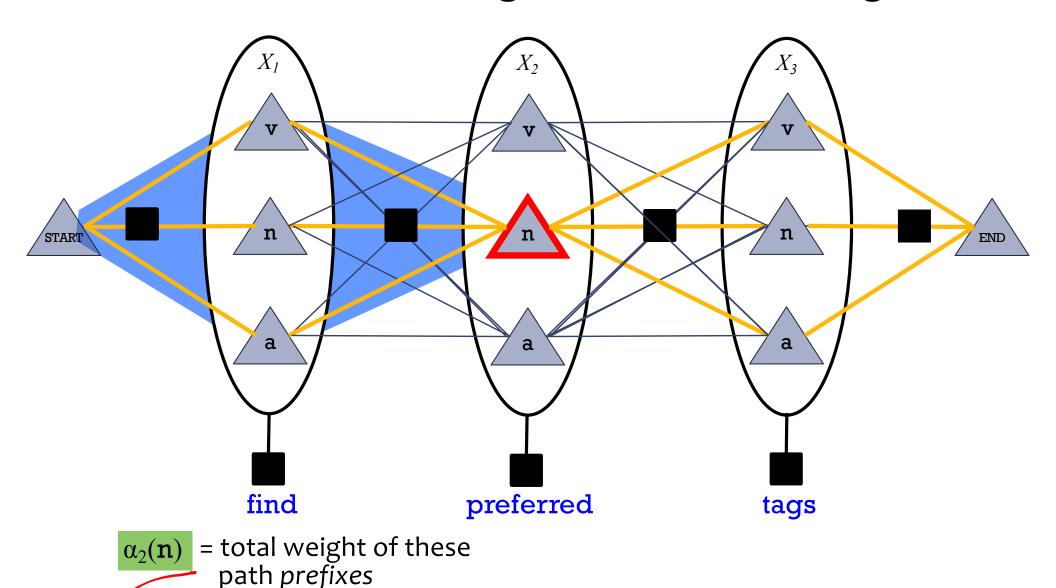
- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$
- Marginal probability $p(X_2 = a)$ = (1/Z) * total weight of all paths through n



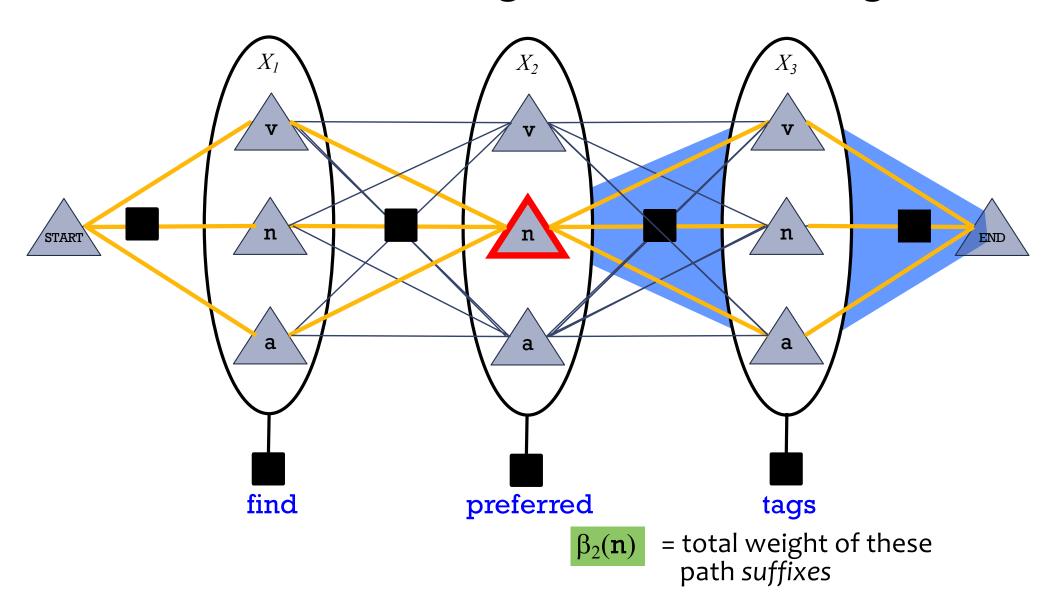
- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$
- Marginal probability $p(X_2 = a)$ = (1/Z) * total weight of all paths through

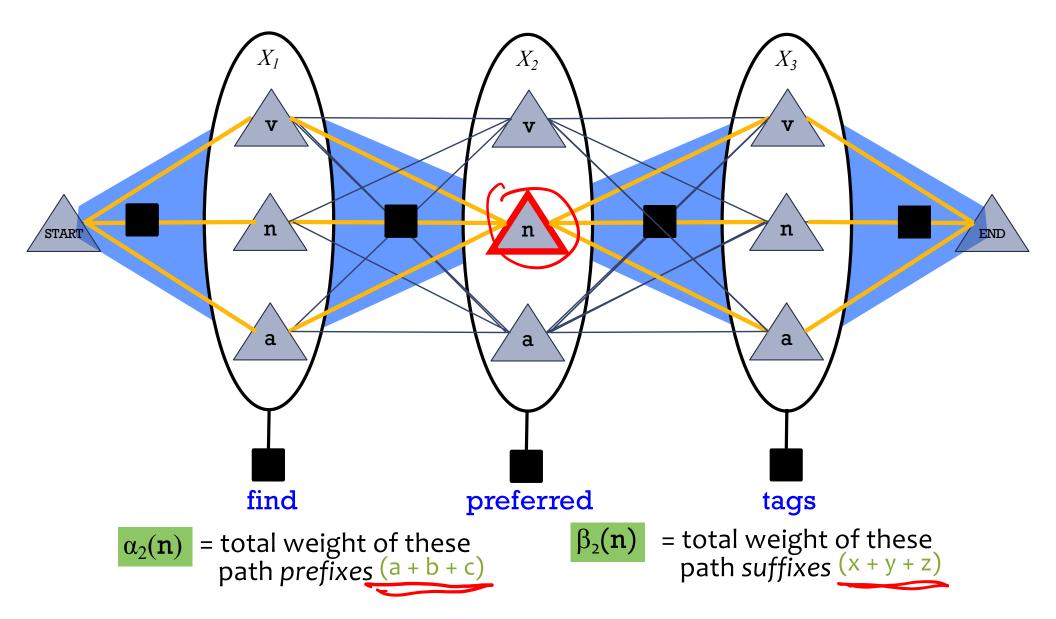


- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/\mathbf{Z}) * product weight of one path$
- Marginal probability $p(X_2 = a)$ = (1/Z) * total weight of all paths through n



30



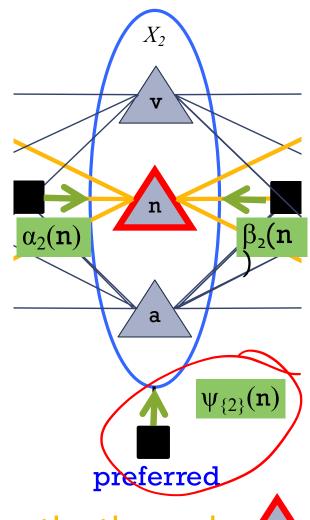


Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths

Oops! The weight of a path through a state also includes a weight at that state.

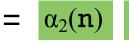
So $\alpha(\mathbf{n}) \cdot \beta(\mathbf{n})$ isn't enough.

The extra weight is the opinion of the unigram factor at this variable.

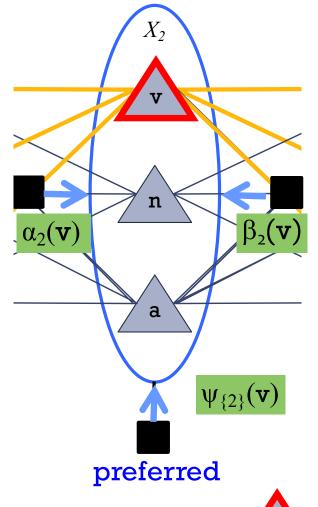


"belief that $X_2 = \mathbf{n}$ "

total weight of all paths through



 $\psi_{\{2\}}(n)$



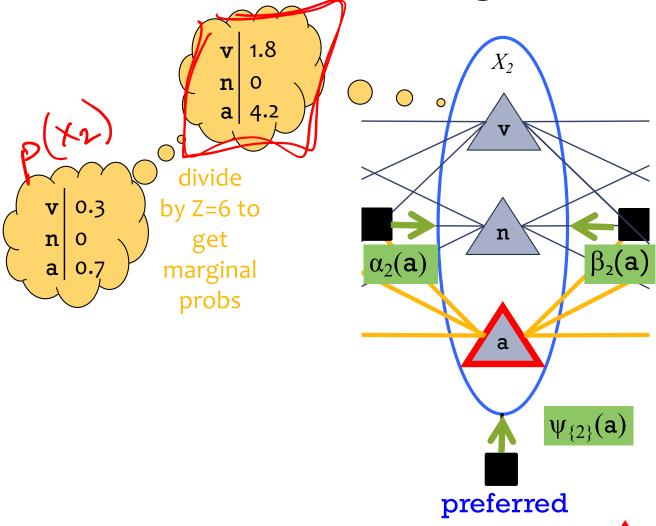
"belief that $X_2 = \mathbf{v}$ "

"belief that $X_2 = \mathbf{n}$ "

total weight of all paths through

$$= \alpha_2(\mathbf{v})$$

$$\psi_{\{2\}}(\mathbf{v})$$



"belief that $X_2 = \mathbf{v}$ "

"belief that $X_2 = \mathbf{n}$ "

"belief that $X_2 = \mathbf{a}$ "

sum = Z(total probability of all paths)

total weight of all paths through

$$= \alpha_2(\mathbf{a})$$

$$\psi_{\{2\}}(\mathbf{a}) \mid \beta_2(\mathbf{a})$$

$$\beta_2(a)$$

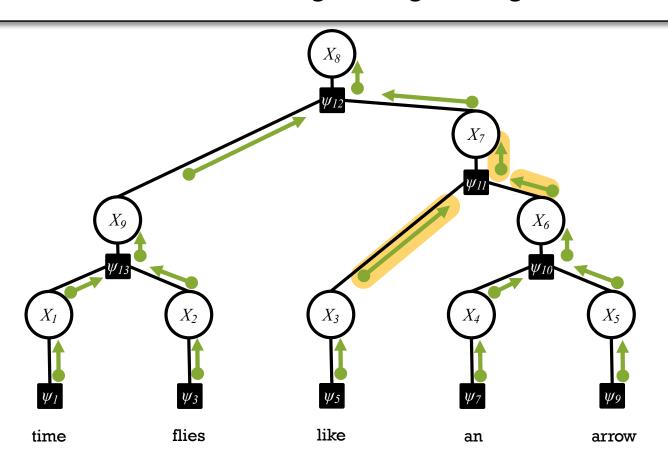
BP AS DYNAMIC PROGRAMMING

(Acyclic) Belief Propagation

In a factor graph with no cycles:

- 1. Pick any node to serve as the root.
- 2. Send messages from the leaves to the root.
- 3. Send messages from the root to the leaves.

A node computes an outgoing message along an edge only after it has received incoming messages along all its other edges.

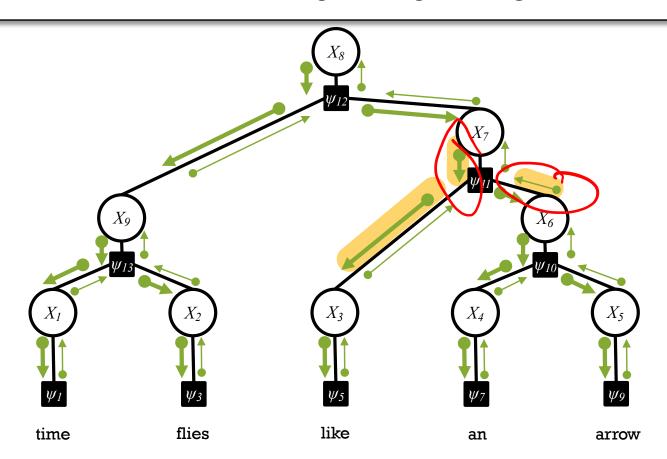


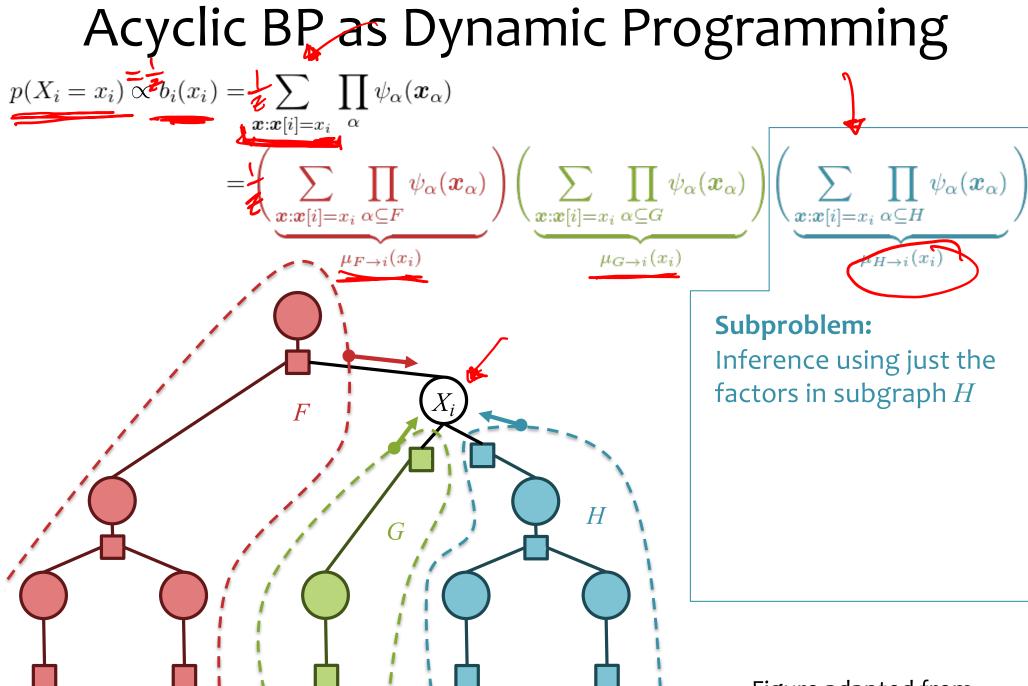
(Acyclic) Belief Propagation

In a factor graph with no cycles:

- 1. Pick any node to serve as the root.
- 2. Send messages from the leaves to the root.
- 3. Send messages from the **root** to the **leaves**.

A node computes an outgoing message along an edge only after it has received incoming messages along all its other edges.





an

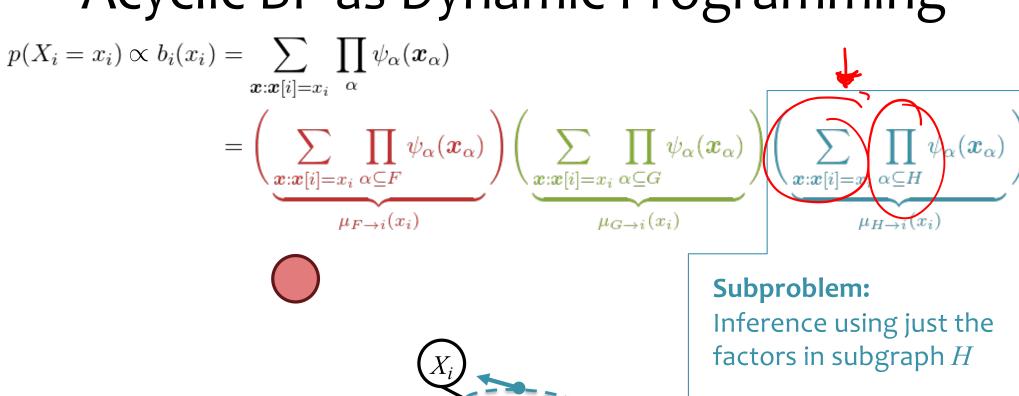
arrow

flies

time

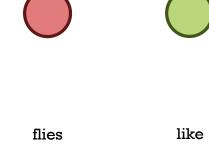
like

Figure adapted from 40 Burkett & Klein (2012)

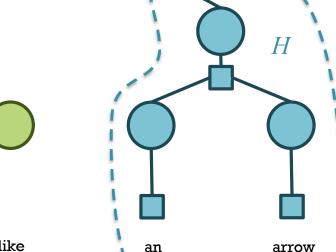


The marginal of X_i in that smaller model is the message sent to X_i from subgraph H

Message **to** a variable



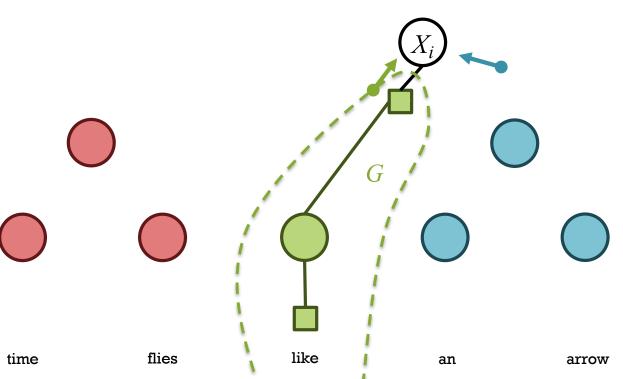
time



$$p(X_i = x_i) \propto b_i(x_i) = \sum_{\boldsymbol{x}: \boldsymbol{x}[i] = x_i} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{x}_{\alpha})$$

$$= \left(\sum_{\boldsymbol{x}: \boldsymbol{x}[i] = x_i} \prod_{\alpha \subseteq F} \psi_{\alpha}(\boldsymbol{x}_{\alpha})\right) \left(\sum_{\boldsymbol{x}: \boldsymbol{x}[i] = x_i} \prod_{\alpha \subseteq G} \psi_{\alpha}(\boldsymbol{x}_{\alpha})\right) \left(\sum_{\boldsymbol{x}: \boldsymbol{x}[i] = x_i} \prod_{\alpha \subseteq H} \psi_{\alpha}(\boldsymbol{x}_{\alpha})\right)$$

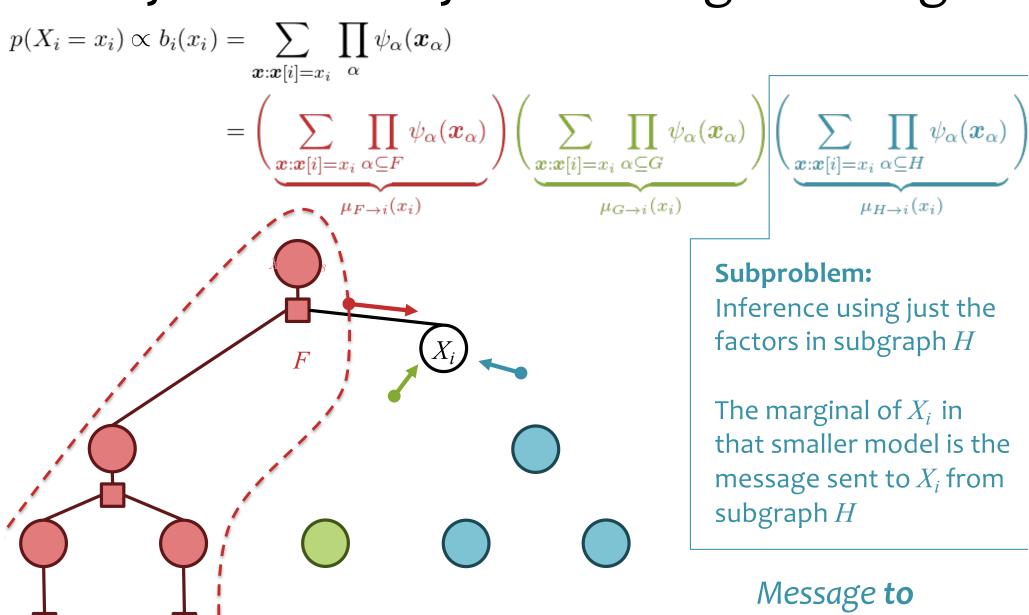
$$\mu_{H \to i}(x_i)$$
Subproblem:
Inference using just the



factors in subgraph H

The marginal of X_i in that smaller model is the message sent to X_i from subgraph *H*

> Message to a variable



an

arrow

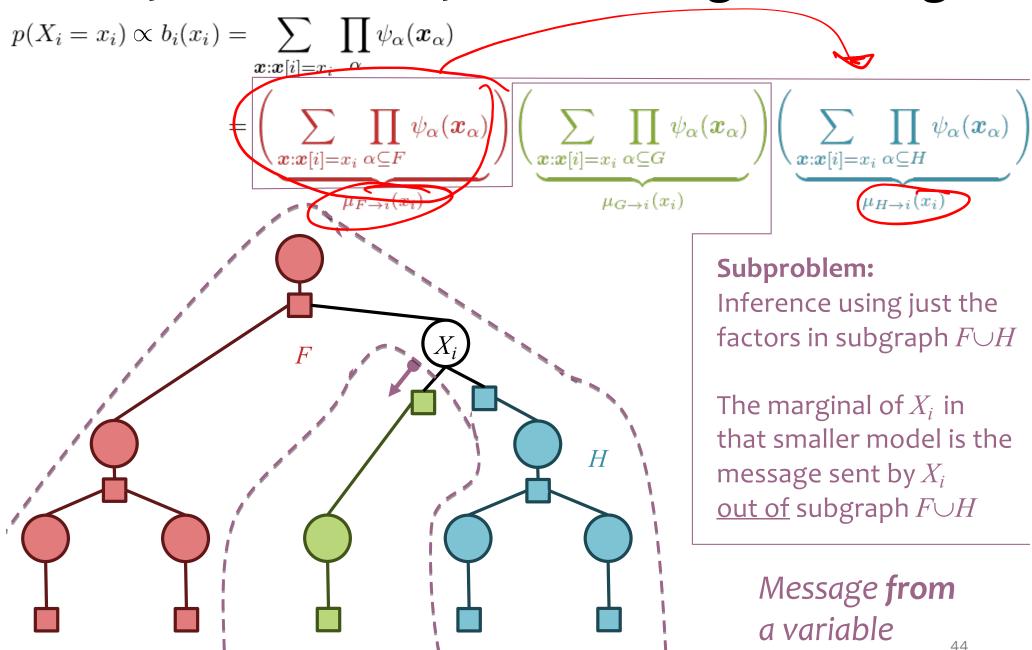
flies

time

like

43

a variable



an

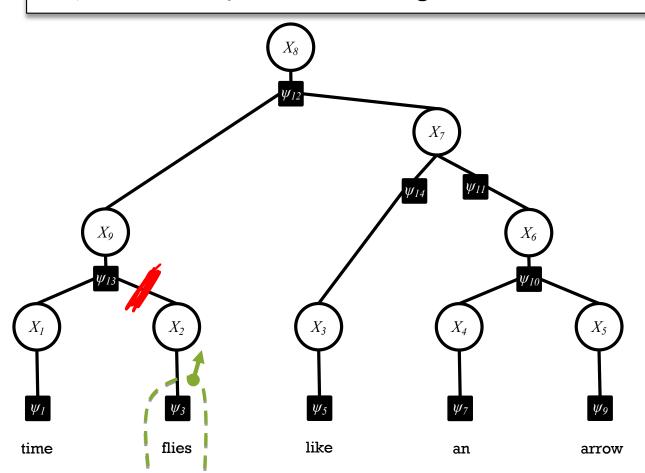
arrow

flies

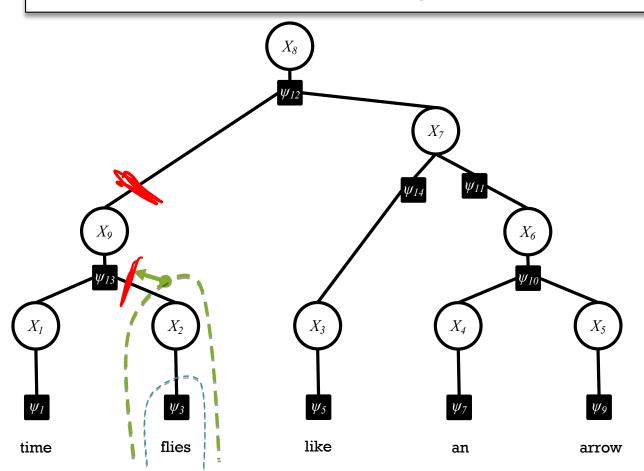
time

like

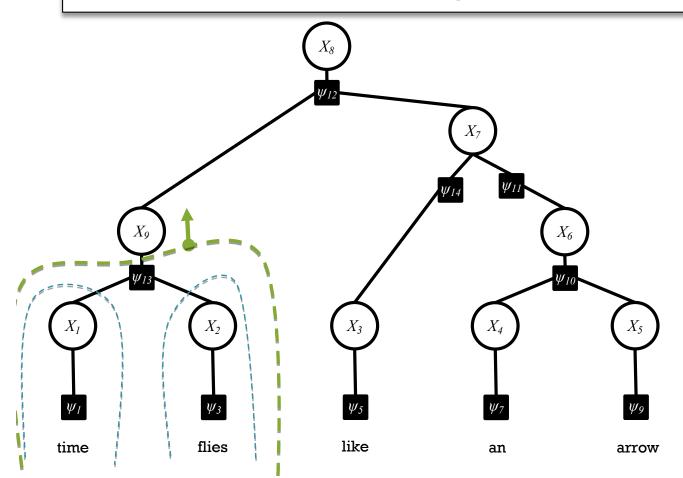
- If you want the marginal $p_i(x_i)$ where X_i has degree k, you can think of that summation as a **product of** k marginals computed on smaller subgraphs.
- Each subgraph is obtained by **cutting** some edgetof the tree.
- The message-passing algorithm uses **dynamic programming** to compute the marginals on all such subgraphs, working from **smaller to bigger**. So you can compute all the marginals.



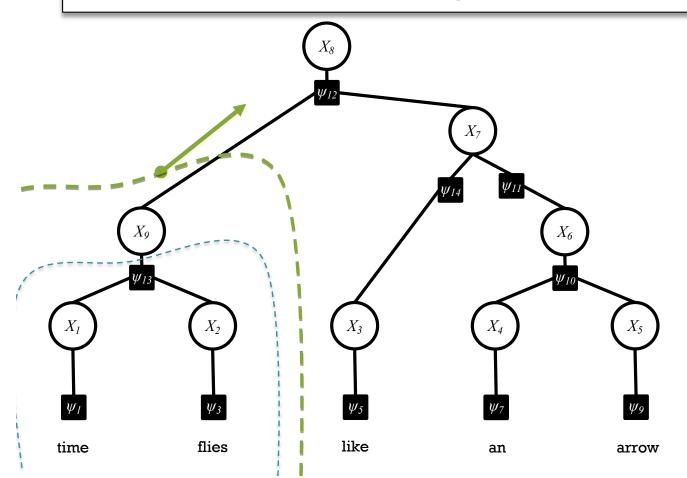
- If you want the marginal $p_i(x_i)$ where X_i has degree k, you can think of that summation as a **product of** k marginals computed on smaller subgraphs.
- Each subgraph is obtained by **cutting** some edge of the tree.
- The message-passing algorithm uses **dynamic programming** to compute the marginals on all such subgraphs, working from **smaller to bigger**. So you can compute all the marginals.



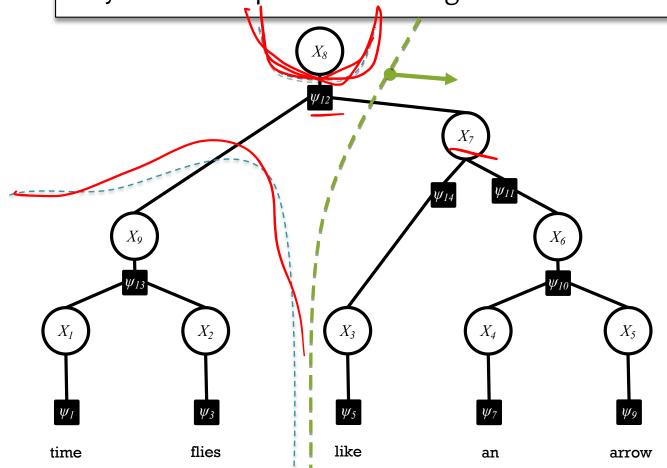
- If you want the marginal $p_i(x_i)$ where X_i has degree k, you can think of that summation as a **product of** k marginals computed on smaller subgraphs.
- Each subgraph is obtained by **cutting** some edge of the tree.
- The message-passing algorithm uses **dynamic programming** to compute the marginals on all such subgraphs, working from **smaller to bigger**. So you can compute all the marginals.



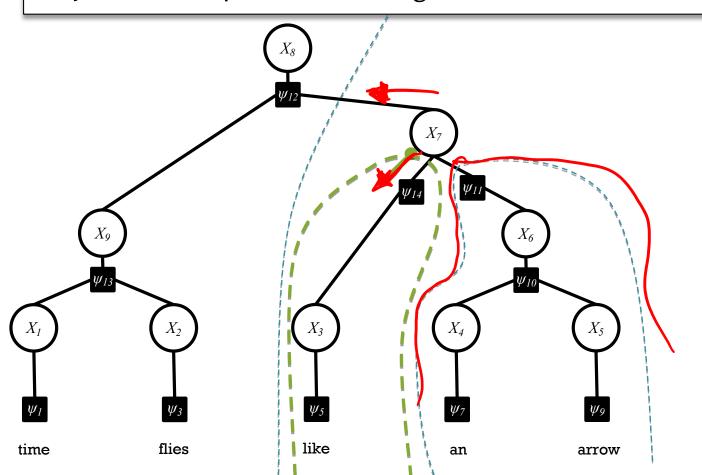
- If you want the marginal $p_i(x_i)$ where X_i has degree k, you can think of that summation as a **product of** k marginals computed on smaller subgraphs.
- Each subgraph is obtained by **cutting** some edge of the tree.
- The message-passing algorithm uses **dynamic programming** to compute the marginals on all such subgraphs, working from **smaller to bigger**. So you can compute all the marginals.



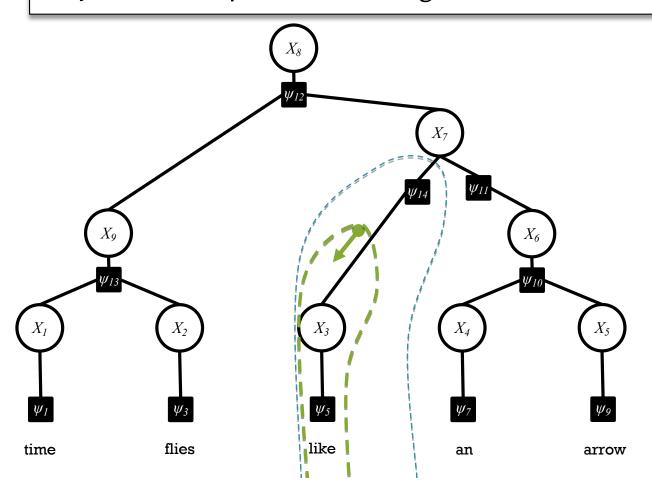
- If you want the marginal $p_i(x_i)$ where X_i has degree k, you can think of that summation as a **product of** k marginals computed on smaller subgraphs.
- Each subgraph is obtained by cutting some edge of the tree.
- The message-passing algorithm uses dynamic programming to compute the marginals on all such subgraphs, working from smaller to bigger. So you can compute all the marginals.



- If you want the marginal $p_i(x_i)$ where X_i has degree k, you can think of that summation as a **product of** k marginals computed on smaller subgraphs.
- Each subgraph is obtained by cutting some edge of the tree.
- The message-passing algorithm uses dynamic programming to compute the marginals on all such subgraphs, working from smaller to bigger. So you can compute all the marginals.



- If you want the marginal $p_i(x_i)$ where X_i has degree k, you can think of that summation as a **product of** k marginals computed on smaller subgraphs.
- Each subgraph is obtained by **cutting** some edge of the tree.
- The message-passing algorithm uses **dynamic programming** to compute the marginals on all such subgraphs, working from **smaller to bigger**. So you can compute all the marginals.



Exact MAP inference for factor trees

MAX-PRODUCT BELIEF PROPAGATION

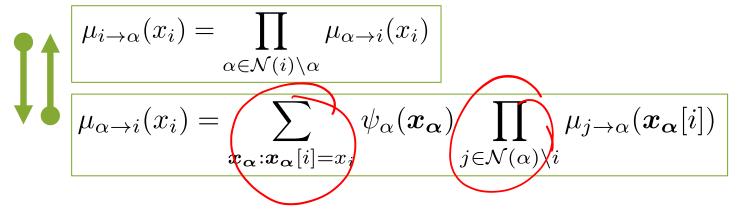
Max-product Belief Propagation

• Sum-product BP can be used to compute the marginals, $p_i(X_i)$ compute the partition function, Z

• Max-product BP can be used to compute the most likely assignment, $X^* = \operatorname{argmax}_X p(X)$

Max-product Belief Propagation

Change the sum to a max:

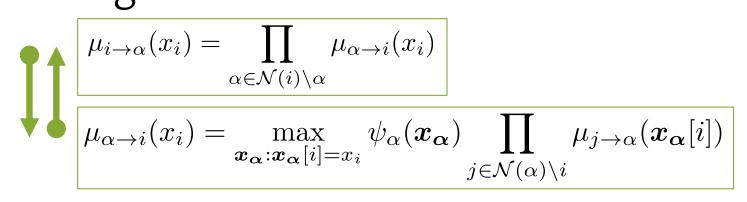


- Max-product BP computes max-marginals
 - The max-marginal $b_i(x_i)$ is the (unnormalized) probability of the MAP assignment under the constraint $X_i = x_i$.
 - For an acyclic graph, the MAP assignment (assuming there are no ties) is given by:

$$x_i^* = \arg\max_{x_i} b_i(x_i)$$

Max-product Belief Propagation

Change the sum to a max:



- Max-product BP computes max-marginals
 - The max-marginal $b_i(x_i)$ is the (unnormalized) probability of the MAP assignment under the constraint $X_i = x_i$.
 - For an acyclic graph, the MAP assignment (assuming there are no ties) is given by:

$$x_i^* = \arg\max_{x_i} b_i(x_i)$$

Deterministic Annealing

Motivation: Smoothly transition from sum-product to max-product

1. Incorporate inverse temperature parameter into each

factor:

Annealed Joint Distribution
$$p(\boldsymbol{x}) = \frac{1}{Z} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{x}_{\alpha})^{\frac{1}{T}}$$

- Send messages as usual for sum-product BP
- 2. Anneal T from I to 0:

T=1	Sum-product 📂
$T \rightarrow 0$	Max-product

3. Take resulting beliefs to power T

Semirings

• Sum-product(+/*) and max-product max/* are commutative semirings

We can run BP with any such commutative

semiring

$$\mu_{i \to \alpha}(x_i) = \sum_{\boldsymbol{\alpha} \in \mathcal{N}(i) \setminus \alpha} \mu_{\alpha \to i}(x_i)$$

$$\mu_{\alpha \to i}(x_i) = \sum_{\boldsymbol{x}_{\alpha} : \boldsymbol{x}_{\alpha}[i] = x_i} \psi_{\alpha}(\boldsymbol{x}_{\alpha}) \sum_{j \in \mathcal{N}(\alpha) \setminus i} \mu_{j \to \alpha}(\boldsymbol{x}_{\alpha}[i])$$

 In practice, multiplying many small numbers together can yield underflow

instead of using +/*, we use log-add/+

Instead of using max/*, we use max/+

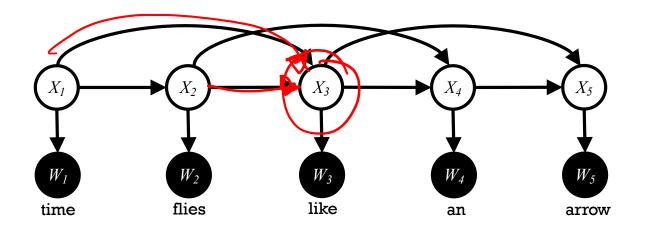
we use
$$max/+$$
 $x/*$, we use $max/+$
 $y= y= y=-$

Exact inference for linear chain models

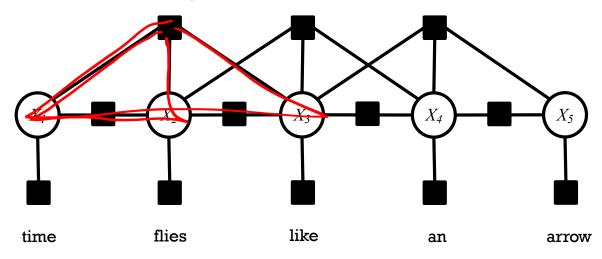
FORWARD-BACKWARD AND VITERBI ALGORITHMS

- Sum-product BP on an HMM is called the forward-backward algorithm
- Max-product BP on an HMM is called the Viterbi algorithm

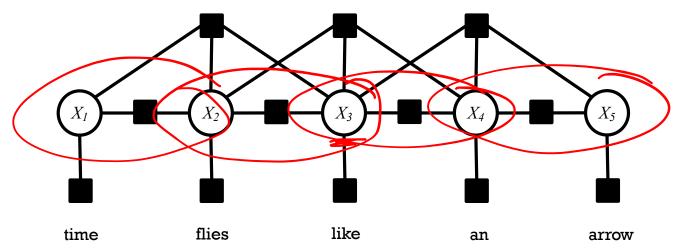
Trigram HMM is not a tree, even when converted to a factor graph



Trigram HMM is not a tree, even when converted to a factor graph



Trigram HMM is not a tree, even when converted to a factor graph



Trick: (See also Sha & Pereira (2003))

- Replace each variable domain with its cross product
 e.g. {B,I,O} → {BB, BI, BO, IB, II, IO, OB, OI, OO}
- Replace each pair of variables with a single one. For all i, $y_{i,i+1} = (x_i, x_{i+1})$
- Add features with weight -∞ that disallow illegal configurations
 between pairs of the new variables
 e.g. legal = BI and IO illegal = II and OO
- This is effectively a special case of the junction tree algorithm

Summary

1. Factor Graphs

- Alternative representation of directed / undirected graphical models
- Make the cliques of an undirected GM explicit

2. Variable Elimination

- Simple and general approach to exact inference
- Just a matter of being clever when computing sum-products

3. Sum-product Belief Propagation

 Computes all the marginals and the partition function in only twice the work of Variable Elimination

4. Max-product Belief Propagation

- Identical to sum-product BP, but changes the semiring
- Computes: max-marginals, probability of MAP assignment, and (with backpointers) the MAP assignment itself.

LEARNING FOR MRFS + CRFS

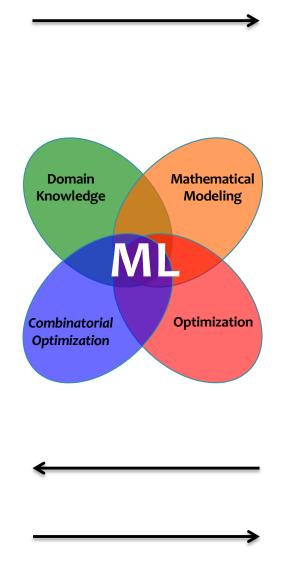
Machine Learning

The data inspires
the structures
we want to
predict

Inference finds

{best structure, marginals, partition function} for a new observation

(Inference is usually called as a subroutine in learning)

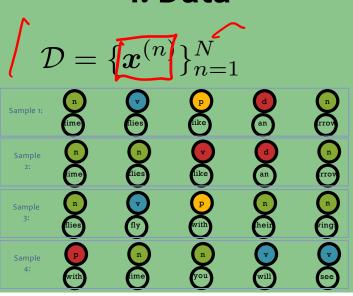


Our **model**defines a score
for each structure

It also tells us what to optimize

Learning tunes the parameters of the model

1. Data



2. Model

$$p(\boldsymbol{x} \mid \boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{C \in \mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. Objective

$$\ell(\theta; \mathcal{D}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}^{(n)} \mid \boldsymbol{\theta})$$

5. Inference

1. Marginal Inference

$$p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

2. Partition Function

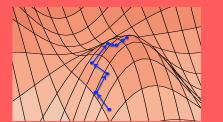
$$Z(\boldsymbol{\theta}) = \sum \prod_{C} \psi_C(\boldsymbol{x}_C)$$

3. MAP Inference

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

4. Learning

$$\frac{\boldsymbol{\theta}^*}{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \underbrace{\ell(\boldsymbol{\theta}; \mathcal{D})}$$

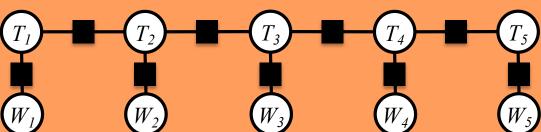


1. Data

Given training examples:
$$\mathcal{D} = \{ oldsymbol{x}^{(n)} \}_{n=1}^N$$

Sample 1:	n	v flies	p like	d	n
Sample 2:	n	n	V	d	n
Sample 3:	n	v fly	with	heir	vings
Sample 4:	with	n	you	will	v See

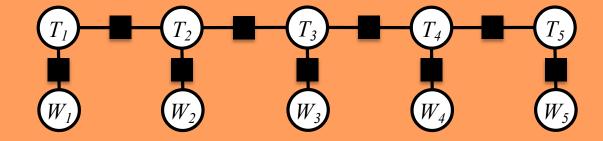
2. Model



2. Model

Define the model to be an MRF:

$$p(\boldsymbol{x} \mid \boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{C \in \mathcal{C}} \psi_C(\boldsymbol{x}_C)$$



3. Objective

Choose the objective to be log-likelihood:

(Assign high probability to the things we observe and low probability to everything else)

$$\ell(\theta; \mathcal{D}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}^{(n)} \mid \boldsymbol{\theta})$$

3. Objective

Choose the objective to be log-likelihood:

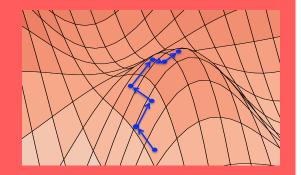
(Assign high probability to the things we observe and low probability to everything else)

$$\ell(\theta; \mathcal{D}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}^{(n)} \mid \boldsymbol{\theta})$$

4. Learning

Tune the parameters to maximize the objective function

$$m{ heta}^* = \operatorname*{argmax}_{m{ heta}} \ell(m{ heta}; \mathcal{D})$$



3. Objective

Choose the objective to be log-likelihood:

(Assign high probability to the things we observe and low probability to everything else) \mathcal{N}

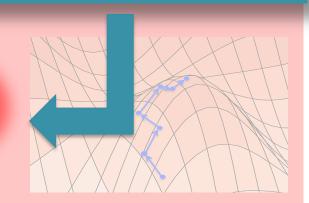
Goals for Today's Lecture

7t-1

- Consider different parameterizations
- 2. Optimize this objective function

Tune the parameter function

$$oldsymbol{ heta}^* = rgmax \, \ell(oldsymbol{ heta}; \mathcal{D})$$



5. Inference

Three Tasks:

1. Marginal Inference

Compute marginals of variables and cliques

$$p(x_i) = \sum_{\boldsymbol{x}': x_i' = x_i} p(\boldsymbol{x}' \mid \boldsymbol{\theta}) \qquad p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

2. Partition Function

Compute the normalization constant

$$Z(\boldsymbol{\theta}) = \sum_{\boldsymbol{x}} \prod_{C \in \mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. MAP Inference

Compute variable assignment with highest probability

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

1. Data

2. Model

$$p(\boldsymbol{x} \mid \boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{C \in \mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. Objective

$$\ell(\theta; \mathcal{D}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}^{(n)} \mid \boldsymbol{\theta})$$

5. Inference

1. Marginal Inference

$$p(oldsymbol{x}_C) = \sum_{oldsymbol{x}': oldsymbol{x}_C' = oldsymbol{x}_C} p(oldsymbol{x}' \mid oldsymbol{ heta})$$

2. Partition Function

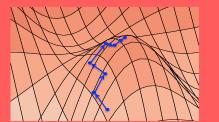
$$Z(\boldsymbol{\theta}) = \sum \prod \psi_C(\boldsymbol{x}_C)$$

3. MAP Inference

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

4. Learning

$$\boldsymbol{\theta}^* = \operatorname*{argmax}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathcal{D})$$



MLE for Undirected GMs

- Today's parameter estimation assumptions:
 - 1. The graphical model structure is given
 - 2. Every variable appears in the training examples

Questions

- 1. What does the **likelihood objective** accomplish?
- 2. Is likelihood the **right objective** function?
- 3. How do we optimize the objective function (i.e. learn)?
- 4. What guarantees does the optimizer provide?
- 5. (What is the mapping from data → model? In what ways can we incorporate our domain knowledge? How does this impact learning?)

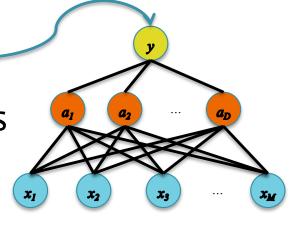
Options for MLE of MRFs

- Setting I: $\psi_C(oldsymbol{x}_C) = heta_{C,oldsymbol{x}_C}$
 - A. MLE by inspection (Decomposable Models)
 - B. Iterative Proportional Fitting (IPF)
- Setting II: $\psi_C(\boldsymbol{x}_C) = \exp(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}_C))$
 - C. Generalized Iterative Scaling
 - D. Gradient-based Methods
- Setting III: $\psi_C(m{x}_C) = -$
 - E. Gradient-based Methods

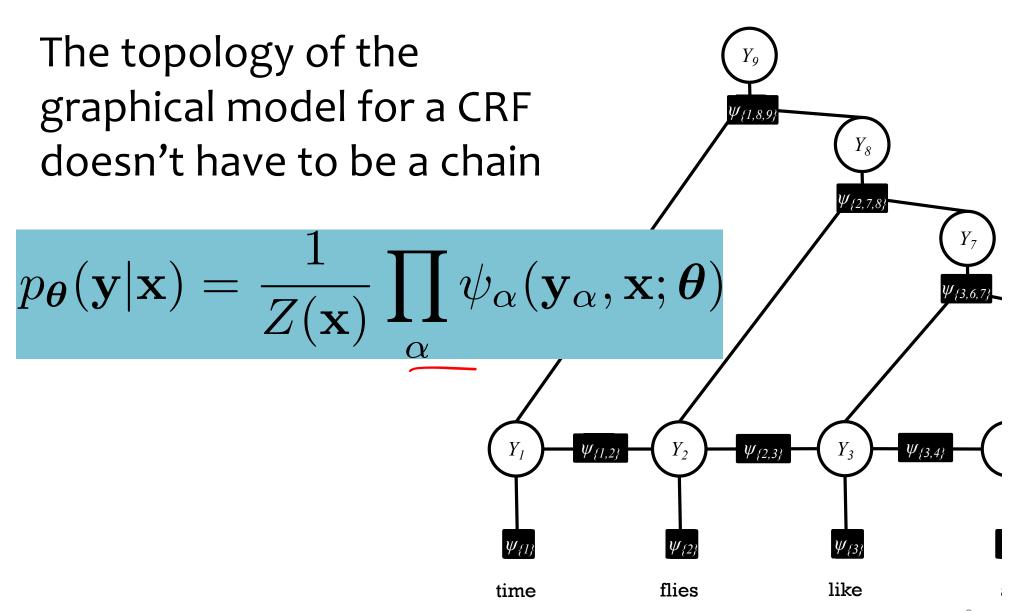
LOG-LINEAR PARAMETERIZATION OF CONDITIONAL RANDOM FIELD

Options for MLE of MRFs

- Setting I: $\psi_C({m x}_C) = heta_{C,{m x}_C}$
 - A. MLE by inspection (Decomposable Models)
 - B. Iterative Proportional Fitting (IPF)
- Setting II: $\psi_C(m{x}_C) = \exp(m{ heta} \cdot m{f}(m{x}_C))$
 - C. Generalized Iterative Scaling
 - D. Gradient-based Methods
- Setting III: $\psi_C(m{x}_C) = 0$
 - E. Gradient-based Methods



General CRF



Log-linear CRF Parameterization

$$p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{\alpha} \psi_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}; \boldsymbol{\theta})$$

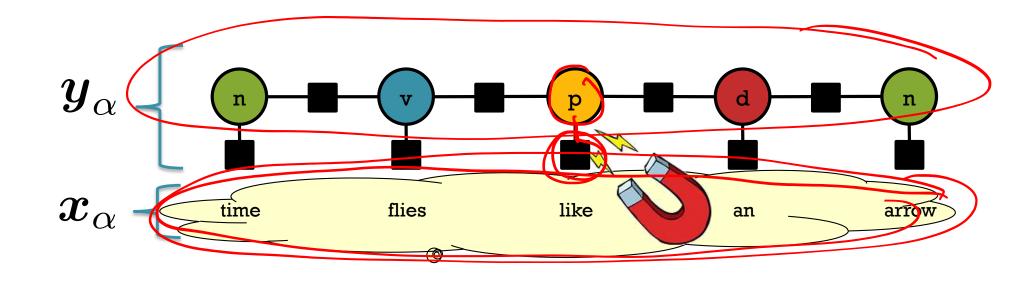
Define each potential function in terms of a fixed set of feature functions:

$$\psi_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}; \boldsymbol{\theta}) = \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}))$$
Predicted Observed variables variables

Log-linear CRF Parameterization

Define each potential function in terms of a fixed set of feature functions:

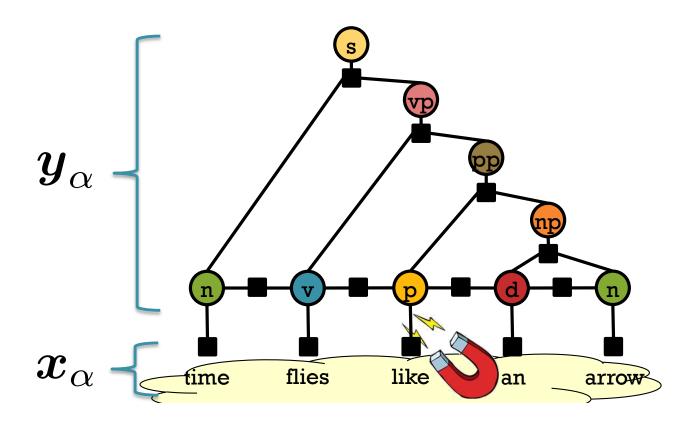
$$\psi_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}; \boldsymbol{\theta}) = \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}))$$



Log-linear CRF Parameterization

Define each potential function in terms of a fixed set of feature functions:

$$\psi_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}; \boldsymbol{\theta}) = \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}))$$



Conditional Random Fields (CRFs) for time series data

LINEAR-CHAIN CRFS (LOG-LINEAR PARAMETERIZATION)

Conditional distribution over tags X_i given words w_i . The factors and Z are now specific to the sentence w.

$$p(n, v, p, d, n \mid time, flies, like, an, arrow) = \frac{1}{Z} (4 * 8 * 5 * 3 * ...)$$

$$v \mid p \mid d$$

$$v \mid 1 \mid 6 \mid 3 \mid 4$$

$$n \mid 8 \mid 4 \mid 2 \mid 0.1$$

$$p \mid 1 \mid 3 \mid 1 \mid 3$$

$$d \mid 0.1 \mid 8 \mid 0 \mid 0$$

$$v \mid 5$$

$$n \mid 5$$

$$p \mid 0.1$$

$$d \mid 0.1$$

like

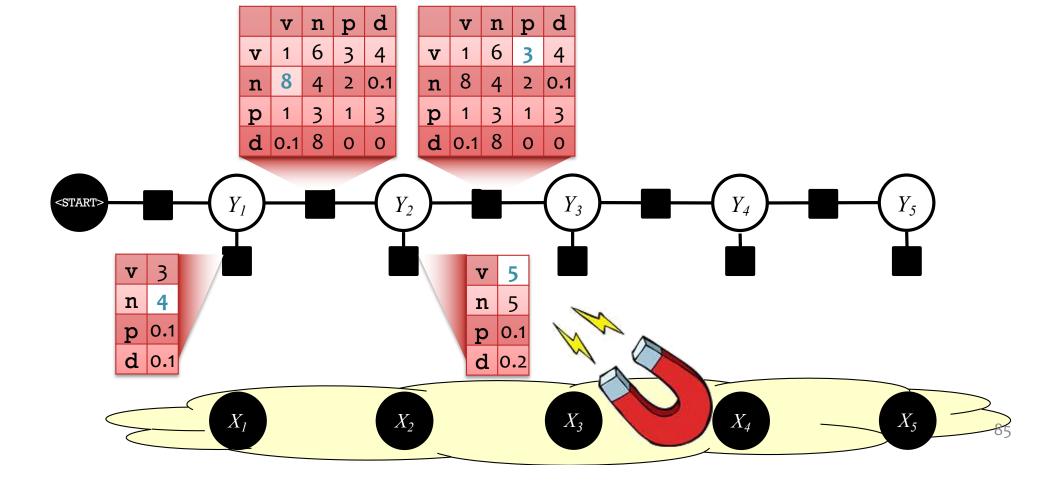
an

arrow

time

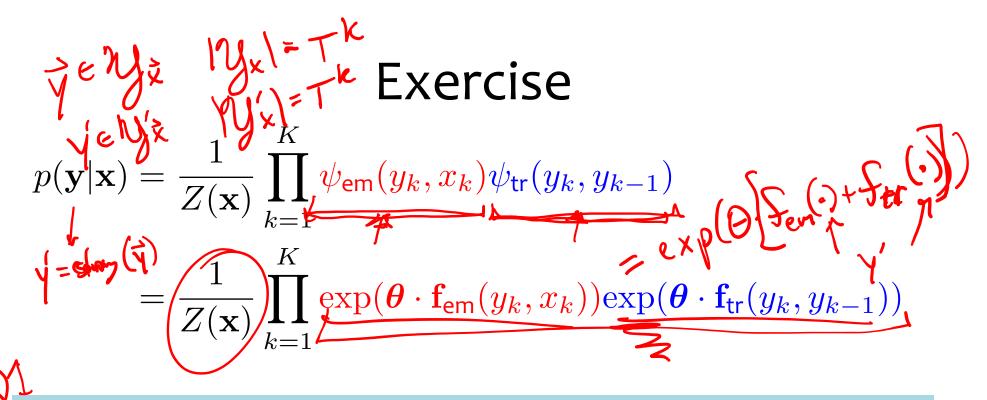
flies

Recall: Shaded nodes in a graphical model are observed



This **linear-chain CRF** is just **like an HMM**, except that its factors are **not** necessarily probability distributions

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \frac{\psi_{\text{em}}(y_k, x_k) \psi_{\text{tr}}(y_k, y_{k-1})}{\sum_{k=1}^{K} \exp(\theta \cdot \mathbf{f}_{\text{em}}(y_k, x_k)) \exp(\theta \cdot \mathbf{f}_{\text{tr}}(y_k, y_{k-1}))}$$

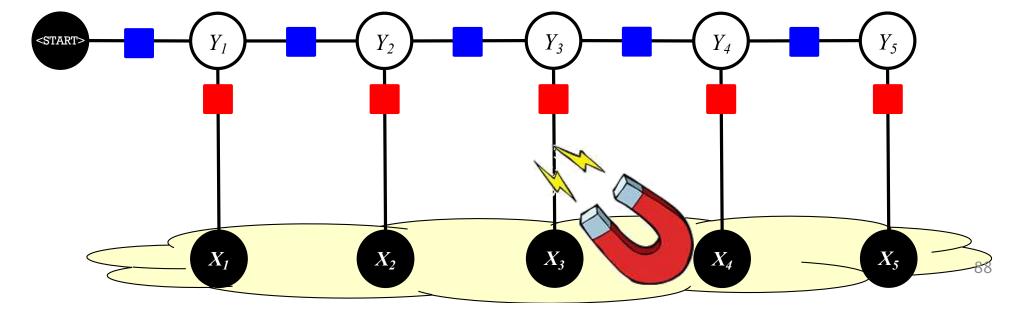


Select All That Apply: Which model does the above distribution share the most in common with?

- B. Bernoulli Naïve Bayes 😗 😘
- C. Gaussian Naïve Bayes 53%
- D. Logistic Regression 31%

This **linear-chain CRF** is just **like an HMM**, except that its factors are **not** necessarily probability distributions

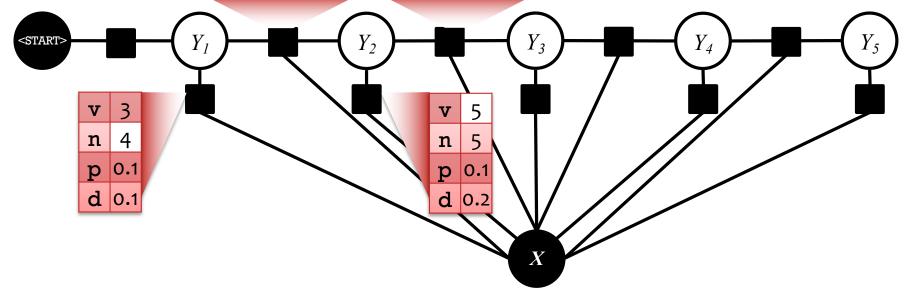
$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \psi_{\text{em}}(y_k, x_k) \psi_{\text{tr}}(y_k, y_{k-1})$$
$$= \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{em}}(y_k, x_k)) \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{tr}}(y_k, y_{k-1}))$$



- That is the vector X
- Because it's observed, we can condition on it for free
- Conditioning is how we converted from the MRF to the CRF (i.e. when taking a slice of the emission factors)

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

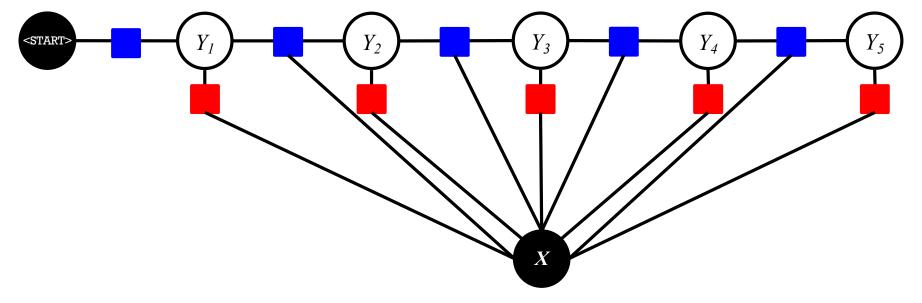
	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0



- This is the standard linear-chain CRF definition
- It permits rich, overlapping features of the vector X

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \psi_{\text{em}}(y_k, \mathbf{x}) \psi_{\text{tr}}(y_k, y_{k-1}, \mathbf{x})$$

$$= \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{em}}(y_k, \mathbf{x})) \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{tr}}(y_k, y_{k-1}, \mathbf{x}))$$



- This is the standard linear-chain CRF definition
- It permits rich, overlapping features of the vector X

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \boldsymbol{\psi}_{\mathsf{em}}(y_k, \mathbf{x}) \boldsymbol{\psi}_{\mathsf{tr}}(y_k, y_{k-1}, \mathbf{x})$$

$$= \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\mathsf{em}}(y_k, \mathbf{x})) \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\mathsf{tr}}(y_k, y_{k-1}, \mathbf{x}))$$
STAND
$$Y_l$$

$$Y_2$$

$$Y_3$$

$$Y_4$$

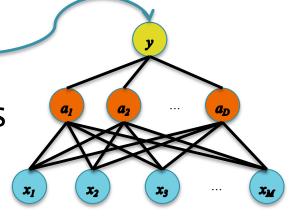
$$Y_5$$

Visual Notation: Usually we draw a CRF **without** showing the variable corresponding to *X*

MRF AND CRF LEARNING (LOG-LINEAR PARAMETERIZATION)

Options for MLE of MRFs

- Setting I: $\psi_C({m x}_C) = heta_{C,{m x}_C}$
 - A. MLE by inspection (Decomposable Models)
 - B. Iterative Proportional Fitting (IPF)
- Setting II: $\psi_C(m{x}_C) = \exp(m{ heta} \cdot m{f}(m{x}_C))$
 - C. Generalized Iterative Scaling
 - D. Gradient-based Methods
- Setting III: $\psi_C(m{x}_C) =$
 - E. Gradient-based Methods



MRF and CRF Learning

Whiteboard

- log-linear MRF model (i.e. with feature based potentials)
- log-linear MRF derivatives
- log-linear MRF training with SGD
- log-linear CRF model (i.e. with feature based potentials)
- log-linear CRF derivatives
- log-linear CRF training with SGD