

10-418/10-618 Machine Learning for Structured Data

Machine Learning Department School of Computer Science Carnegie Mellon University

Directed Graphical Models + Undirected Graphical Models

Matt Gormley Lecture 6 Sep. 19, 2022

Reminders

- Lecture 5.5: required video lecture
- Homework 2: Learning to Search for RNNs
 - Out: Sun, Sep 18
 - Due: Thu, Sep 29 at 11:59pm
- Poll Questions oa and ob about HW1

Representation of both directed and undirected graphical models

INTUITION FOR FACTOR GRAPHS

Joint Modeling

After we come up with a way to decompose our structure into variables, what comes next?

- We can define a joint model over those variables
- The joint model defines a score for each possible structure allowed by our decomposition
- The model should give high scores to "good" structures and low scores to "bad" structures
 - in probability terms: high scores for likely structures and low scores for unlikely structures
 - "likely structures" could be defined as those appearing in your training dataset
- (Hopefully, the joint model is also able to capture interesting interactions between pairs, triples, quadruples, ... of variables)

How do we write down a joint model?

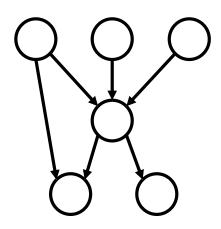
(Factor Graphs)

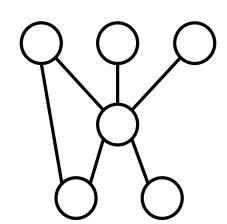
Three Types of Graphical Models

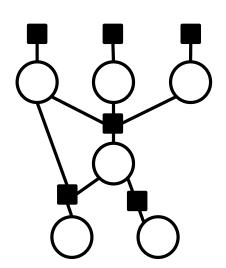
Directed Graphical Model

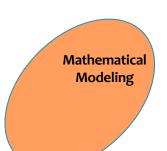
Undirected Graphical Model

Factor Graph





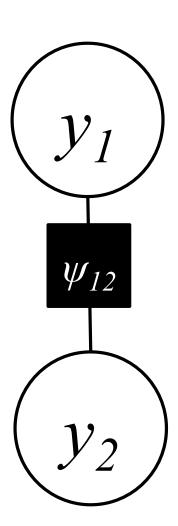


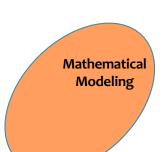


Factor Graph

(bipartite graph)

- variables (circles)
- factors (squares)

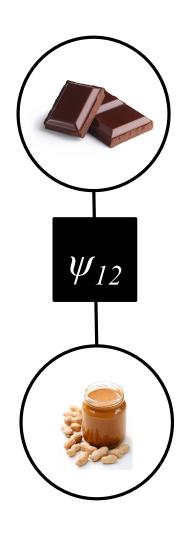




Factor Graph

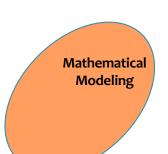
(bipartite graph)

- variables (circles)
- factors (squares)



Each random variable can be assigned a value

The collection of values for all the random variables is called an assignment.

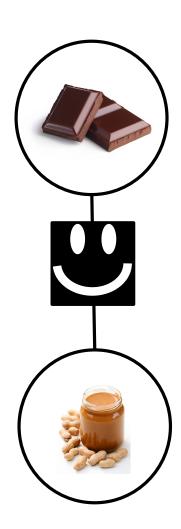


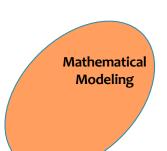
Factor Graph

(bipartite graph)

- variables (circles)
- factors (squares)

Factors have local opinions about the assignments of their neighboring variables



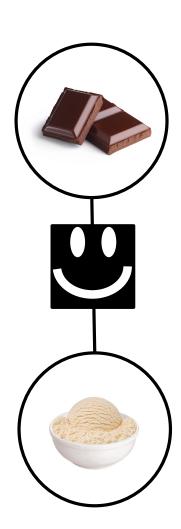


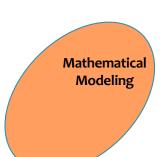
Factor Graph

(bipartite graph)

- variables (circles)
- factors (squares)

Factors have local opinions about the assignments of their neighboring variables



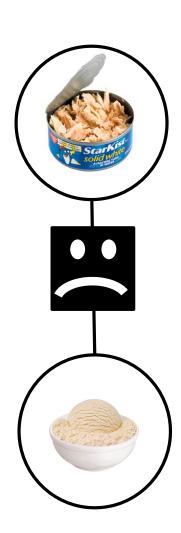


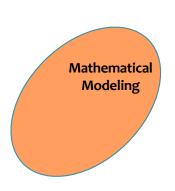
Factor Graph

(bipartite graph)

- variables (circles)
- factors (squares)

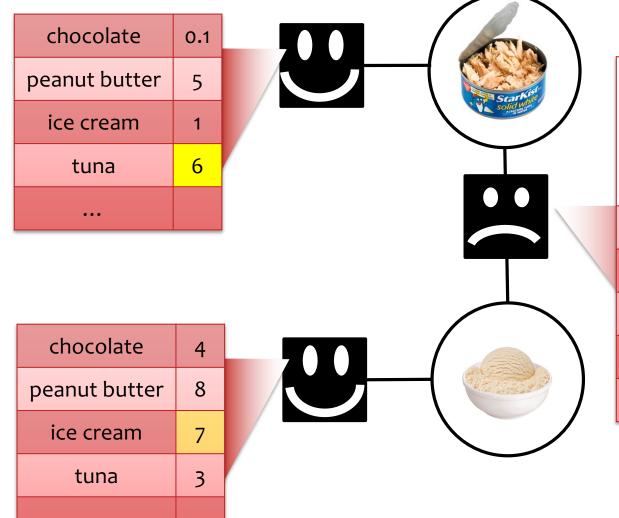
Factors have local opinions about the assignments of their neighboring variables



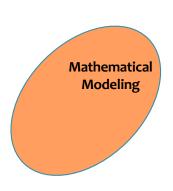


P(tuna, ice cream) = ?

Those opinions are
expressed through
potential tables

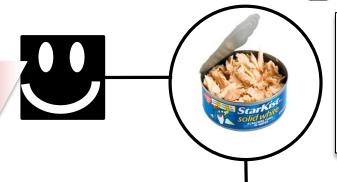


	chocolate	peanut butter	Ice cream	tuna	:
chocolate	2	9	7	0.1	
peanut butter	4	2	3	0.2	
ice cream	7	3	2	0.1	
tuna	0.1	0.2	0.1	2	
•••					



 $P(\text{tuna, ice cream}) = \frac{1}{Z} (6 * 7 * 0.1)$

chocolate	0.1
peanut butter	5
ice cream	1
tuna	6
•••	



Uh-oh! The probabilities of
the various assignments sum
<i>up to</i> $Z > 1$.

So divide them all by Z.

700	

	chc	pean	Ice		
chocolate	2	9	7	0.1	
peanut butter	4	2	3	0.2	
ice cream	7	3	2	0.1	
tuna	0.1	0.2	0.1	2	
•••					

chocolate	4
peanut butter	8
ice cream	7
tuna	3
•••	

The combined potential tables of all factors defines the probability of an assignment

Bayesian Networks

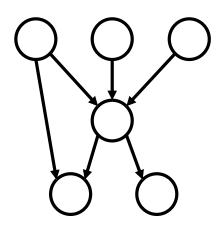
DIRECTED GRAPHICAL MODELS

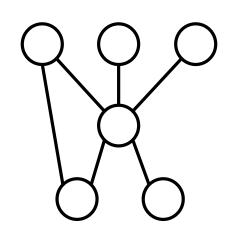
Three Types of Graphical Models

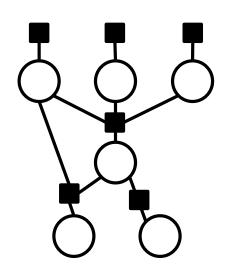
Directed Graphical Model

Undirected Graphical Model

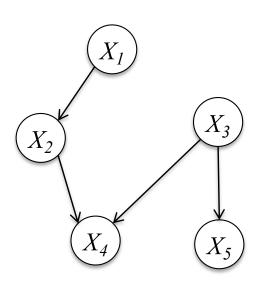
Factor Graph







Bayesian Network



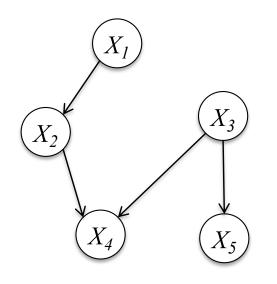
$$p(X_1, X_2, X_3, X_4, X_5) =$$

$$p(X_5|X_3)p(X_4|X_2, X_3)$$

$$p(X_3)p(X_2|X_1)p(X_1)$$

Bayesian Network

Definition:



$$P(X_1...X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$$

- A Bayesian Network is a directed graphical model
- It consists of a directed acyclic graph (DAG) G and the conditional probabilities P
- These two parts full specify the distribution:
 - Qualitative Specification: G
 - Quantitative Specification: P

Bayesian Networks & DAGs

Suppose we have an arbitrary directed graph G over T variables X_i and define the following product:

 $P_{\mathsf{fact}}(\mathbf{X}) = \prod_{i=1} P(X_i | \mathsf{parents}(X_i))$

- **Proposition**: The function $P_{fact}(X)$ is a valid joint distribution when G is a DAG
- **Proof**: Let X_s be a leaf node. By our factorization we have that, $P_{\text{fact}}(\mathbf{X}) = P(X_s | \text{parents}(X_s)) P_{\text{fact}}(\text{parents}(X_s))$ By induction, if $P_{\text{fact}}(\text{parents}(\mathbf{X}_s))$ is a valid joint distribution then $P_{\text{fact}}(\mathbf{X})$ is a valid joint distrubution.

Qualitative Specification

 Where does the qualitative specification come from?

- Prior knowledge of causal relationships
- Prior knowledge of modular relationships
- Assessment from experts
- Learning from data (i.e. structure learning)
- We simply prefer a certain architecture (e.g. a layered graph)

— ...

Quantitative Specification

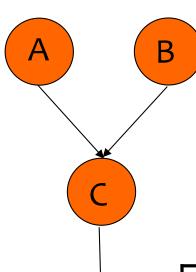
Example: Conditional probability tables (CPTs)

for discrete random variables

a^0	0.75
a ¹	0.25

b ⁰	0.33
b ¹	0.67

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)



	a ⁰ b ⁰	a ⁰ b ¹	a ¹ b ⁰	a¹b¹
\mathbf{c}_0	0.45	1	0.9	0.7
C ¹	0.55	0	0.1	0.3

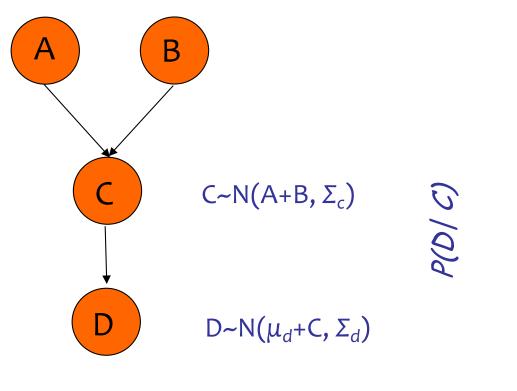
	C ₀	c ¹
d^0	0.3	0.5
d¹	07	0.5

Quantitative Specification

Example: Conditional probability density functions (CPDs) for continuous random variables

$$A \sim N(\mu_a, \Sigma_a)$$
 $B \sim N(\mu_b, \Sigma_b)$

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)



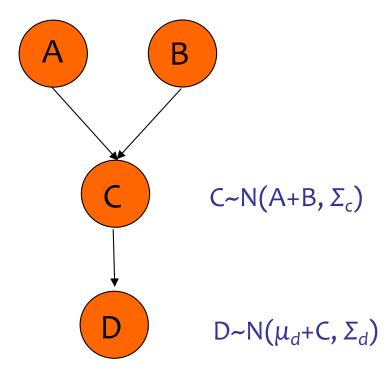
Quantitative Specification

Example: Combination of CPTs and CPDs for a mix of discrete and continuous variables

a ⁰	0.75
a ¹	0.25

b ⁰	0.33
b ¹	0.67

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)



Compactness of a BayesNet

Consider random variables $X_1, X_2, ..., X_T$ where $X_i \in \mathcal{X}$, where $|\mathcal{X}| = R$

To represent an arbitrary distribution
 P(X) via a single joint probability table
 requires R^T – 1 values

Exponential in T

• If the distribution factors according to a graph G and $\max_{X_i} |\mathsf{parents}(X_i)| \leq D$

then each $P(X_i | parents(X_i))$ needs only $R^D(R - 1)$ values for a total of only $T(R^D(R - 1))$ values

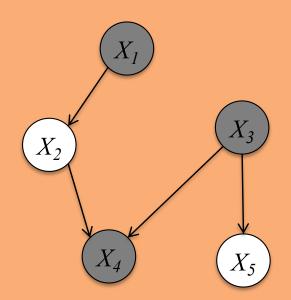
Polynomial in T

Observed Variables

 In a graphical model, shaded nodes are "observed", i.e. their values are given

Example:

$$P(X_2, X_5 \mid X_1 = 0, X_3 = 1, X_4 = 1)$$



Familiar Models as BayesNets

Question: Describe in words the directed graphical model that you would draw to represent an RNN-LM.

Answer:

Question: Describe in words the directed graphical model that you would draw to represent a seq2seq model.

Answer:

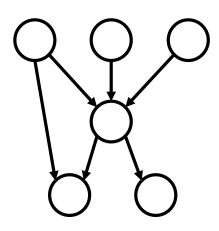
UNDIRECTED GRAPHICAL MODELS

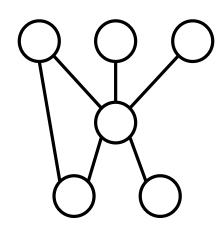
Three Types of Graphical Models

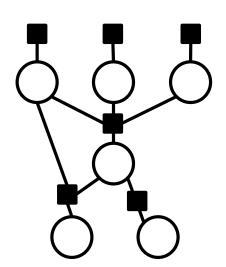
Directed Graphical Model

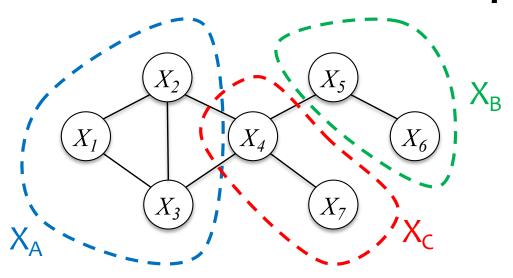
Undirected Graphical Model

Factor Graph





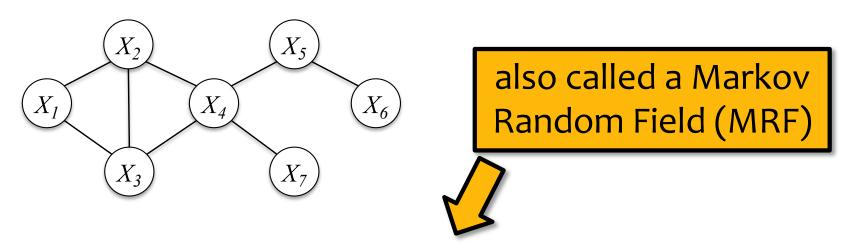




Notation: Let X_S denote all the variables with indices in the set $S \subset \mathbb{Z}^+$

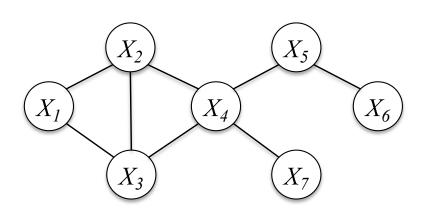
Undirected Graph Terminology

- <u>Definition</u>: a clique is a set of fully connected nodes
 (e.g. {X₁, X₂} or {X₁, X₂, X₃})
- <u>Definition</u>: a maximal clique is a clique to which adding any node makes it no longer a clique
 (e.g. {X₁, X₂, X₃} but not {X₁, X₂})
- Definition: a set of nodes
 X_C separates sets X_A and X_B
 if removing X_C leaves no
 path from a node in X_A to
 one in X_B.
 (e.g. {X₄, X₇} separates {X₁,
 X₂, X₃} and {X₅, X₆})



<u>Def</u>: an undirected graphical model (UGM) consists of a graph G (qualitative specification) and potential functions ψ (quantitative specification)

- The graph G is an undirected graph over random variables $X_1, ..., X_T$ and cycles are permitted
- The potential functions ψ , also called "factors", are used to define the joint probability



- we have one potential function (aka. factor) per clique
- 2. potential functions must be non-negative $\psi_C(x_C) \geq 0, \ \forall C, x_C$
- Z is the partition function→ globally normalized

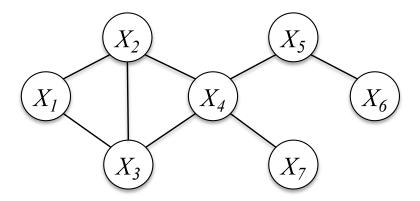
model

$$Z = \sum_{\mathbf{x} \in \mathcal{X}} \prod_{C \in \mathcal{C}} \psi_C(X_c)$$
$$= \sum_{\mathbf{x} \in \mathcal{X}} s(\mathbf{x})$$

<u>Def</u>: Joint probability of a UGM

$$p(x_1,\ldots,x_T) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C)$$

where C is the set of all cliques and $C \in C$ is an index set $\Rightarrow C \subseteq \{1, \dots, T\}$



<u>Def</u>: A distribution is said to **factor according to the graph** G if it can be written as

$$p(x_1, \dots, x_T) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C)$$

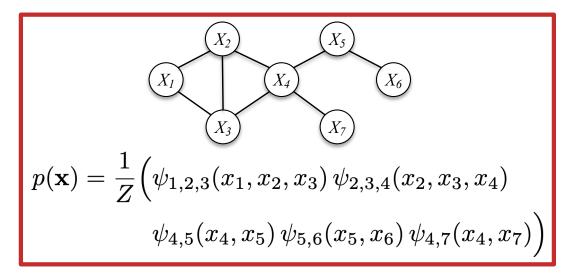
where C is the set of all cliques and $C \in C$ is an index set $\Rightarrow C \subseteq \{1, \dots, T\}$

Ex: Joint probability of UGM

$$p(\mathbf{x}) = \frac{1}{Z} \left(\psi_{1,2,3}(x_1, x_2, x_3) \, \psi_{2,3,4}(x_2, x_3, x_4) \right)$$

$$\psi_{4,5}(x_4, x_5) \, \psi_{5,6}(x_5, x_6) \, \psi_{4,7}(x_4, x_7) \right)$$

Potential Functions for UGM



How should we **interpret** the potential functions in a UGM?

• Idea #1: Maybe as marginals of the distribution? In general, no.

$$p(\mathbf{x}) \neq \frac{1}{Z} (p(x_1, x_2, x_3) p(x_2, x_3, x_4)$$
$$p(x_4, x_5) p(x_5, x_6) p(x_4, x_7))$$

Idea #2: Maybe as conditionals of the distribution? In general, no.

$$p(\mathbf{x}) \neq \frac{1}{Z} (p(x_1|x_2, x_3)p(x_2, x_3|x_4))$$
$$p(x_4|x_5)p(x_5|x_6)p(x_7|x_4))$$

Potential Functions for UGM

Whiteboard

Simple example of potential functions as tables

Whiteboard

- Alternate definition using maximal cliques
- Pairwise Markov Random Field (MRF)

Compactness of a UGM

Consider random variables $X_1, X_2, ..., X_T$ where $X_i \in \mathcal{X}$, where $|\mathcal{X}| = R$

To represent an arbitrary distribution
 P(X) via a single joint probability table
 requires R^T – 1 values

Exponential in T

• If the distribution factors according to a graph G and $\max_{C \in \mathcal{C}} |C| \leq D$

then each $\psi_c(X_c)$ needs only R^D values for a total of only $O(T(R^D))$ values

Polynomial in T

CONDITIONAL INDEPENDENCIES OF DGMS

What Independencies does a Bayes Net Model?

 In order for a Bayesian network to model a probability distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants in the graph given the value of all its parents.

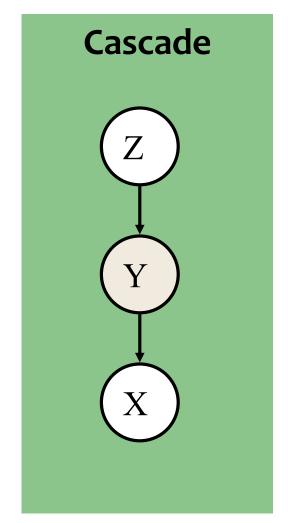
This follows from

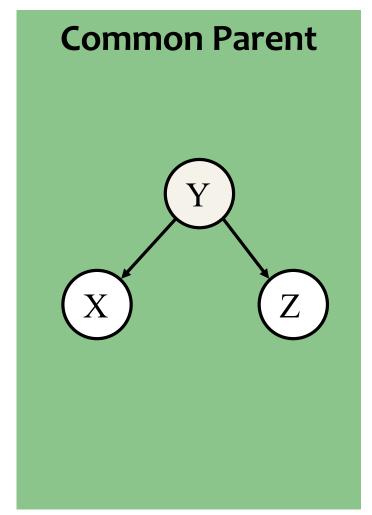
$$P(X_1...X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$$
$$= \prod_{i=1}^n P(X_i \mid X_1...X_{i-1})$$

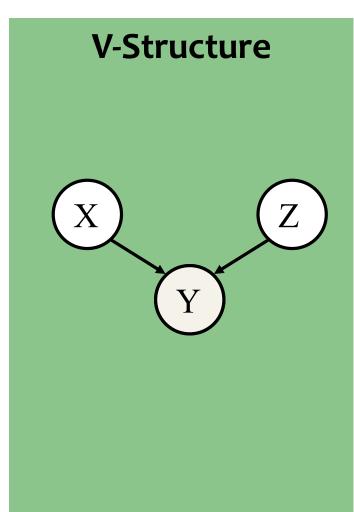
But what else does it imply?

What Independencies does a Bayes Net Model?

Three cases of interest...

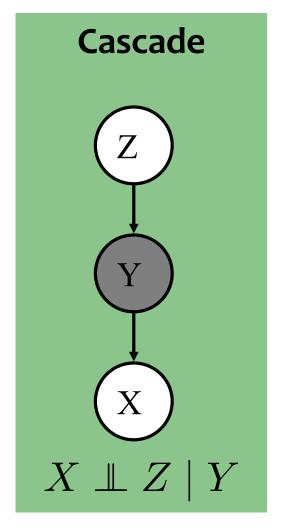


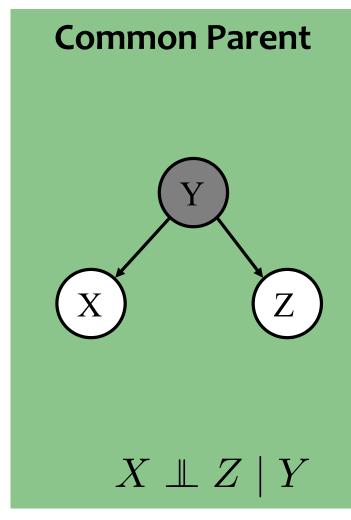


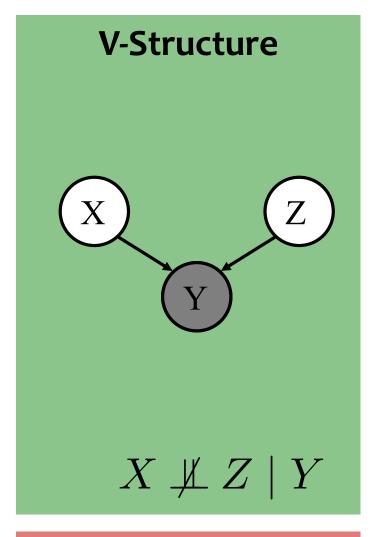


What Independencies does a Bayes Net Model?

Three cases of interest...





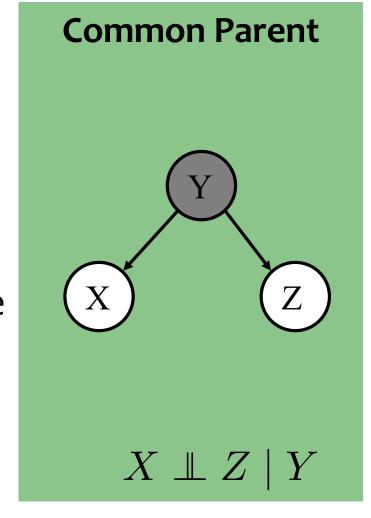


Knowing Y **decouples** X and Z

Knowing Y couples X and Z

Whiteboard

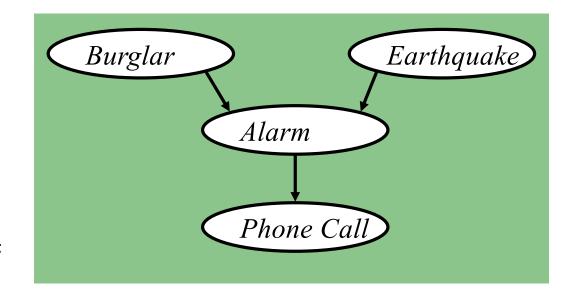
Proof of conditional independence



(The other two cases can be shown just as easily.)

The "Burglar Alarm" example

- Your house has a twitchy burglar alarm that is also sometimes triggered by earthquakes.
- Earth arguably doesn't care whether your house is currently being burgled
- While you are on vacation, one of your neighbors calls and tells you your home's burglar alarm is ringing. Uh oh!

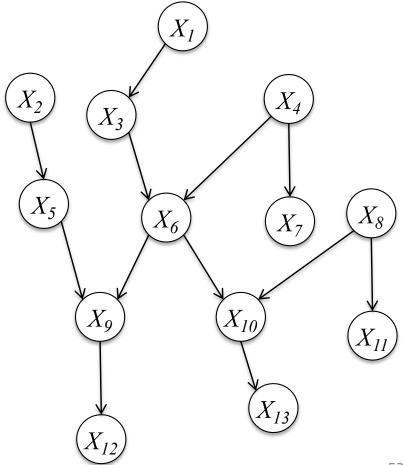


Quiz: True or False?

 $Burglar \perp\!\!\!\perp Earthquake \mid Phone Call$

Def: the **co-parents** of a node are the parents of its children

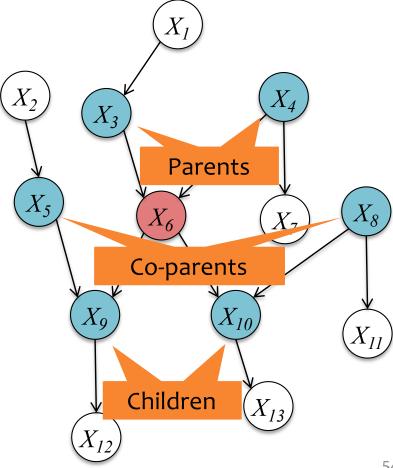
Def: the **Markov Blanket** of a node in a directed graphical model is the set containing the node's parents, children, and co-parents.



Def: the **co-parents** of a node are the parents of its children

Def: the **Markov Blanket** of a node in a directed graphical model is the set containing the node's parents, children, and co-parents.

Example: The Markov Blanket of X_6 is $\{X_3, X_4, X_5, X_8, X_9, X_{10}\}$



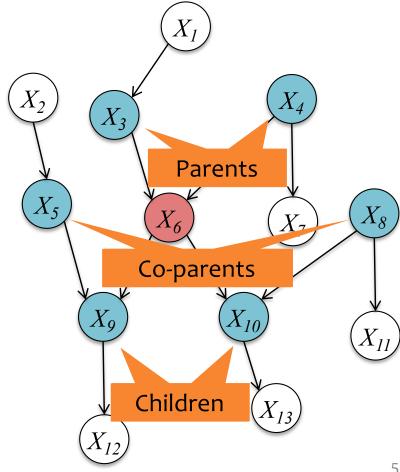
54

Def: the **co-parents** of a node are the parents of its children

Def: the **Markov Blanket** of a node in a directed graphical model is the set containing the node's parents, children, and co-parents.

Theorem: a node is **conditionally independent** of every other node in the graph given its **Markov blanket**

Example: The Markov Blanket of X_6 is $\{X_3, X_4, X_5, X_8, X_9, X_{10}\}$



D-Separation

If variables X and Z are d-separated given a set of variables E Then X and Z are conditionally independent given the set E

Definition #1:

Variables X and Z are **d-separated** given a **set** of evidence variables E iff every path from X to Z is "blocked".

A path is "blocked" whenever:

∃Y on path s.t. Y ∈ E and Y is a "common parent"

2. $\exists Y \text{ on path s.t. } Y \in E \text{ and } Y \text{ is in a "cascade"}$

3. ∃Y on path s.t. {Y, descendants(Y)} ∉ E and Y is in a "v-structure"

D-Separation

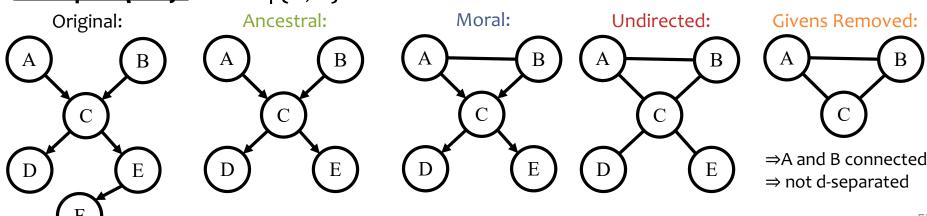
If variables X and Z are d-separated given a set of variables E Then X and Z are conditionally independent given the set E

Definition #2:

Variables X and Z are **d-separated** given a **set** of evidence variables E iff there does **not** exist a path in the **undirected ancestral moral** graph **with** E **removed**.

- **1. Ancestral graph:** keep only X, Z, E and their ancestors
- 2. Moral graph: add undirected edge between all pairs of each node's parents
- 3. Undirected graph: convert all directed edges to undirected
- 4. Givens Removed: delete any nodes in E

Example Query: A \perp B | {D, E}



CONDITIONAL INDEPENDENCIES OF UGMS

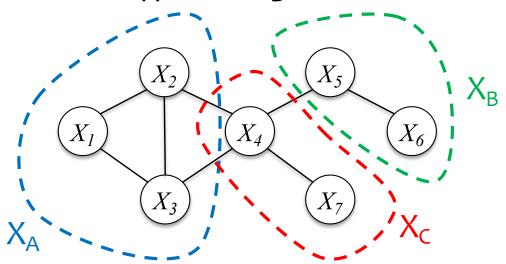
Undirected Graphical Models

Conditional Independence Semantics

Consider a distribution over r.v.s $X_1, ..., X_T$

For a UGM and any disjoint index sets A, B, C, (i.e., $A \subseteq \{1, ..., T\}$, $B \subseteq \{1, ..., T\}$, $C \subseteq \{1, ..., T\}$)

 X_A is **conditionally independent** of X_B given X_C iff X_C separates sets X_A and X_B

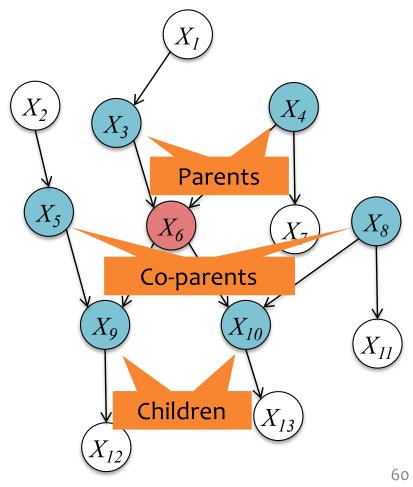


Def: the **co-parents** of a node are the parents of its children

Def: the **Markov Blanket** of a node in a **directed** graphical model is the set containing the node's parents, children, and co-parents.

Theorem: a node is **conditionally independent** of every other node in the graph given its **Markov blanket**

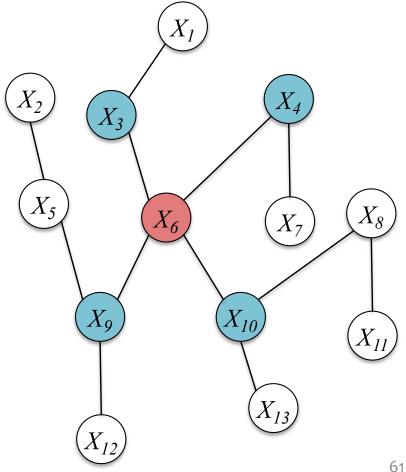
Example: The Markov Blanket of X_6 is $\{X_3, X_4, X_5, X_8, X_9, X_{10}\}$



Def: the **Markov Blanket** of a node in an undirected graphical model is the set containing the node's neighbors.

Theorem: a node is conditionally independent of every other node in the graph given its Markov blanket

Example: The Markov Blanket of X_6 is $\{X_3, X_4, X_9, X_{10}\}$



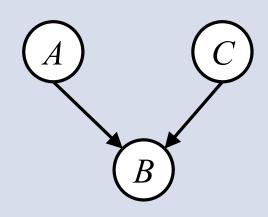
Undirected Graphical Models

Whiteboard

Proof of independence by separation (simple case)

Non-equivalence of Directed / Undirected Graphical Models

There does **not** exist an **undirected** graphical model that can capture the conditional independence assumptions of this **directed** graphical model:



There does **not** exist a **directed** graphical model that can capture the conditional independence assumptions of this **undirected** graphical model:

Representation of both directed and undirected graphical models

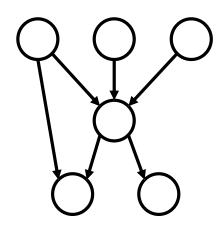
FACTOR GRAPHS

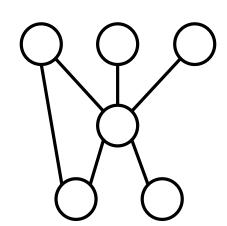
Three Types of Graphical Models

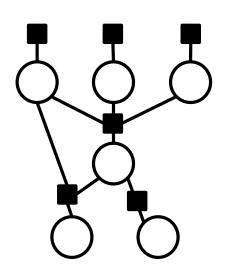
Directed Graphical Model

Undirected Graphical Model

Factor Graph

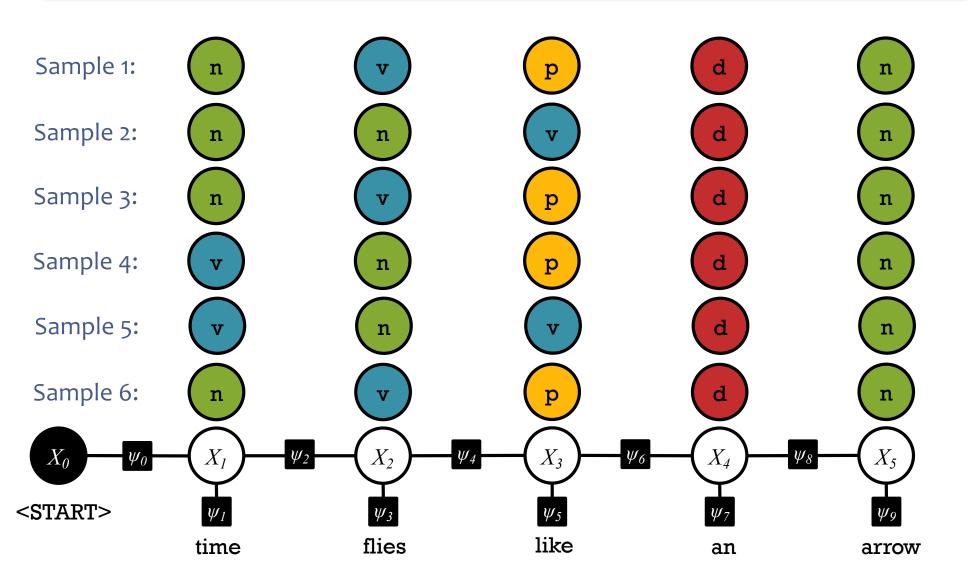






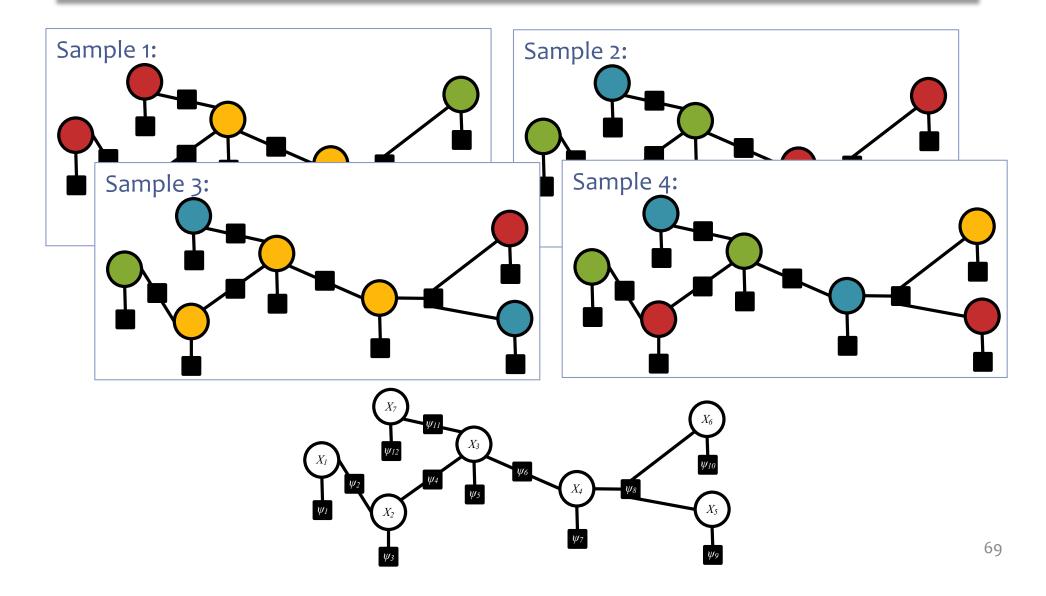
Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.



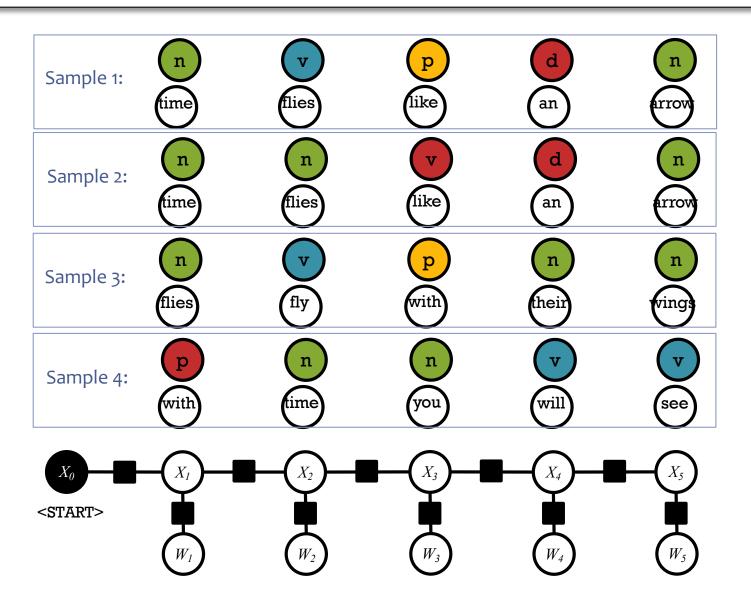
Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.



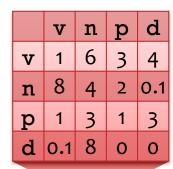
Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.



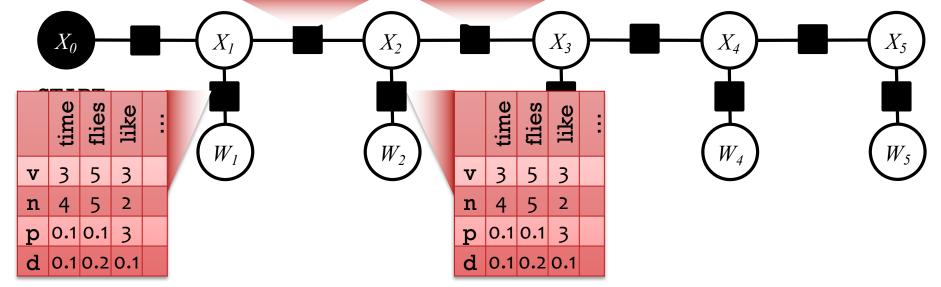
Factors have local opinions (≥ 0)

Each black box looks at *some* of the tags X_i and words W_i



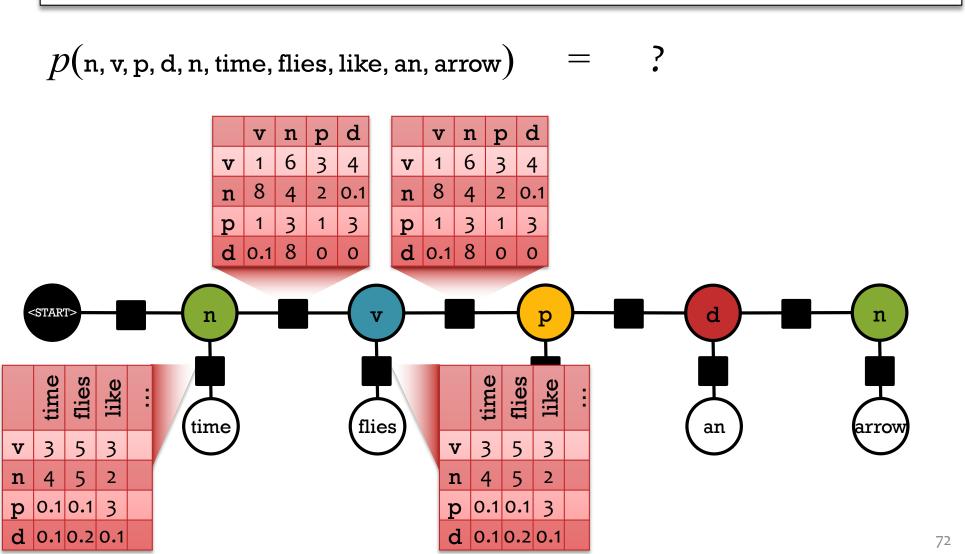
	v	n	p	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

Note: We chose to reuse the same factors at different positions in the sentence.



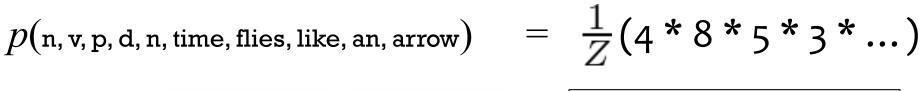
Factors have local opinions (≥ 0)

Each black box looks at *some* of the tags X_i and words W_i



Global probability = product of local opinions

Each black box looks at *some* of the tags X_i and words W_i

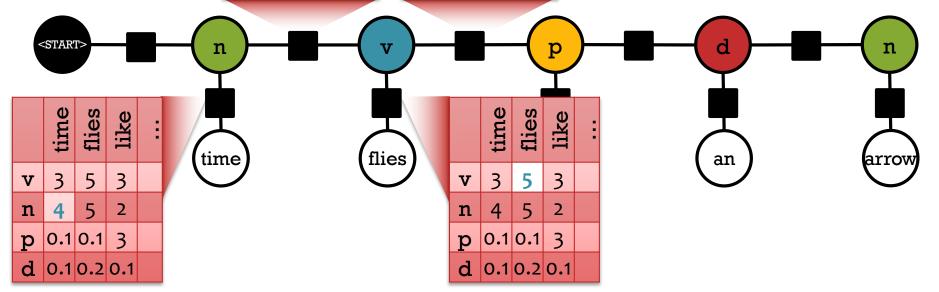


	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

Uh-oh! The probabilities of the various assignments sum up to Z > 1.

So divide them all by Z.



Markov Random Field (MRF)

Joint distribution over tags X_i and words W_i The individual factors aren't necessarily probabilities.

0.1 0.1 3

0.1 0.2 0.1

74

0.1 0.1 3

0.1 0.2 0.1

Bayesian Networks

But sometimes we *choose* to make them probabilities. Constrain each row of a factor to sum to one. Now Z = 1.

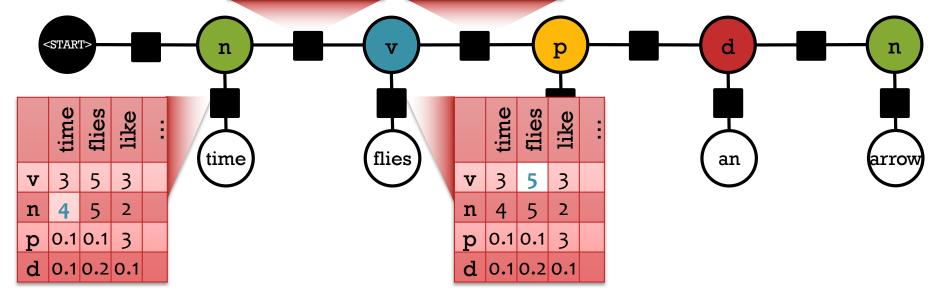
Markov Random Field (MRF)

Joint distribution over tags X_i and words W_i

$$p(n, v, p, d, n, time, flies, like, an, arrow) = \frac{1}{Z}(4*8*5*3*...)$$

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0



76

Conditional Random Field (CRF)

Conditional distribution over tags X_i given words w_i . The factors and Z are now specific to the sentence w.

$$p(n, v, p, d, n \mid time, flies, like, an, arrow) = \frac{1}{Z} (4 * 8 * 5 * 3 * ...)$$

$$v \mid p \mid d$$

$$v \mid 1 \mid 6 \mid 3 \mid 4$$

$$n \mid 8 \mid 4 \mid 2 \mid 0.1$$

$$p \mid 1 \mid 3 \mid 1 \mid 3$$

$$d \mid 0.1 \mid 8 \mid 0 \mid 0$$

$$v \mid 5$$

$$n \mid 5$$

$$p \mid 0.1$$

$$d \mid 0.1$$

like

an

arrow

time

flies

How General Are Factor Graphs?

- Factor graphs can be used to describe
 - Markov Random Fields (undirected graphical models)
 - i.e., log-linear models over a tuple of variables
 - Conditional Random Fields
 - Bayesian Networks (directed graphical models)
- Inference treats all of these interchangeably.
 - Convert your model to a factor graph first.
 - Pearl (1988) gave key strategies for exact inference:
 - Belief propagation, for inference on acyclic graphs
 - Junction tree algorithm, for making any graph acyclic (by merging variables and factors: blows up the runtime)

Factor Graph Notation

$$\mathcal{X} = \{X_1, \dots, X_i, \dots, X_n\}$$

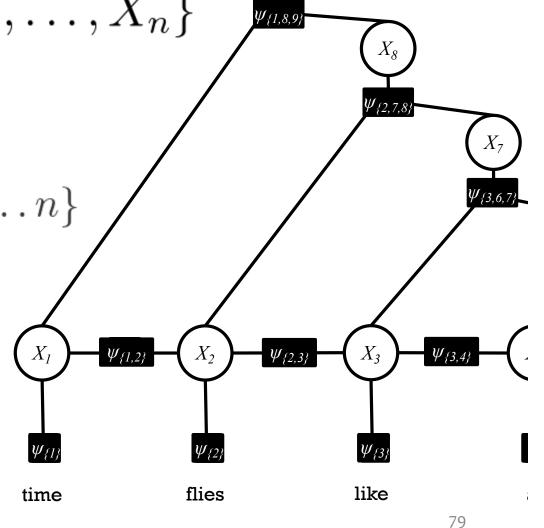
Factors:

$$\psi_{\alpha}, \psi_{\beta}, \psi_{\gamma}, \dots$$

where $\alpha, \beta, \gamma, \ldots \subseteq \{1, \ldots n\}$

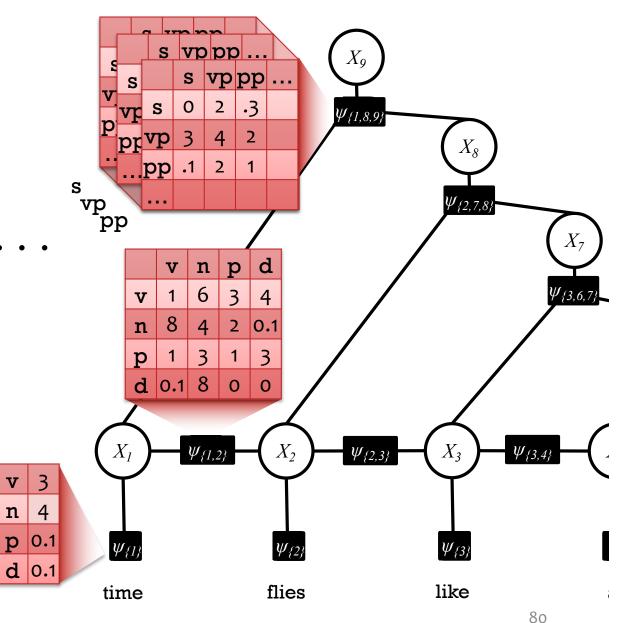
Joint Distribution

$$p(\boldsymbol{x}) = \frac{1}{Z} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{x}_{\alpha})$$



Factors are Tensors

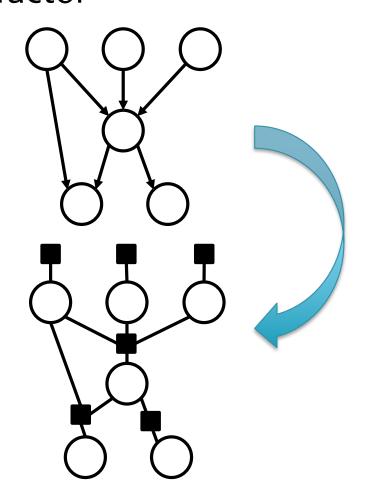
 $\psi_{\alpha}, \psi_{\beta}, \psi_{\gamma}, \dots$

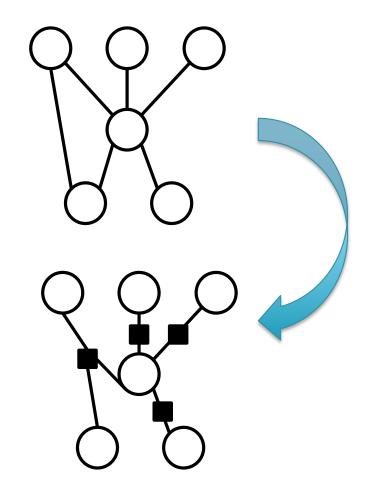


Converting to Factor Graphs

Each conditional and marginal distribution in a directed GM becomes a factor

Each maximal clique in an undirected GM becomes a factor





Equivalence of directed and undirected trees

- Any undirected tree can be converted to a directed tree by choosing a root node and directing all edges away from it
- A directed tree and the corresponding undirected tree make the same conditional independence assertions
- Parameterizations are essentially the same.
 - Undirected tree:
 - Directed tree:
 - Equivalence:

$$p(x) = \frac{1}{Z} \left(\prod_{i \in V} \psi(x_i) \prod_{(i,j) \in E} \psi(x_i, x_j) \right)$$

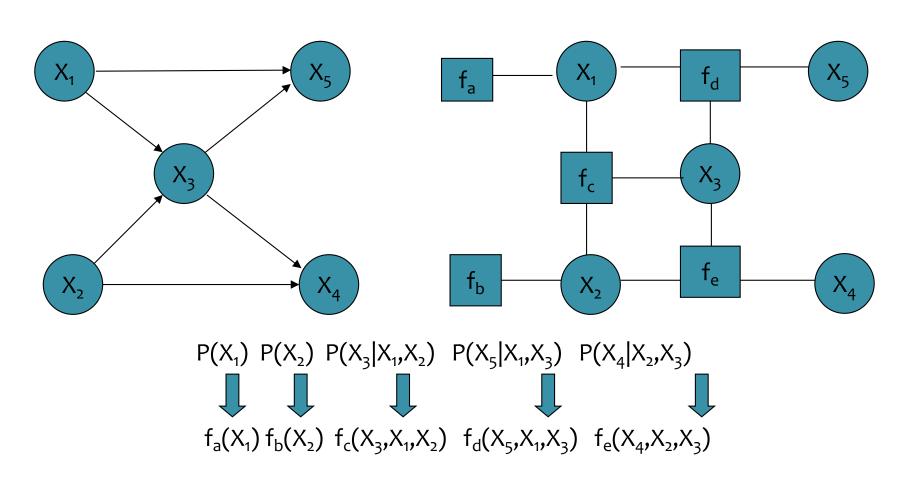
$$p(x) = p(x_r) \prod_{(i,j) \in E} p(x_j | x_i)$$

$$\psi(x_r) = p(x_r); \quad \psi(x_i, x_j) = p(x_j | x_i);$$

$$Z = 1, \quad \psi(x_i) = 1$$

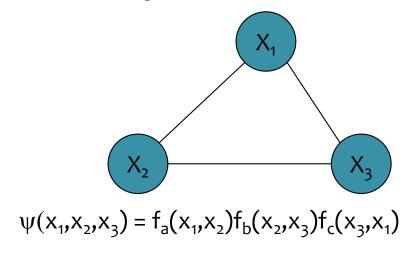
Factor Graph Examples

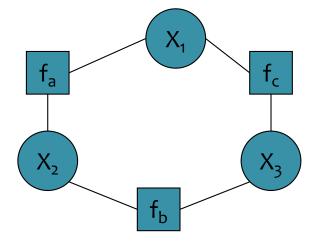
Example 1



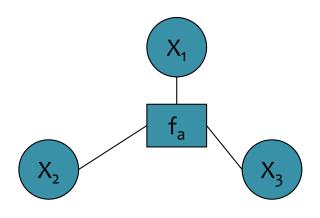
Factor Graph Examples

Example 2



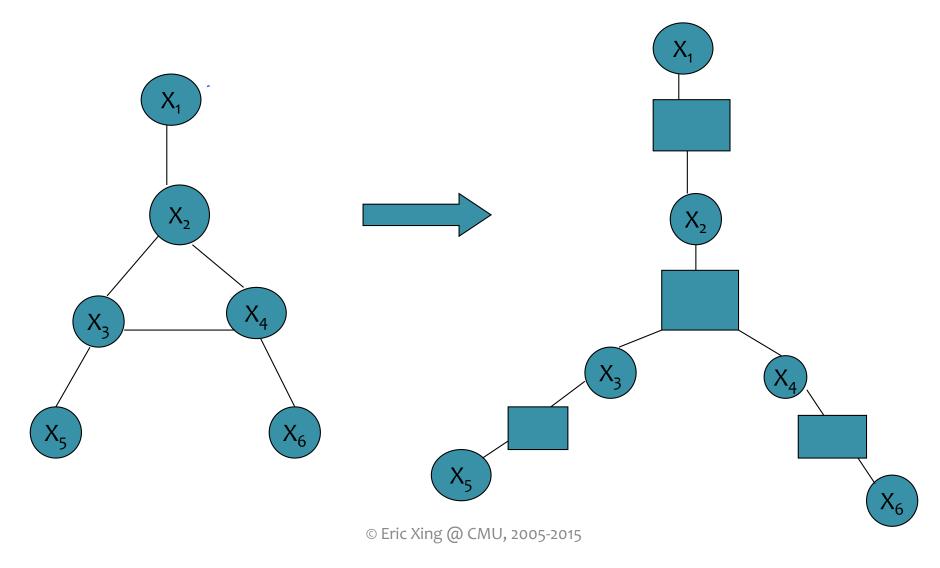


• Example 3 x_1 x_2 x_3 $\psi(x_1,x_2,x_3) = f_a(x_1,x_2,x_3)$



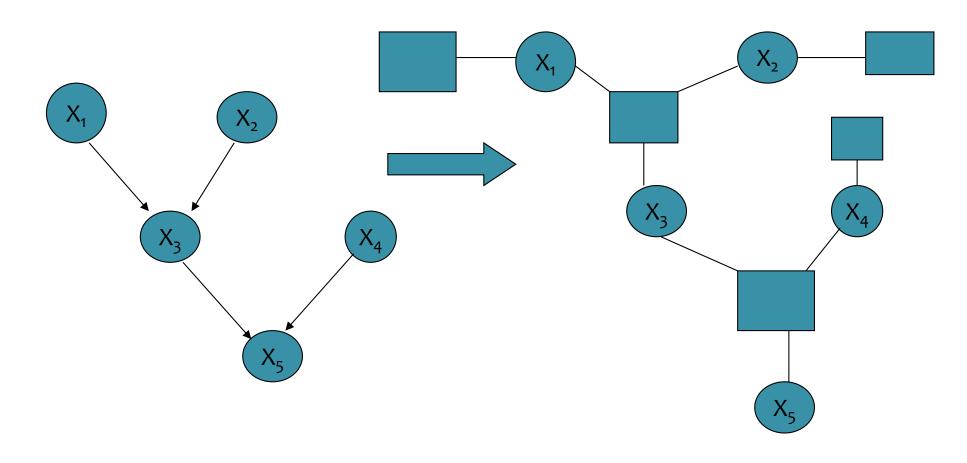
Tree-like Undirected GMs to Factor Trees

Example 4

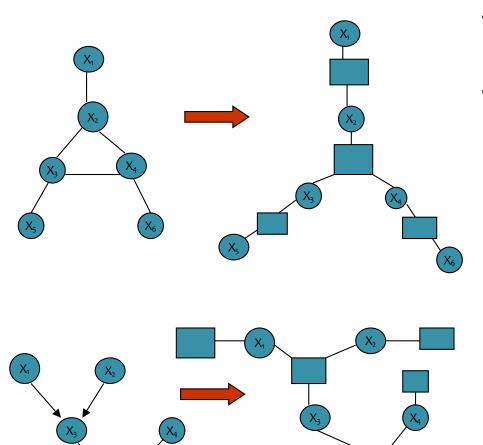


Poly-trees to Factor trees

• Example 5



Why factor graphs?



- Because FG turns tree-like graphs to factor trees,
- Trees are a data-structure that guarantees correctness of BP!

MRF VS. CRF

MRF vs. CRF

Markov Random Field (MRF):

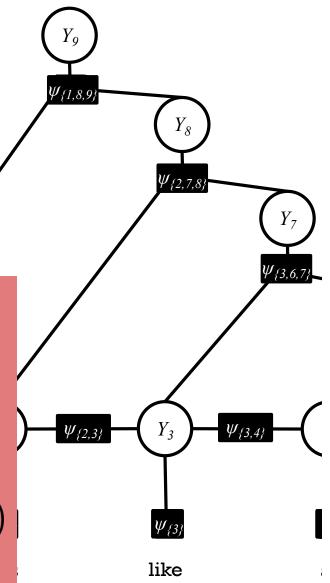
- just a distribution over variables y
- partition function Z is just a function of the parameters

$$p_{\boldsymbol{\theta}}(\mathbf{y}) = \frac{1}{Z(\theta)} \prod_{\alpha} \psi_{\alpha}(\mathbf{y}_{\alpha}; \theta)$$

Conditional Random Field (CRF):

- conditions on some additional observed variables x
- partition function Z is a function of x as well

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x}; \theta)} \prod_{\alpha} \psi_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}; \theta)$$



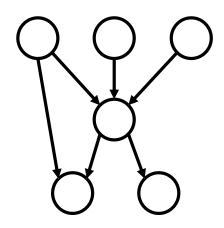
TYPES OF GRAPHICAL MODELS

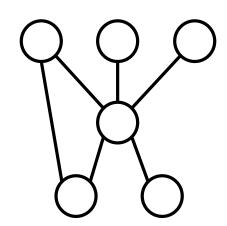
Three Types of Graphical Models

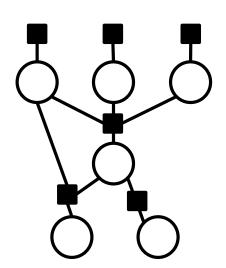
Directed Graphical Model

Undirected Graphical Model

Factor Graph







Key Concepts for Graphical Models

Graphical Models in General

- A graphical model defines a family of probability distributions
- That family shares in common a set of conditional independence assumptions
- 3. By choosing a parameterization of the graphical model, we obtain a single model from the family
- 4. The model may be either locally or globally normalized

Ex: Directed G.M.

- 1. Family: directed graphs with locally normalized conditional probabilities
- **2. Conditional Independencies:** d-separation, Markov blanket
- 3. Example parameterization: conditional probability tables (CPTs) for discrete var.s, conditional probability densities for continuous var.s
- **4. Normalization:** locally normalized, partition function is always 1.0

Key Concepts for Graphical Models

Graphical Models in General

- A graphical model defines a family of probability distributions
- That family shares in common a set of conditional independence assumptions
- 3. By choosing a parameterization of the graphical model, we obtain a single model from the family
- 4. The model may be either locally or globally normalized

Ex: Undirected G.M.

- **1. Family:** undirected graphs with unormalized potentials
- 2. Conditional Independencies: independence by separation, Markov blanket
- 3. Example parameterization:
 Markov random field (MRF),
 conditional random field
 (CRF), neural potentials
- 4. Normalization: globally normalized

Key Concepts for Graphical Models

Graphical Models in General

- A graphical model defines a family of probability distributions
- That family shares in common a set of conditional independence assumptions
- 3. By choosing a parameterization of the graphical model, we obtain a single model from the family
- 4. The model may be either locally or globally normalized

Ex: Factor Graph

- Family: bipartite graph over variables and factors
- 2. Conditional Independencies: independence by separation, inferable from underlying DGM or UGM
- 3. Example parameterization: any DGM parameterization, any UGM parameterization
- 4. Normalization: locally normalized if based on DGM, globally normalized if based on UGM