

10-418/10-618 Machine Learning for Structured Data

Machine Learning Department School of Computer Science Carnegie Mellon University

Variational EM + Hidden State CRFs

Matt Gormley Lecture 19 Nov. 9, 2022

Reminders

- Homework 5: Variational Inference
 - Out: Fri, Nov 4
 - Due: Wed, Nov 16 at 11:59pm

EXPECTATION MAXIMIZATION

Hard Expectation-Maximization

- Initialize parameters randomly
- while not converged
 - 1. E-Step:

Set the latent variables to the the values that maximizes likelihood, treating parameters as observed

Estimate unobserved variables

2. M-Step:

Set the **parameters** to the values that maximizes likelihood, treating

latent variables as observed

MLE given the estimated values of unobserved variables

(Soft) Expectation-Maximization

- Initialize parameters randomly
- while not converged
 - 1. E-Step:

Create one training example for each possible value of the latent variables

Weight each example according to model's confidence

Treat parameters as observed

2. M-Step:

Set the **parameters** to the values that maximizes likelihood

Treat pseudo-counts from above as observed

Estimate unobserved variables

MLE given the estimated values of unobserved variables

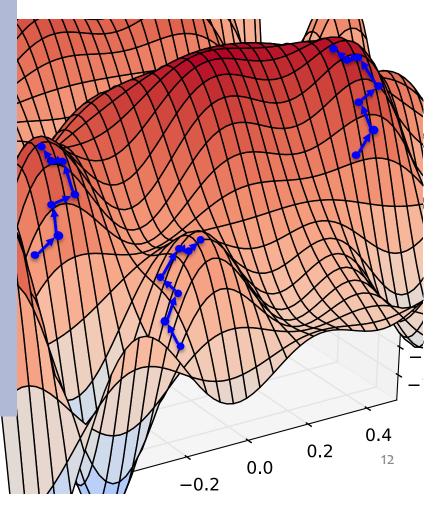
Hard EM vs. Soft EM

Algorithm 1 Hard EM for GMMs	Algorithm 1 Soft EM for GMMs			
1: procedure HARDEM($\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$) 2: Randomly initialize parameters, $\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}$ 3: while not converged do 4: E-Step: $z^{(i)} \leftarrow \operatorname{argmax} \log p(\mathbf{x}^{(i)} z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) + \log p(z; \boldsymbol{\phi})$	1: procedure SOFTEM $(\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N)$ 2: Randomly initialize parameters, $\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}$ 3: while not converged do 4: E-Step: $c_h^{(i)} \leftarrow p(z^{(i)} = k \mathbf{x}^{(i)}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$			
5: M-Step:	5: M-Step:			
$\phi_k \leftarrow \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(z^{(i)} = k), \forall k$ $\boldsymbol{\mu}_k \leftarrow \frac{\sum_{i=1}^{N} \mathbb{I}(z^{(i)} = k) \mathbf{x}^{(i)}}{\sum_{i=1}^{N} \mathbb{I}(z^{(i)} = k)}, \forall k$	$\phi_k \leftarrow \frac{1}{N} \sum_{i=1}^{N} c_k^{(i)}, \forall k$ $\boldsymbol{\mu}_k \leftarrow \frac{\sum_{i=1}^{N} c_k^{(i)} \mathbf{x}^{(i)}}{\sum_{i=1}^{N} c_k^{(i)}}, \forall k$			
$\boldsymbol{\Sigma}_{k} \leftarrow \frac{\sum_{i=1}^{N} \mathbb{I}(z^{(i)} = k) (\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k}) (\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k})^{T}}{\sum_{i=1}^{N} \mathbb{I}(z^{(i)} = k)}, \forall k$	$oldsymbol{\Sigma}_k \leftarrow rac{\sum_{i=1}^N c_k^{(i)} (\mathbf{x}^{(i)} - oldsymbol{\mu}_k) (\mathbf{x}^{(i)} - oldsymbol{\mu}_k)^T}{\sum_{i=1}^N c_k^{(i)}}, oldsymbol{orall} k$			
6: return $(oldsymbol{\phi},oldsymbol{\mu},oldsymbol{\Sigma})$	6: return $(oldsymbol{\phi},oldsymbol{\mu},oldsymbol{\Sigma})$			

PROPERTIES OF EM

Properties of (Variational) EM

- EM is trying to optimize a nonconvex function
- But EM is a local optimization algorithm
- Typical solution: Random Restarts
 - Just like K-Means, we run the algorithm many times
 - Each time initialize parameters randomly
 - Pick the parameters that give highest likelihood



Variants of EM

- Generalized EM: Replace the M-Step by a single gradient-step that improves the likelihood
- Monte Carlo EM: Approximate the E-Step by sampling
- Sparse EM: Keep an "active list" of points (updated occasionally) from which we estimate the expected counts in the E-Step
- Incremental EM / Stepwise EM: If standard EM is described as a batch algorithm, these are the online equivalent
- etc.

A Report Card for EM

- Some good things about EM:
 - no learning rate (step-size) parameter
 - automatically enforces parameter constraints
 - very fast for low dimensions
 - each iteration guaranteed to improve likelihood
- Some bad things about EM:
 - can get stuck in local minima
 - can be slower than conjugate gradient (especially near convergence)
 - requires expensive inference step
 - is a maximum likelihood/MAP method

VARIATIONAL EM

Variational EM

Whiteboard

- Example: Unsupervised POS Tagging
- Variational Bayes
- Variational EM

UNDERSTANDING THE VARIATIONAL FRAMEWORK

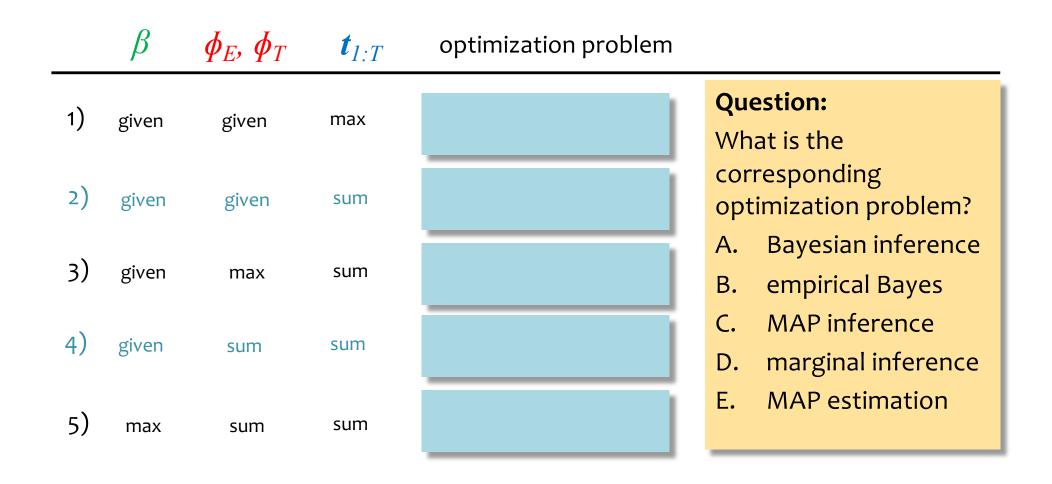
Bayesian Unsupervised POS Tagging

- Given: sentences only (concatenated together into one long string)
- Goal: infer the POS tags for unlabeled sentences
- <u>Model</u>: Bayesian HMM

Approx. $q_{\theta}(z)$ z t_{1} t_{2} t_{3} ...

Mean Field

Variational Inference Framework



Variational Inference Framework

	β	ϕ_E , ϕ_T	$t_{1:T}$	optimization problem	name of (approximate) method	
1)	given	given	max	t = argmax _t p(t φ, β) MAP inference / decoding	max-product B.P. (greedy search)	
2)	given	given	sum	$p(w \phi, \beta) = \sum_{t} p(w, t \phi, \beta)$ marginal inference	sum-product B.P. (variational inference)	
3)	given	max	sum	$\phi = \operatorname{argmax}_{\phi} p(w \phi) p(\phi \beta)$ MAP estimation	(variational) MAP-EM	
4)	given	sum	sum	estimate $p(\phi \mid w, \beta) =$ and $p(t \mid w, \beta) =$ Bayesian inference	variational Bayes	
5)	max	sum	sum	β = argmax _β p(β w) empirical Bayes	variational EM	

VARIATIONAL EM RESULTS

Unsupervised POS Tagging

Bayesian Inference for HMMs

- Task: unsupervised POS tagging
- Data: 1 million words (i.e. unlabeled sentences) of WSJ text
- **Dictionary:** defines legal part-of-speech (POS) tags for each word type
- Models:
 - EM: standard HMM
 - VB: uncollapsed variational Bayesian HMM
 - Algo 1 (CVB): collapsed variational Bayesian HMM (strong indep. assumption)
 - Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
 - CGS: collapsed Gibbs Sampler for Bayesian HMM

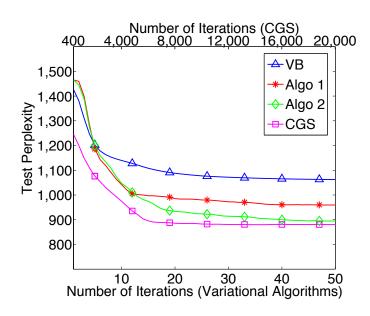
 $\textbf{Algo 1 mean field update:} \quad q(z_t = k) \propto \frac{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{k,w}^{\neg t}] + \beta}{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{k,\cdot}^{\neg t}] + W\beta} \cdot \frac{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{z_{t-1},\cdot}^{\neg t}] + \alpha}{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{z_{t-1},\cdot}^{\neg t}] + K\alpha} \cdot \frac{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{k,z_{t+1}}^{\neg t}] + \alpha + \mathbb{E}_{q(\mathbf{z}^{\neg t})}[\delta(z_{t-1} = k = z_{t+1})]}{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{k,\cdot}^{\neg t}] + K\alpha} \cdot \frac{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{k,z_{t+1}}^{\neg t}] + \alpha + \mathbb{E}_{q(\mathbf{z}^{\neg t})}[\delta(z_{t-1} = k = z_{t+1})]}{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{k,\cdot}^{\neg t}] + K\alpha + \mathbb{E}_{q(\mathbf{z}^{\neg t})}[\delta(z_{t-1} = k = z_{t+1})]}$

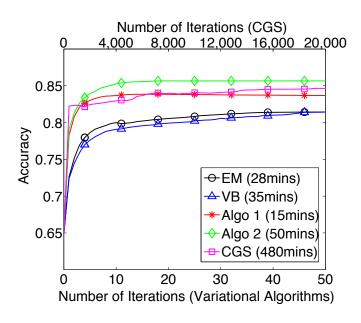
CGS full conditional: $p(z_t = k | \mathbf{x}, \mathbf{z}^{\neg t}, \alpha, \beta) \propto \frac{C_{k,w}^{\neg t} + \beta}{C_{k,\cdot}^{\neg t} + W\beta} \cdot \frac{C_{z_{t-1},k}^{\neg t} + \alpha}{C_{z_{t-1},\cdot}^{\neg t} + K\alpha} \cdot \frac{C_{k,z_{t+1}}^{\neg t} + \alpha + \delta(z_{t-1} = k = z_{t+1})}{C_{k,\cdot}^{\neg t} + K\alpha + \delta(z_{t-1} = k)}$

Unsupervised POS Tagging

Bayesian Inference for HMMs

- Task: unsupervised POS tagging
- Data: 1 million words (i.e. unlabeled sentences) of WSJ text
- Dictionary: defines legal part-of-speech (POS) tags for each word type
- Models:
 - EM: standard HMM
 - VB: uncollapsed variational Bayesian HMM
 - Algo 1 (CVB): collapsed variational Bayesian HMM (strong indep. assumption)
 - Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
 - CGS: collapsed Gibbs Sampler for Bayesian HMM





Unsupervised POS Tagging

Bayesian Inference for HMMs

- Task: unsupervised POS tagging
- Data: 1 million words (i.e. unlabeled sentences) of WSJ text
- Dictionary: defines legal part-of-speech (POS) tags for each word type
- Models:
 - EM: standard HMM
 - VB: uncollapsed variational Bayesian HMM
 - Algo 1 (CVB): collapsed variational Bayesian HMM (strong indep. assumption)
 - Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
 - CGS: collapsed Gibbs Sampler for Bayesian HMM

Speed:

- →EM (28mins)
- → VB (35mins)
- * Algo 1 (15mins)
- → Algo 2 (50mins)
- --- CGS (480mins)

- EM is slow b/c of log-space computations
- VB is slow b/c of digamma computations
- Algo 1 (CVB) is the fastest!
- Algo 2 (CVB) is slow b/c it computes dynamic parameters
- CGS: an order of magnitude slower than any deterministic algorithm

Stochastic Variational Bayesian HMM

- Task: Human Chromatin Segmentation
- Goal: unsupervised segmentation of the genome
- Data: from ENCODE, "250 million observations consisting of twelve assays carried out in the chronic myeloid leukemia cell line K562"
- Metric: "the false discovery rate (FDR) of predicting active promoter elements in the sequence"

Models:

- DBN HMM: dynamic Bayesian HMM trained with standard EM
- SVIHMM: stochastic variational inference for a Bayesian HMM

Main Takeaway:

- the two models perform at similar levels of FDR
- SVIHMM takes one hour
- DBNHMM takes days

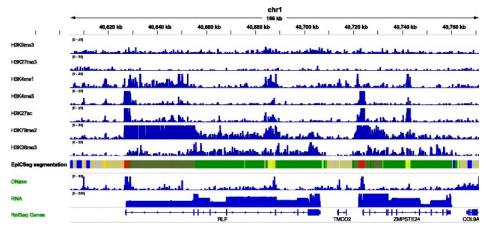


Figure from Foti et al. (2014)

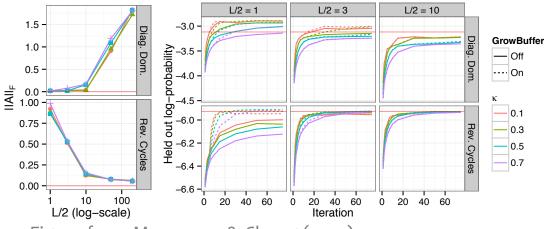
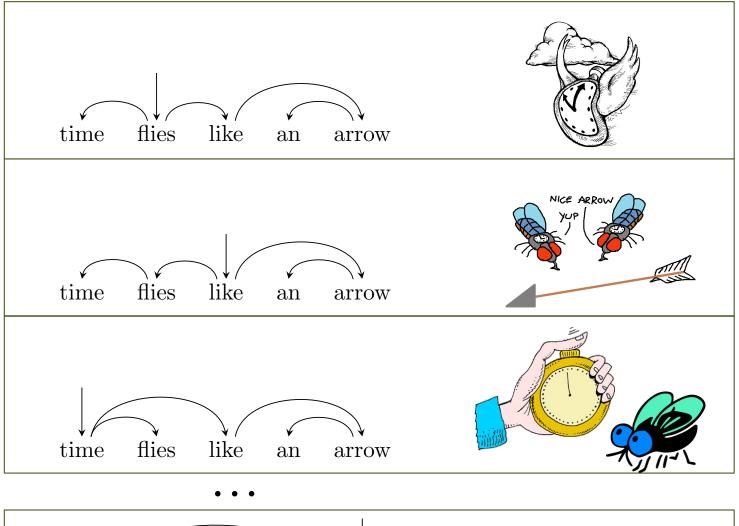


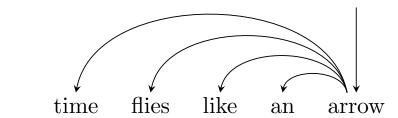
Figure from Mammana & Chung (2015)

Question: Can maximizing (unsupervised) marginal likelihood produce useful results?

Answer: Let's look at an example...

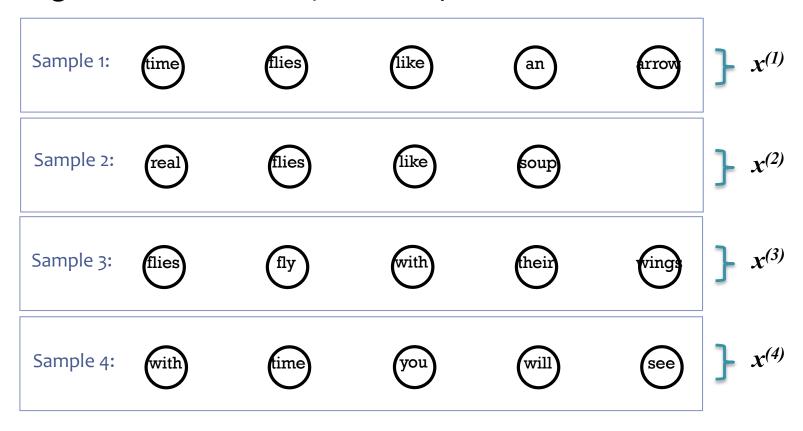
- Babies learn the syntax of their native language (e.g. English) just by hearing many sentences
- Can a computer similarly learn syntax of a human language just by looking at lots of example sentences?
 - This is the problem of Grammar Induction!
 - It's an unsupervised learning problem
 - We try to recover the syntactic structure for each sentence without any supervision





No semantic interpretation

Training Data: Sentences only, without parses

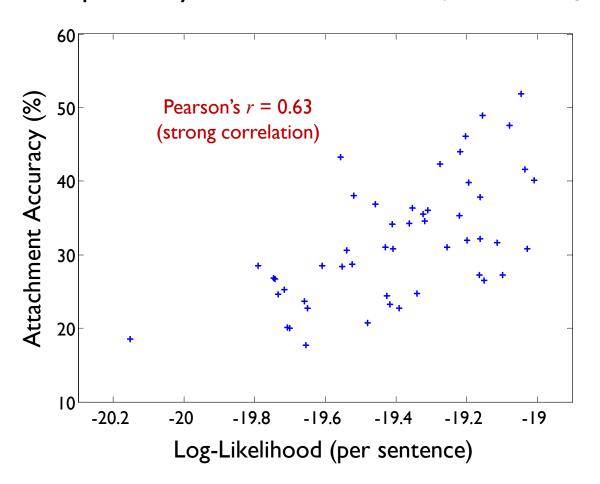


Test Data: Sentences **with** parses, so we can evaluate accuracy

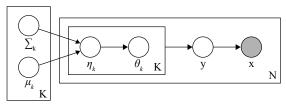
Q: Does likelihood correlate with accuracy on a task we care about?

A: Yes, but there is still a wide range of accuracies for a particular likelihood value

Dependency Model with Valence (Klein & Manning, 2004)



Graphical Model for Logistic Normal Probabilistic Grammar



y = syntactic parse x = observed sentence

Settings:

EM Maximum likelihood estimate of θ using the EM algorithm to optimize $p(\mathbf{x} \mid \theta)$ [14].

EM-MAP Maximum a posteriori estimate of $\boldsymbol{\theta}$ using the EM algorithm and a fixed symmetric Dirichlet prior with $\alpha > 1$ to optimize $p(\mathbf{x}, \boldsymbol{\theta} \mid \alpha)$. Tune α to maximize the likelihood of an unannotated development dataset, using grid search over [1.1, 30].

VB-Dirichlet Use variational Bayes inference to estimate the posterior distribution $p(\boldsymbol{\theta} \mid \mathbf{x}, \alpha)$, which is a Dirichlet. Tune the symmetric Dirichlet prior's parameter α to maximize the likelihood of an unannotated development dataset, using grid search over [0.0001, 30]. Use the mean of the posterior Dirichlet as a point estimate for $\boldsymbol{\theta}$.

VB-EM-Dirichlet Use variational Bayes EM to optimize $p(\mathbf{x} \mid \boldsymbol{\alpha})$ with respect to $\boldsymbol{\alpha}$. Use the mean of the learned Dirichlet as a point estimate for $\boldsymbol{\theta}$ (similar to [5]).

VB-EM-Log-Normal Use variational Bayes EM to optimize $p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with respect to $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. Use the (exponentiated) mean of this Gaussian as a point estimate for $\boldsymbol{\theta}$.

Dogulta	attachment accuracy (%)						
Results:	Viterbi decoding			MBR decoding			
	$ \mathbf{x} \le 10$	$ \mathbf{x} \le 20$	all	$ \mathbf{x} \le 10$	$ \mathbf{x} \le 20$	all	
Attach-Right	38.4	33.4	31.7	38.4	33.4	31.7	
EM	45.8	39.1	34.2	46.1	39.9	35.9	
EM-MAP, $\alpha = 1.1$	45.9	39.5	34.9	46.2	40.6	36.7	
VB-Dirichlet, $\alpha = 0.25$	46.9	40.0	35.7	47.1	41.1	37.6	
VB-EM-Dirichlet	45.9	39.4	34.9	46.1	40.6	36.9	
VB-EM-Log-Normal, $\mathbf{\Sigma}_k^{(0)} = \mathbf{I}$	56.6	43.3	37.4	59.1	$\boldsymbol{45.9}$	39.9	
VB-EM-Log-Normal, families	59.3	45.1	39.0	59.4	$\boldsymbol{45.9}$	40.5	

Table 1: Attachment accuracy of different learning methods on unseen test data from the Penn Treebank of varying levels of difficulty imposed through a length filter. Attach-Right attaches each word to the word on its right and the last word to \$. EM and EM-MAP with a Dirichlet prior ($\alpha > 1$) are reproductions of earlier results [14, 18].

HIDDEN STATE CRFS

Data consists of images x and labels y.

pigeon

leopard

rhinoceros

llama

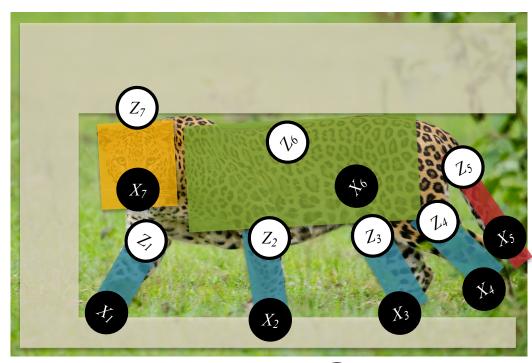
Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time

leopard

Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time



leopard (y)

Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time

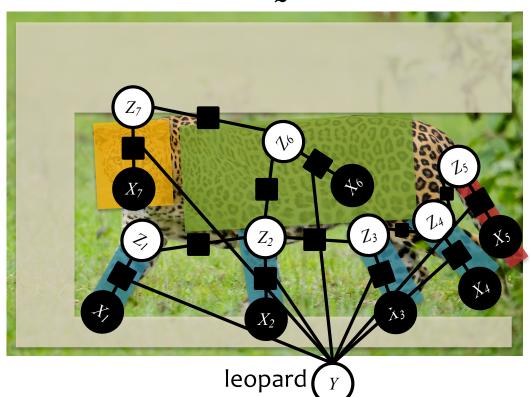


Hidden-state CRFs

Data:
$$\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$$

Joint model:
$$p_{m{ heta}}(m{y},m{z}\midm{x}) = rac{1}{Z(m{x},m{ heta})}\prod_{lpha}\psi_{lpha}(m{y}_{lpha},m{z}_{lpha},m{x})$$

Marginalized model:
$$p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) = \sum_{\boldsymbol{z}} p_{\boldsymbol{\theta}}(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{x})$$



Hidden-state CRFs

Data:
$$\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$$

Joint model:
$$p_{m{ heta}}(m{y},m{z}\midm{x}) = rac{1}{Z(m{x},m{ heta})}\prod_{lpha}\psi_{lpha}(m{y}_{lpha},m{z}_{lpha},m{x})$$

factor graph

Marginalized model:
$$p_{m{ heta}}(m{y} \mid m{x}) = \sum_{m{z}} p_{m{ heta}}(m{y}, m{z} \mid m{x})$$

We can train using gradient based methods:

(the values x are omitted below for clarity)

$$\begin{split} \frac{d\ell(\boldsymbol{\theta}|\mathcal{D})}{d\boldsymbol{\theta}} &= \sum_{n=1}^{N} \left(\mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{\theta}}(\cdot|\boldsymbol{y}^{(n)})}[f_{j}(\boldsymbol{y}^{(n)}, \boldsymbol{z})] - \mathbb{E}_{\boldsymbol{y}, \boldsymbol{z} \sim p_{\boldsymbol{\theta}}(\cdot, \cdot)}[f_{j}(\boldsymbol{y}, \boldsymbol{z})] \right) \\ &= \sum_{n=1}^{N} \sum_{\alpha} \left(\sum_{\boldsymbol{z}_{\alpha}} p_{\boldsymbol{\theta}}(\boldsymbol{z}_{\alpha} \mid \boldsymbol{y}^{(n)}) f_{\alpha, j}(\boldsymbol{y}_{\alpha}^{(n)}, \boldsymbol{z}_{\alpha}) - \sum_{\boldsymbol{y}_{\alpha}, \boldsymbol{z}_{\alpha}} p_{\boldsymbol{\theta}}(\boldsymbol{y}_{\alpha}, \boldsymbol{z}_{\alpha}) f_{\alpha, j}(\boldsymbol{y}_{\alpha}, \boldsymbol{z}_{\alpha}) \right) \\ &\text{Inference on clamped} \end{split}$$

factor graph