Approximate Inference:
Markov Chain Monte Carlo (MCMC)
Reminders

• Homework 3: Structured SVM
 – Out: Fri, Oct. 24
 – Due: Wed, Nov. 6 at 11:59pm

• Midterm Exam Viewing

• Project Milestones
Outline

• **Monte Carlo Methods**
• **MCMC (Basic Methods)**
 – Metropolis algorithm
 – Metropolis-Hastings (M-H) algorithm
 – Gibbs Sampling
• **Markov Chains**
 – Transition probabilities
 – Invariant distribution
 – Equilibrium distribution
 – Markov chain as a WFSM
 – Constructing Markov chains
 – Why does M-H work?
• **MCMC (Auxiliary Variable Methods)**
 – Slice Sampling
 – Hamiltonian Monte Carlo
MCMC (BASIC METHODS)
A Few Problems for a Factor Graph

Suppose we already have the parameters of a Factor Graph...

1. How do we compute the probability of a specific assignment to the variables?
 \[P(T=t, H=h, A=a, C=c) \]

2. How do we draw a sample from the joint distribution?
 \[t, h, a, c \sim P(T, H, A, C) \]

3. How do we compute marginal probabilities?
 \[P(A) = \ldots \]

4. How do we draw samples from a conditional distribution?
 \[t, h, a \sim P(T, H, A \mid C = c) \]

5. How do we compute conditional marginal probabilities?
 \[P(H \mid C = c) = \ldots \]
Inference for Bayes Nets

Whiteboard

– Background: Marginal Probability
– Sampling from a joint distribution
– Gibbs Sampling
Sampling from a Joint Distribution

Ex: Tornado

\[T \sim \text{Bernoulli}(\frac{2}{3}) \]
\[H \sim \text{Bernoulli}(\frac{1}{3}) \]
\[A \sim \text{Bernoulli}(\alpha_{H,T}) \]
\[C \sim \text{Uniform}(1, \ldots, 63) + A \times \text{Uniform}(\chi_1, \ldots, \chi_3) \]

\(\alpha = \begin{cases} H=0 & \text{if } T=0 \\ H=1 & \text{if } T=1 \end{cases} \)

We can use these samples to estimate many different probabilities!
MCMC

- **Goal:** Draw approximate, correlated samples from a target distribution $p(x)$
- **MCMC:** Performs a biased random walk to explore the distribution
Simulations of MCMC

Visualization of Metropolis-Hastings, Gibbs Sampling, and Hamiltonian MCMC:

https://chi-feng.github.io/mcmc-demo/

http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/
GIBBS SAMPLING
Gibbs Sampling

Whiteboard

– Gibbs Sampling
– Example: 3-node Factor Graph
Gibbs Sampling

Example: 3-node Factor Graph

```python
import numpy as np
import random

def sample01(g0, g1):
    u = random.uniform(0, g0 + g1)
    if u < g0:
        return 0
    else:
        return 1

def gibbs_sampling():
    # Define factor graph
    psi_ab = np.array([[1, 2], [1, 1]])
    psi_ac = np.array([[2, 2], [2, 1]])
    psi_bc = np.array([[1, 1], [2, 1]])

    # Initialize variable values
    a = random.choice([0, 1])
    b = random.choice([0, 1])
    c = random.choice([0, 1])

    counts = np.array([[0, 0], [0, 0], [0, 0]])
    # Gibbs sampling
    for i in range(10):
        a = sample01(psi_ab[a,b] * psi_ac[a,c],
                      psi_ab[1,b] * psi_ac[1,c])
        b = sample01(psi_ab[a,0] * psi_bc[0,c],
                      psi_ab[a,1] * psi_bc[1,c])
        c = sample01(psi_ac[a,0] * psi_bc[b,0],
                      psi_ac[a,1] * psi_bc[b,1])
        print(a, b, c)
        counts[0, a] += 1
        counts[1, b] += 1
        counts[2, c] += 1
    print('p(a = 0) == %2f' % (counts[0,0] / (counts[0,0] + counts[0,1])))
    print('p(b = 0) == %2f' % (counts[1,0] / (counts[1,0] + counts[1,1])))
    print('p(c = 0) == %2f' % (counts[2,0] / (counts[2,0] + counts[2,1])))

if __name__ == '__main__':
gibbs_sampling()
```
Gibbs Sampling

\[x_{1} \quad x_{2} \]

\[p(x) \]

\[p(x_{1} | x_{2}^{(t)}) \]

\[x^{(t)} \quad x^{(t+1)} \]
Gibbs Sampling

\[\mathbf{x}(t) \]

\[\mathbf{x}(t+1) \]

\[\mathbf{x}(t+2) \]

\[p(\mathbf{x}) \]

\[p(x_2 | x_1^{(t+1)}) \]
Gibbs Sampling

\[p(x) \]

\[x_1 \]

\[x_2 \]

\[x(t) \]

\[x(t+1) \]

\[x(t+2) \]

\[x(t+3) \]

\[x(t+4) \]
Gibbs Sampling

Question: How do we draw samples from a conditional distribution?

\[y_1, y_2, \ldots, y_J \sim p(y_1, y_2, \ldots, y_J \mid x_1, x_2, \ldots, x_J) \]

(Approximate) Solution:

- Initialize \(y_1^{(0)}, y_2^{(0)}, \ldots, y_J^{(0)} \) to arbitrary values
- For \(t = 1, 2, \ldots \):
 - \(y_1^{(t+1)} \sim p(y_1 \mid y_2^{(t)}, \ldots, y_J^{(t)}, x_1, x_2, \ldots, x_J) \)
 - \(y_2^{(t+1)} \sim p(y_2 \mid y_1^{(t+1)}, y_3^{(t)}, \ldots, y_J^{(t)}, x_1, x_2, \ldots, x_J) \)
 - \(y_3^{(t+1)} \sim p(y_3 \mid y_1^{(t+1)}, y_2^{(t+1)}, y_4^{(t)}, \ldots, y_J^{(t)}, x_1, x_2, \ldots, x_J) \)
 - \ldots
 - \(y_J^{(t+1)} \sim p(y_J \mid y_1^{(t+1)}, y_2^{(t+1)}, \ldots, y_{J-1}^{(t+1)}, x_1, x_2, \ldots, x_J) \)

Properties:

- This will eventually yield samples from \(p(y_1, y_2, \ldots, y_J \mid x_1, x_2, \ldots, x_J) \)
- But it might take a long time -- just like other Markov Chain Monte Carlo methods
Gibbs Sampling

Full conditionals only need to condition on the Markov Blanket

- Must be “easy” to sample from conditionals
- Many conditionals are log-concave and are amenable to adaptive rejection sampling
METROPOLIS-HASTINGS
Metropolis-Hastings

Whiteboard

– Metropolis Algorithm
– Metropolis-Hastings Algorithm
Random Walk Behavior of M-H

• For Metropolis-Hastings, a generic proposal distribution is:
 \[q(x | x^{(t)}) = \mathcal{N}(0, \epsilon^2) \]

• If \(\epsilon \) is large, many rejections
• If \(\epsilon \) is small, slow mixing
Random Walk Behavior of M-H

• For **Rejection Sampling**, the accepted samples are **independent**
• But for **Metropolis-Hastings**, the samples are **correlated**
• **Question**: How long must we wait to get effectively independent samples?

A: independent states in the M-H random walk are separated by roughly \((\sigma_{\text{max}}/\sigma_{\text{min}})^2\) steps

Figure from Bishop (2006)
Whiteboard

• Gibbs Sampling as M-H