Monte Carlo Methods
Q: Is this ILP for MAP inference from Lecture 13 correct?

A: No! The indexing here is incorrect. It should be...
Reminders

• Homework 3: Structured SVM
 – Out: Tue, Oct. 18
 – Due: Mon, Nov. 4 at 11:59pm

• Midterm Exam Viewing

• Project Milestones
1. Data

\[\mathcal{D} = \{ \mathbf{x}^{(n)} \}_{n=1}^{N} \]

2. Model

\[p(\mathbf{x} | \theta) = \frac{1}{Z(\theta)} \prod_{C \in \mathcal{C}} \psi_C(\mathbf{x}_C) \]

3. Objective

\[\ell(\theta; \mathcal{D}) = \sum_{n=1}^{N} \log p(\mathbf{x}^{(n)} | \theta) \]

4. Learning

\[\theta^* = \arg\max_{\theta} \ell(\theta; \mathcal{D}) \]

5. Inference

1. Marginal Inference

\[p(\mathbf{x}_C) = \sum_{\mathbf{x}' : \mathbf{x}'_C = \mathbf{x}_C} p(\mathbf{x}' | \theta) \]

2. Partition Function

\[Z(\theta) = \sum_{\mathbf{x}} \prod_{C \in \mathcal{C}} \psi_C(\mathbf{x}_C) \]

3. MAP Inference

\[\hat{\mathbf{x}} = \arg\max_{\mathbf{x}} p(\mathbf{x} | \theta) \]
A Few Problems for a Factor Graph

Suppose we already have the parameters of a Factor Graph...

1. How do we compute the probability of a specific assignment to the variables?
 \(P(T=t, H=h, A=a, C=c) \)

2. How do we draw a sample from the joint distribution?
 \(t,h,a,c \sim P(T, H, A, C) \)

3. How do we compute marginal probabilities?
 \(P(A) = \ldots \)

4. How do we draw samples from a conditional distribution?
 \(t,h,a \sim P(T, H, A \mid C = c) \)

5. How do we compute conditional marginal probabilities?
 \(P(H \mid C = c) = \ldots \)
Suppose we took many samples from the distribution over taggings:

\[p(x) = \frac{1}{Z} \prod_{\alpha} \psi_{\alpha}(x_{\alpha}) \]

Sample 1:

- \(n \)
- \(v \)
- \(p \)
- \(d \)
- \(n \)

Sample 2:

- \(n \)
- \(n \)
- \(v \)
- \(d \)
- \(n \)

Sample 3:

- \(n \)
- \(v \)
- \(p \)
- \(d \)
- \(n \)

Sample 4:

- \(v \)
- \(n \)
- \(p \)
- \(d \)
- \(n \)

Sample 5:

- \(v \)
- \(n \)
- \(v \)
- \(d \)
- \(n \)

Sample 6:

- \(n \)
- \(v \)
- \(p \)
- \(d \)
- \(n \)
Marginals by Sampling on Factor Graph

The marginal $p(X_i = x_i)$ gives the probability that variable X_i takes value x_i in a random sample.

Sample 1: n, v, p, d, n
Sample 2: n, n, v, d, n
Sample 3: n, v, p, d, n
Sample 4: v, n, p, d, n
Sample 5: v, n, v, d, n
Sample 6: n, v, p, d, n

<START> time flies like an arrow
Marginals by Sampling on Factor Graph

Estimate the marginals as:

\[
\begin{array}{c|cc}
 X_0 & n/4 & v/6 \\
 \psi_0 & n/4 & v/6 \\
 X_1 & n/3 & v/3 \\
 \psi_2 & n/3 & v/3 \\
 X_2 & n/4 & p/6 \\
 \psi_4 & n/4 & p/6 \\
 X_3 & n/4 & d/6 \\
 \psi_6 & n/4 & d/6 \\
 X_4 & n/6 \\
 \psi_8 & n/6 \\
 X_5 & n/6 \\
 \psi_9 & n/6 \\
\end{array}
\]

Sample 1:

\[
\begin{array}{c}
 n \\
 \psi_0 \\
 \psi_2 \\
 \psi_4 \\
 \psi_6 \\
 \psi_8 \\
 \psi_9 \\
\end{array}
\]

Sample 2:

\[
\begin{array}{c}
 n \\
 \psi_0 \\
 \psi_2 \\
 \psi_4 \\
 \psi_6 \\
 \psi_8 \\
 \psi_9 \\
\end{array}
\]

Sample 3:

\[
\begin{array}{c}
 n \\
 \psi_0 \\
 \psi_2 \\
 \psi_4 \\
 \psi_6 \\
 \psi_8 \\
 \psi_9 \\
\end{array}
\]

Sample 4:

\[
\begin{array}{c}
 n \\
 \psi_0 \\
 \psi_2 \\
 \psi_4 \\
 \psi_6 \\
 \psi_8 \\
 \psi_9 \\
\end{array}
\]

Sample 5:

\[
\begin{array}{c}
 n \\
 \psi_0 \\
 \psi_2 \\
 \psi_4 \\
 \psi_6 \\
 \psi_8 \\
 \psi_9 \\
\end{array}
\]

Sample 6:

\[
\begin{array}{c}
 n \\
 \psi_0 \\
 \psi_2 \\
 \psi_4 \\
 \psi_6 \\
 \psi_8 \\
 \psi_9 \\
\end{array}
\]

<START>

\[
\begin{array}{c}
 \text{time} \\
 \psi_1 \\
 \psi_3 \\
 \psi_5 \\
 \psi_7 \\
 \psi_9 \\
\end{array}
\]

flies

like

an

arrow

Estimate the marginals as:
MONTE CARLO METHODS
Monte Carlo Methods

Whiteboard

– Problem 1: Generating samples from a distribution
– Problem 2: Estimating expectations
– Why is sampling from $p(x)$ hard?
– Example: estimating plankton concentration in a lake
– Algorithm: Uniform Sampling
– Example: estimating partition function of high dimensional function
Properties of Monte Carlo

Estimator: \[\int f(x)P(x) \, dx \approx \hat{f} \equiv \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \quad x^{(s)} \sim P(x) \]

Estimator is unbiased:

\[\mathbb{E}_{P(\{x^{(s)}\})} \left[\hat{f} \right] = \frac{1}{S} \sum_{s=1}^{S} \mathbb{E}_{P(x)} [f(x)] = \mathbb{E}_{P(x)} [f(x)] \]

Variance shrinks \(\propto 1/S \):

\[\text{var}_{P(\{x^{(s)}\})} \left[\hat{f} \right] = \frac{1}{S^2} \sum_{s=1}^{S} \text{var}_{P(x)} [f(x)] = \frac{\text{var}_{P(x)} [f(x)]}{S} \]

“Error bars” shrink like \(\sqrt{S} \)
A dumb approximation of π

$$P(x, y) = \begin{cases} 1 & 0 < x < 1 \text{ and } 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\pi = 4 \int \int \mathbb{1} \left((x^2 + y^2) < 1\right) P(x, y) \, dx \, dy$$

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.3333

octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.1418
Aside: don’t always sample!

“Monte Carlo is an extremely bad method; it should be used only when all alternative methods are worse.”

— Alan Sokal, 1996

Example: numerical solutions to (nice) 1D integrals are fast

```octave
octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance)
```

Gives π to 6 dp’s in 108 evaluations, machine precision in 2598.

(NB Matlab’s `quadl` fails at zero tolerance)
Sampling from distributions

Draw points uniformly under the curve:

Probability mass to left of point $\sim \text{Uniform}[0,1]$
Sampling from distributions

How to convert samples from a Uniform\([0,1]\) generator:

\[
h(y) = \int_{-\infty}^{y} p(y') \, dy'
\]

Draw mass to left of point:
\[u \sim \text{Uniform}[0,1]\]

Sample, \(y(u) = h^{-1}(u)\)

Although we can’t always compute and invert \(h(y)\)
Rejection sampling

Sampling underneath a \(\tilde{P}(x) \propto P(x) \) curve is also valid

Draw underneath a simple curve \(k\tilde{Q}(x) \geq \tilde{P}(x) \):

- Draw \(x \sim Q(x) \)
- height \(u \sim \text{Uniform}[0, k\tilde{Q}(x)] \)

Discard the point if above \(\tilde{P} \), i.e. if \(u > \tilde{P}(x) \)

*Samples from \(P(x) \)
Importance sampling

Computing \(\tilde{P}(x) \) and \(\tilde{Q}(x) \), then throwing \(x \) away seems wasteful. Instead rewrite the integral as an expectation under \(Q \):

\[
\int f(x) P(x) \, dx = \int f(x) \frac{P(x)}{Q(x)} Q(x) \, dx,
\]

\[\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{P(x^{(s)})}{Q(x^{(s)})}, \quad x^{(s)} \sim Q(x)\]

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation. Divide and multiply any integrand by a convenient distribution.
Importance sampling (2)

Previous slide assumed we could evaluate \(P(x) = \frac{\tilde{P}(x)}{Z_P} \)

\[
\int f(x)P(x) \, dx \approx \left(\frac{Z_Q}{Z_P} \right) \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{\tilde{P}(x^{(s)})}{\tilde{Q}(x^{(s)})}, \quad x^{(s)} \sim Q(x)
\]

\[
\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \tilde{r}(s) \equiv \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) w^{(s)}
\]

This estimator is **consistent** but **biased**

Exercise: Prove that \(Z_P/Z_Q \approx \frac{1}{S} \sum_{s} \tilde{r}^{(s)} \)
• Sums and integrals, often expectations, occur frequently in statistics
• **Monte Carlo** approximates expectations with a sample average
• **Rejection sampling** draws samples from complex distributions
• **Importance sampling** applies Monte Carlo to ‘any’ sum/integral
Pitfalls of Monte Carlo

Rejection & importance sampling scale badly with dimensionality

Example:

\[P(x) = \mathcal{N}(0, \mathbb{I}), \quad Q(x) = \mathcal{N}(0, \sigma^2 \mathbb{I}) \]

Rejection sampling:
Requires \(\sigma \geq 1 \). Fraction of proposals accepted = \(\sigma^{-D} \)

Importance sampling:
Variance of importance weights = \(\left(\frac{\sigma^2}{2 - 1/\sigma^2} \right)^{D/2} - 1 \)

Infinite / undefined variance if \(\sigma \leq 1/\sqrt{2} \)
Outline

• Monte Carlo Methods
• MCMC (Basic Methods)
 – Metropolis algorithm
 – Metropolis-Hastings (M-H) algorithm
 – Gibbs Sampling
• Markov Chains
 – Transition probabilities
 – Invariant distribution
 – Equilibrium distribution
 – Markov chain as a WFSM
 – Constructing Markov chains
 – Why does M-H work?
• MCMC (Auxiliary Variable Methods)
 – Slice Sampling
 – Hamiltonian Monte Carlo
MCMC (BASIC METHODS)

Metropolis, Metropolis-Hastings, Gibbs Sampling
A Few Problems for a Factor Graph

Suppose we already have the parameters of a Factor Graph...

1. How do we compute the probability of a specific assignment to the variables?
 \[P(T=t, H=h, A=a, C=c) \]

2. How do we draw a sample from the joint distribution?
 \[t,h,a,c \sim P(T, H, A, C) \]

3. How do we compute marginal probabilities?
 \[P(A) = \ldots \]

4. How do we draw samples from a conditional distribution?
 \[t,h,a \sim P(T, H, A \mid C = c) \]

5. How do we compute conditional marginal probabilities?
 \[P(H \mid C = c) = \ldots \]