

10-418/10-618 Machine Learning for Structured Data

Machine Learning Department School of Computer Science Carnegie Mellon University

Variational Inference

Matt Gormley Lecture 16 Oct. 31, 2022

Q&A

The parameters of a K-dimensional Dirichlet(α) are a vector α of length K, so why are Dirichlet parameters sometimes given as a scalar? For example...

"We use a Dirichlet prior with parameter $\alpha = 0.1$."

A: Great question!

A K-dimensional Dirichlet prior is said to be *symmetric* if all the values in the vector α are the same, i.e. for all k, $\alpha_k = c$ where c is a scalar constant.

We sometimes call this restricted version the symmetric Dirichlet distribution.

Reminders

- Exam Rubrics and Exam Viewings
- Homework 4: MCMC
 - Out: Mon, Oct 24
 - Due: Fri, Nov 3 at 11:59pm
- Homework 5: MCMC
 - Out: Mon, Oct 24
 - Due: Fri, Nov 3 at 11:59pm

Reminders Happy Halloween!

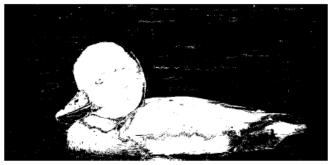
SEMANTIC SEGMENTATION

Case Study: Image Segmentation

- Image segmentation (FG/BG) by modeling of interactions btw RVs
 - Images are noisy.
 - Objects occupy continuous regions in an image.

[Nowozin,Lampert 2012]

Input image



Pixel-wise separate optimal labeling

Locally-consistent joint optimal labeling

Unary Term Pairwise Term
$$Y^* = \underset{y \in \{0,1\}^n}{\operatorname{pairwise Term}} \left[\sum_{i \in S} V_i(y_i, X) + \sum_{i \in S} \sum_{j \in N_i} V_{i,j}(y_i, y_j) \right].$$
© Eric Xing @ CMU, 2005-2015

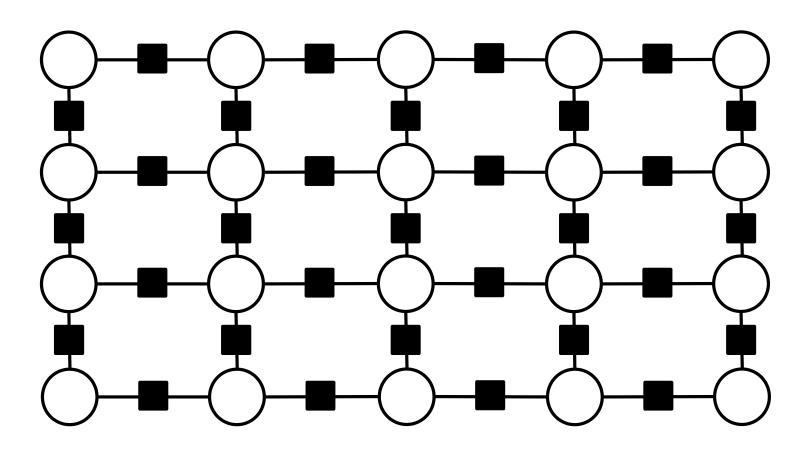
Y: labels

X: data (features)

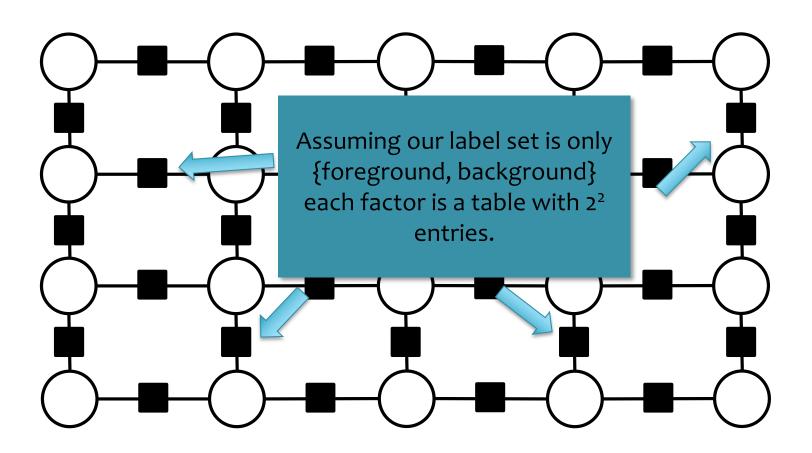
S: pixels

 N_i : neighbors of pixel i

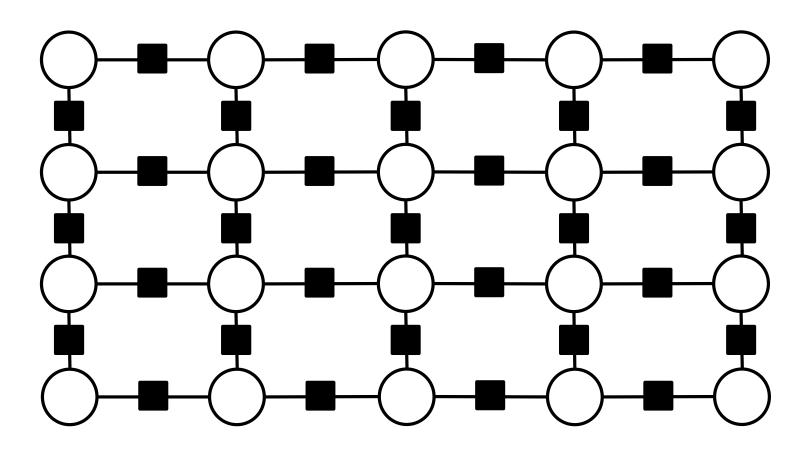
• Suppose we want to image segmentation using a grid model



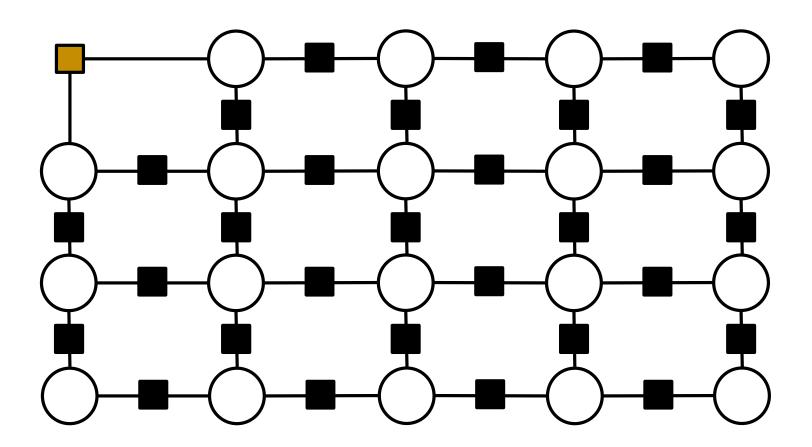
Suppose we want to image segmentation using a grid model



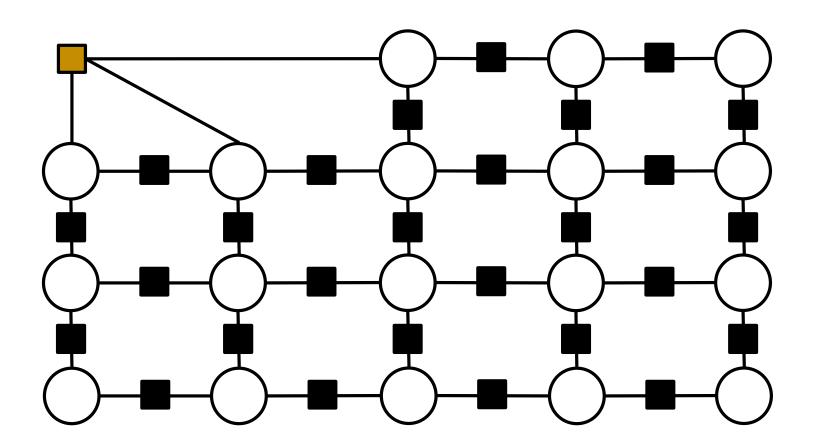
- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?



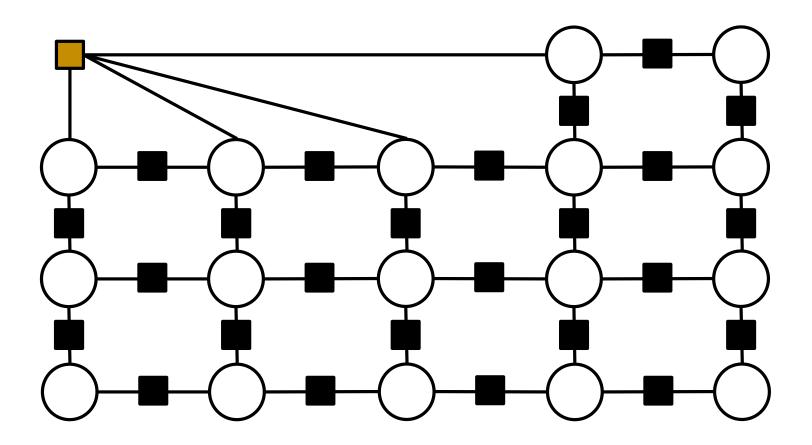
- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?



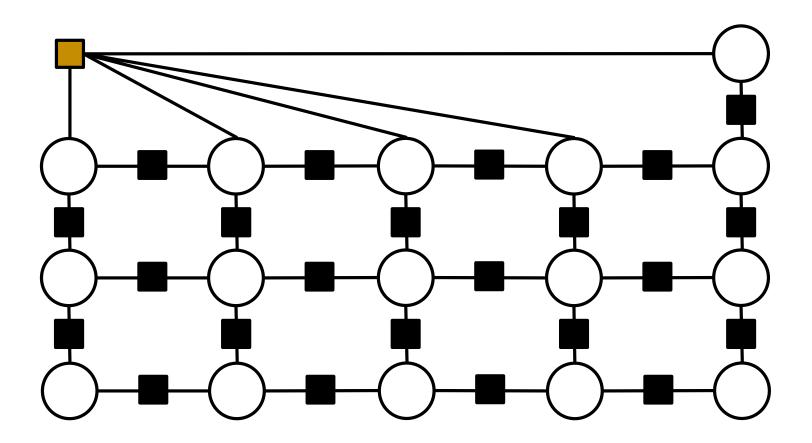
- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?



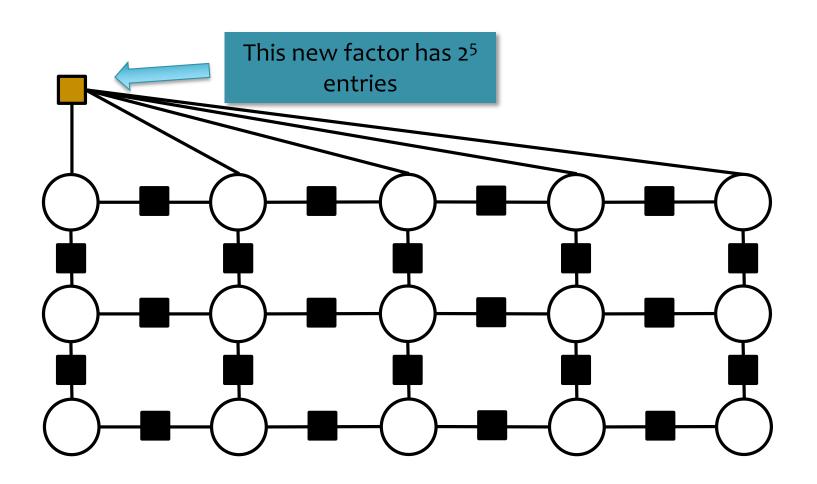
- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?



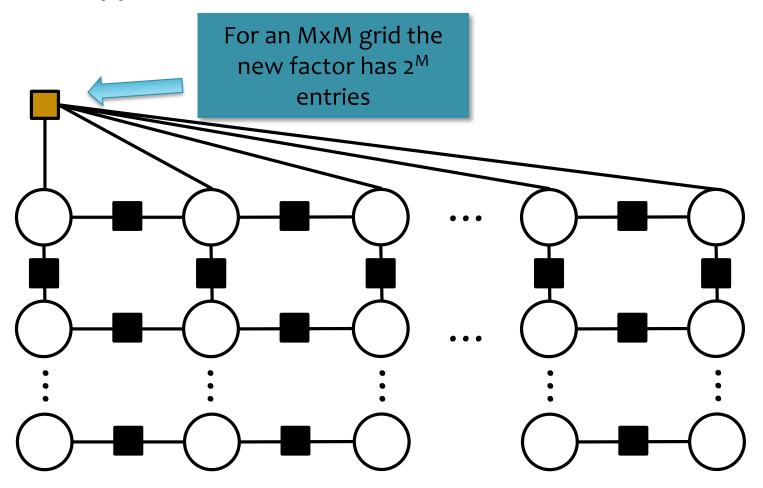
- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?



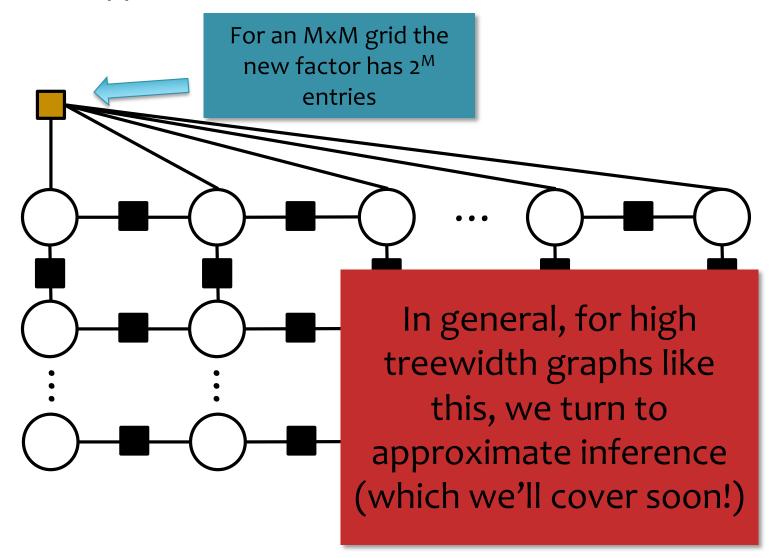
- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?



- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?



- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?



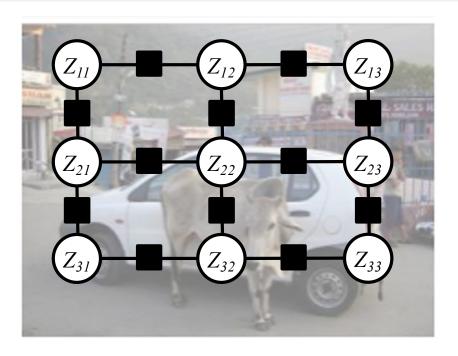
- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?
- Can we instead run belief propagation to do exact inference?



HIGH-LEVEL INTRO TO VARIATIONAL INFERENCE

Problem:

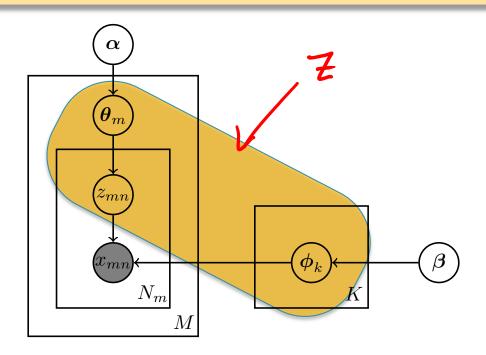
- For observed variables x and latent variables z, estimating the posterior $p(z \mid x)$ is intractable



Problem: For observed variables x and latent variables z, estimating the posterior p(z | x) is intractable flies like an arrow

Problem:

- For observed variables x and latent variables z, estimating the posterior $p(z \mid x)$ is intractable
- For training data x and parameters z, estimating the posterior $p(z \mid x)$ is intractable



Problem:

- For observed variables x and latent variables z, estimating the posterior $p(z \mid x)$ is intractable
- For training data x and parameters z, estimating the posterior $p(z \mid x)$ is intractable

Solution:

- Approximate p(z | x) with a simpler q(z)
- Typically q(z) has more independence assumptions than $p(z \mid x)$ - fine b/c q(z) is tuned for a specific x
- Key idea: pick a single q(z) from some family Q that best approximates $p(z \mid x)$

Terminology:

- q(z): the variational approximation
- Q: the variational family
- Usually $q_{\theta}(z)$ is parameterized by some θ called variational parameters
- Usually $p_{\alpha}(\mathbf{z} \mid \mathbf{x})$ is parameterized by some fixed α we'll call them the parameters

Example Algorithms:

- mean-field variational inference
- loopy belief propagation
- tree-reweighted belief propagation
- expectation propagation

Is this trivial?

- Note: We are not defining a new distribution simple $q_{\theta}(\mathbf{z} \mid \mathbf{x})$, there is one simple $q_{\theta}(\mathbf{z} \mid \mathbf{x})$ for each $p_{\alpha}(\mathbf{z} \mid \mathbf{x})$
- Consider the MCMC equivalent of this:
 - you could draw samples $z^{(i)} \sim p(z \mid x)$
 - then train some simple $q_{\theta}(\mathbf{z})$ on $z^{(1)}, z^{(2)}, \dots, z^{(N)}$
 - hope that the sample adequately represents the posterior for the given x
- How is VI different from this?
 - VI doesn't require sampling
 - VI is fast and deterministic
 - Why? b/c we choose an objective function (KL divergence) that defines which q_{θ} best approximates p_{α} , and exploit the special structure of q_{θ} to optimize it

V.I. offers a new design decision

- Choose the distribution $p_{\alpha}(\mathbf{z} \mid \mathbf{x})$ that you really want, i.e. don't just simplify it to make it computationally convenient
- Then design a the structure of another distribution $q_{\theta}(\mathbf{z})$ such that V.I. is efficient

TYPES OF VARIATIONAL APPROXIMATIONS

Mean Field Approximation

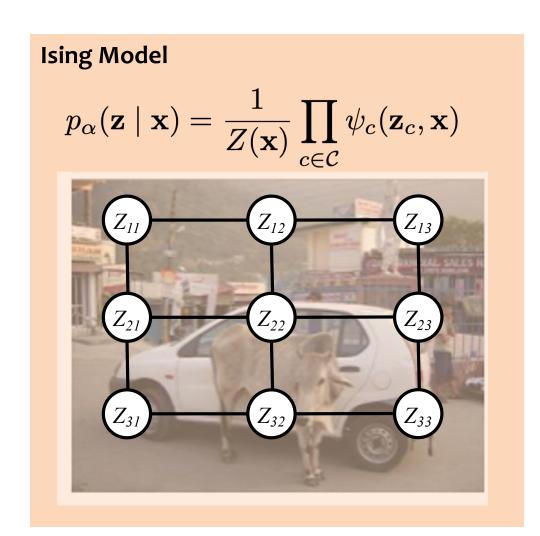
The mean field approximation assumes our variational approximation $q_{\theta}(z)$ treats each variable as independent

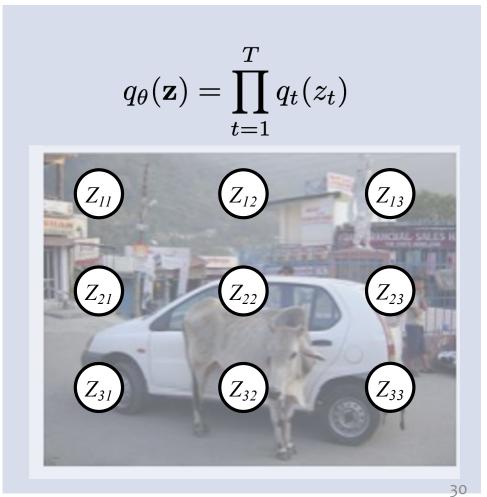
$$p_{\alpha}(\mathbf{z} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{c \in \mathcal{C}} \psi_{c}(\mathbf{z}_{c}, \mathbf{x}) \underbrace{z_{j}}_{\mathbf{y}_{2}} \underbrace{z_{j}}_{\mathbf{y}_{3}} \underbrace{z_{j}}_{\mathbf{y}$$

$$q_{ heta}(\mathbf{z}) = \prod_{t=1}^{T} q_t(z_t)$$

Mean Field Approximation

The **mean field approximation** assumes our variational approximation $q_{\theta}(z)$ treats each variable as independent





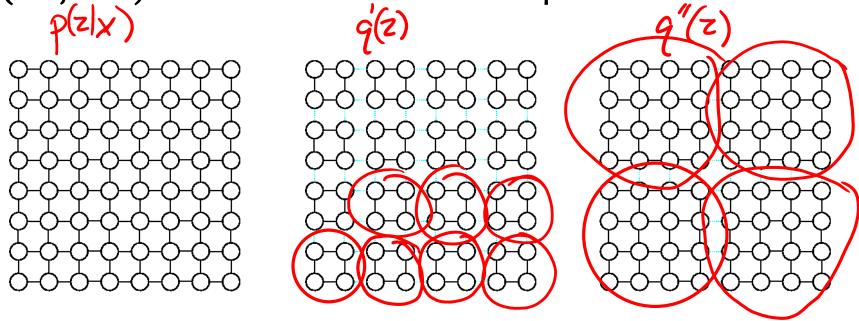
Structured Mean Field

- If q is not a mean-field approximation, but decomposes over "blocks" of variables, then we have the Structured Mean Field algorithm
- Connection to related algorithms:
 - This is analogous to Blocked Gibbs Sampling
 - This is analogous to Generalized Belief Propagation
 - The names here (Structured, Blocked, Generalized)
 are different b/c they were invented by different
 people and no-one thought to rename them all
 "Blocked"

Structured Mean Field

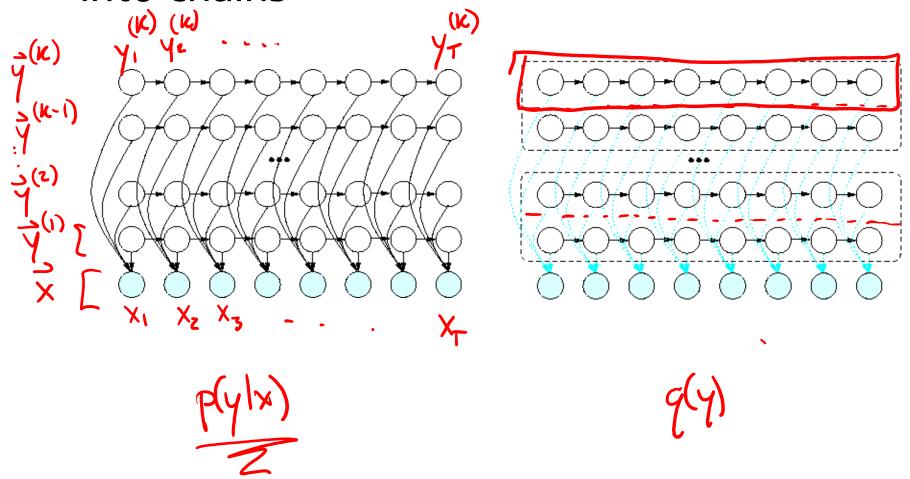
 We can also apply more general forms of mean field approximations (involving clusters) to the Ising model:

• Instead of making all latent variables independent (i.e. naïve mean field, previous example), clusters of (disjoint) latent variables are independent.



Structured Mean Field

 For a factorial HMM, we could decompose into chains

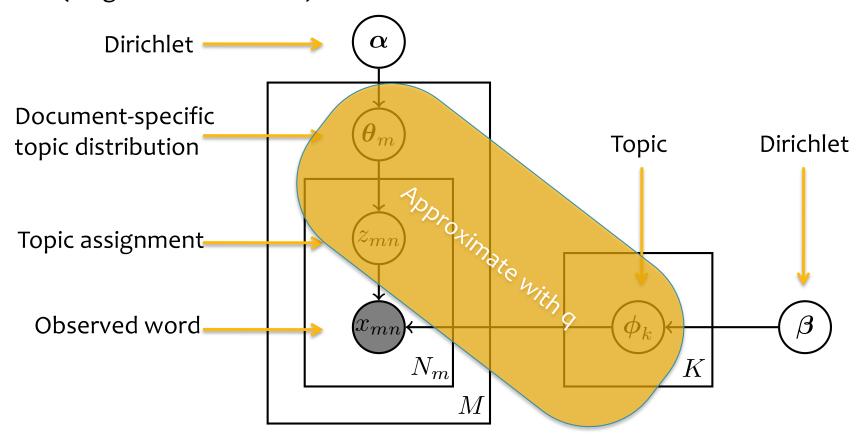


Just as we had collapsed and uncollapsed Gibbs samplers for LDA...

... we can have collapsed and uncollapsed variational inference for LDA

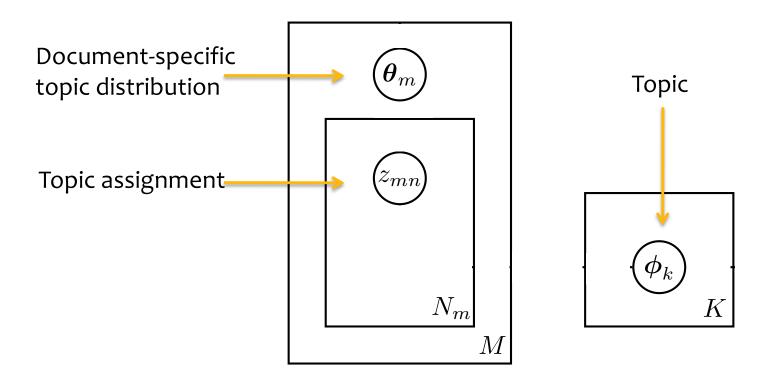
Latent Dirichlet Allocation (LDA)

• Uncollapsed Variational Inference, aka. Explicit V.I. (original distribution)



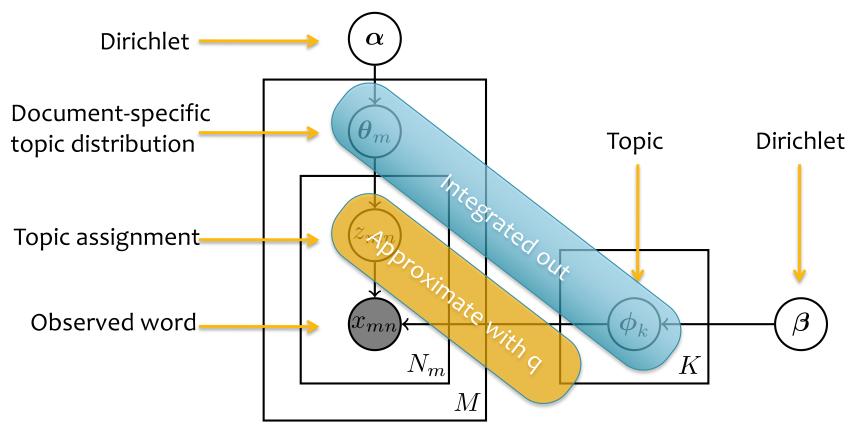
Latent Dirichlet Allocation (LDA)

 Uncollapsed Variational Inference, aka. Explicit V.I. (mean field variational approximation)



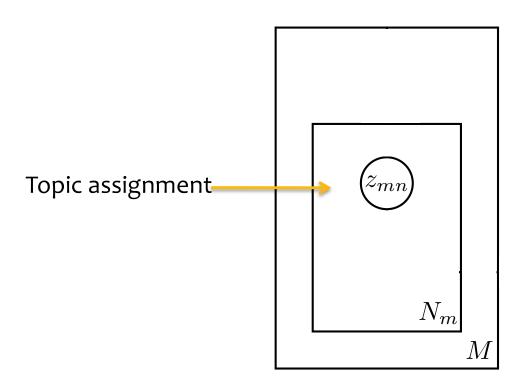
Latent Dirichlet Allocation (LDA)

 Collapsed Variational Inference (original distribution)



Latent Dirichlet Allocation (LDA)

 Collapsed Variational Inference (mean field variational approximation)



MEAN FIELD VARIATIONAL INFERENCE

Side Note

Contrast of three variational inference techniques:

- Mean field variational inference minimizes KL (q || p)
- We are focused here on KL(q || p)

- Expectation propagation minimizes KL(p || q)
- 3. Loopy Belief Propagation minimizes the Bethe Free Energy

KL Divergence

 <u>Definition</u>: for two distributions q(x) and p(x) over $x \in \mathcal{X}$, the **KL Divergence** is:

$$\text{KL}(q||p) = E_{q(x)} \left[\log \frac{q(x)}{p(x)} \right] = \begin{cases} \sum_{x} q(x) \log \frac{q(x)}{p(x)} & \text{discret} \\ \int_{x} q(x) \log \frac{q(x)}{p(x)} dx & \text{cont.} \\ \text{Y} & \text{Exp(x)} \left\{ \log \left(p(x) / p(x) \right) \right\} \end{cases}$$
 Properties:

- - KL(q || p) measures the proximity of two distributions q and p
 - KL is **not** symmetric: $KL(q || p) \neq KL(p || q)$
 - KL is minimized when q(x) = p(x) for all $x \in \mathcal{X}$

$$\mathsf{KL}(q||p) = E_{q(x)}\left[\log \frac{q(x)}{p(x)}\right]$$
 KL Divergence

Understanding the Behavior of KL as an objective function

Example 1: Keeping all else constant, consider the effect of a particular x' on KL(q || p)

	X		
-2			
-2			
-4			
-6	\perp		

×	q(x')	p(x')	q(x') log(q(x')/p(x'))	effect on KL(q p)
1-4	0.9	0.9	0	no increase
2 -	0.9	0.1	1.97	big increase
3 -	» 0.1	0.9	-0.21	little decrease
4 -	0.1	0.1	0	little decrease

KL does insist on good approximations for values that have high probability in q

KL does not insist on good approximations for values that have **low** probability in q

Example 2: Which q distribution minimizes KL(q || p)?

$$\mathbf{p} = \begin{bmatrix} 0.7 \\ 0.2 \\ 0.1 \end{bmatrix} \quad \mathbf{q}^{(1)} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} \quad \mathbf{q}^{(2)} = \begin{bmatrix} 0.7 \\ 0.2 \\ 0.1 \end{bmatrix} \quad \mathbf{q}^{(3)} = \begin{bmatrix} 0.1 \\ 0.1 \\ 0.1 \end{bmatrix} \quad Q: If we're minimizing KL, why not return $\mathbf{q}^{(3)}$?

A: Because it's not a distribution!$$

$$\mathbf{q}^{(2)} = \begin{bmatrix} 0.7 \\ 0.2 \end{bmatrix}$$

$$q^{(3)} = \left[0.1\right]$$

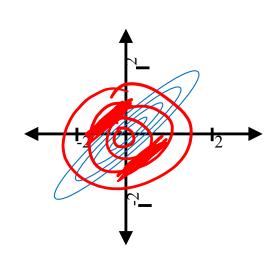
$$\mathsf{KL}(q||p) = E_{q(x)}\left[\log \frac{q(x)}{p(x)}\right]$$
 KL Divergence

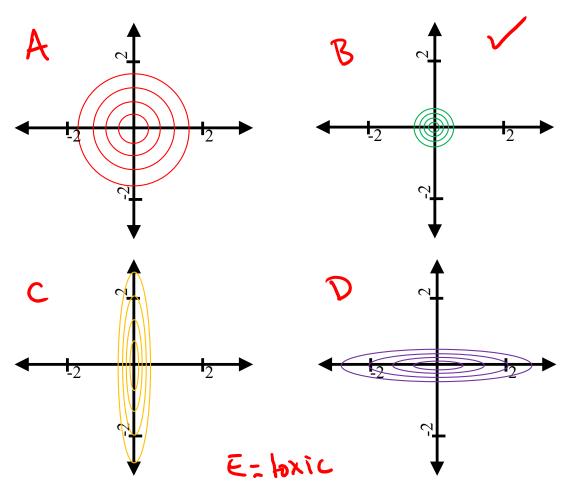
Understanding the Behavior of KL as an objective function

Example 3: Which q distribution minimizes KL(q || p)?

$$p(\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu} = [0, 0]^T, \boldsymbol{\Sigma})$$

$$q(x_1, x_2) = \mathcal{N}_1(x_1 \mid \mu_1, \sigma_1^2) \mathcal{N}_2(x_2 \mid \mu_2, \sigma_2^2)$$





Two Cases for Intractability

• <u>Case 1</u>:

given a joint distribution p(x, z)

$$\Rightarrow p(z \mid x) = \frac{p(x,z)}{p(x)}$$

we assume p(x) is intractable

• *Case 2*:

give factor graph and potentials

$$\Rightarrow p(z \mid x) = \frac{\tilde{p}(x,z)}{Z(x)}$$

we assume Z(x) is intractable

Mean Field Approximation

The mean field approximation assumes our variational approximation $q_{\theta}(z)$ treats each variable as independent

$$p_{\alpha}(\mathbf{z} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{c \in \mathcal{C}} \psi_c(\mathbf{z}_c, \mathbf{x})$$

$$q_{ heta}(\mathbf{z}) = \prod_{t=1}^{T} q_t(z_t)$$

Mean Field V.I. Overview

- 1. Goal: estimate $p_{\alpha}(\mathbf{z} \mid \mathbf{x})$ we assume this is intractable to compute exactly
- 2. <u>Idea</u>: approximate with another distribution $q_{\theta}(\mathbf{z}) \approx p_{\alpha}(\mathbf{z} \mid \mathbf{x})$ for each \mathbf{x}
- 3. <u>Mean Field</u>: assume $q_{\theta}(\mathbf{z}) = \prod_{t} q_{t}(z_{t}; \theta)$ i.e., we decompose over variables other choices for the decomposition of $q_{\theta}(\mathbf{z})$ give rise to "structured mean field"
- 4. Optimization Problem: pick the q that minimizes KL(q || p)

$$\hat{q}(\mathbf{z}) = \underset{q(\mathbf{z}) \in \mathcal{Q}}{\operatorname{argmin}} \operatorname{KL}(q(\mathbf{z}) || p(\mathbf{z} \mid \mathbf{x}))$$

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \mathsf{KL}(q_{\theta}(\mathbf{z}) || p_{\alpha}(\mathbf{z} \mid \mathbf{x}))$$

5. Optimization Algorithm: coordinate descent i.e. pick the best $q_t(z_t)$ based on the other $\{q_s(z_s)\}_{s\neq t}$ being fixed .

equivalent

Question: How do we minimize KL?

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \mathsf{KL}(q_{\theta}(\mathbf{z}) \parallel p_{\alpha}(\mathbf{z} \mid \mathbf{x}))$$

• Answer #1: Oh no! We can't even compute this KL.

Why we can't compute KL...

$$\begin{aligned} \mathsf{KL}(q(\mathbf{z}) \parallel p(\mathbf{z} \mid \mathbf{x})) &= E_{q(\mathbf{z})} \left[\log \left(\frac{q(\mathbf{z})}{p(\mathbf{z} \mid \mathbf{x})} \right) \right] \\ &= E_{q(\mathbf{z})} \left[\log q(\mathbf{z}) \right] - E_{q(\mathbf{z})} \left[\log p(\mathbf{z} \mid \mathbf{x}) \right] \\ &= E_{q(\mathbf{z})} \left[\log q(\mathbf{z}) \right] - E_{q(\mathbf{z})} \left[\log p(\mathbf{x}, \mathbf{z}) \right] + E_{q(\mathbf{z})} \left[\log p(\mathbf{x}) \right] \\ &= E_{q(\mathbf{z})} \left[\log q(\mathbf{z}) \right] - E_{q(\mathbf{z})} \left[\log p(\mathbf{x}, \mathbf{z}) \right] + \log p(\mathbf{x}) \end{aligned}$$

we have the same problem with an intractable data likelihood p(x) or an intractable partition function Z(x)

we assumed this is intractable to compute!

• Question: How do we minimize KL?

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \mathsf{KL}(q_{\theta}(\mathbf{z}) \parallel p_{\alpha}(\mathbf{z} \mid \mathbf{x}))$$

• Answer #1: Oh no! We can't even compute this KL.

Why we can't compute KL...

$$\begin{aligned} \mathsf{KL}(q(\mathbf{z}) \parallel p(\mathbf{z} \mid \mathbf{x})) &= E_{q(\mathbf{z})} \left[\log \left(\frac{q(\mathbf{z})}{p(\mathbf{z} \mid \mathbf{x})} \right) \right] \\ &= E_{q(\mathbf{z})} \left[\log q(\mathbf{z}) \right] - E_{q(\mathbf{z})} \left[\log p(\mathbf{z} \mid \mathbf{x}) \right] \\ &= E_{q(\mathbf{z})} \left[\log q(\mathbf{z}) \right] - E_{q(\mathbf{z})} \left[\log \tilde{p}(\mathbf{z} \mid \mathbf{x}) \right] + E_{q(\mathbf{z})} \left[\log Z(\mathbf{x}) \right] \\ &= E_{q(\mathbf{z})} \left[\log q(\mathbf{z}) \right] - E_{q(\mathbf{z})} \left[\log \tilde{p}(\mathbf{z} \mid \mathbf{x}) \right] + \log Z(\mathbf{x}) \end{aligned}$$

we have the same problem with an intractable data likelihood p(x) or an intractable partition function Z(x)

we assumed this is intractable to compute!

Question: How do we minimize KL?

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \mathsf{KL}(q_{\theta}(\mathbf{z}) \parallel p_{\alpha}(\mathbf{z} \mid \mathbf{x}))$$

Answer #2: We don't need to compute this KL
 We can instead maximize the ELBO (i.e. Evidence Lower BOund)

$$\mathsf{ELBO}(q_{\theta}) = E_{q_{\theta}(\mathbf{z})} \left[\log p_{\alpha}(\mathbf{x}, \mathbf{z}) \right] - E_{q_{\theta}(\mathbf{z})} \left[\log q_{\theta}(\mathbf{z}) \right]$$
The ELBO for a DGM

Here is why...

$$\begin{split} \theta &= \operatorname*{argmin}_{\theta} \operatorname{KL}(q_{\theta}(\mathbf{z}) \parallel p_{\alpha}(\mathbf{z} \mid \mathbf{x})) \\ &= \operatorname*{argmin}_{\theta} E_{q_{\theta}(\mathbf{z})} \left[\log q_{\theta}(\mathbf{z}) \right] - E_{q_{\theta}(\mathbf{z})} \left[\log p_{\alpha}(\mathbf{x}, \mathbf{z}) \right] + \log p_{\alpha}(\mathbf{x}) \\ &= \operatorname*{argmin}_{\theta} E_{q_{\theta}(\mathbf{z})} \left[\log q_{\theta}(\mathbf{z}) \right] - E_{q_{\theta}(\mathbf{z})} \left[\log p_{\alpha}(\mathbf{x}, \mathbf{z}) \right] \\ &= \operatorname*{argmax}_{\theta} \operatorname{ELBO}(q_{\theta}) & \operatorname{intractable term}_{\theta} \end{split}$$

Question: How do we minimize KL?

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \mathsf{KL}(q_{\theta}(\mathbf{z}) \parallel p_{\alpha}(\mathbf{z} \mid \mathbf{x}))$$

Answer #2: We don't need to compute this KL
 We can instead maximize the ELBO (i.e. Evidence Lower BOund)

$$\mathsf{ELBO}(q_{\theta}) = E_{q_{\theta}(\mathbf{z})} \left[\log \tilde{p}_{\alpha}(\mathbf{z} \mid \mathbf{x}) \right] - E_{q_{\theta}(\mathbf{z})} \left[\log q_{\theta}(\mathbf{z}) \right]$$

Here is why...

$$heta = \operatorname*{argmin}_{ heta} \mathsf{KL}(q_{ heta}(\mathbf{z}) \parallel p_{lpha}(\mathbf{z} \mid \mathbf{x}))$$

The ELBO for a UGM

$$= \underset{\theta}{\operatorname{argmin}} E_{q_{\theta}(\mathbf{z})} \left[\log q_{\theta}(\mathbf{z}) \right] - E_{q_{\theta}(\mathbf{z})} \left[\log \tilde{p}_{\alpha}(\mathbf{z} \mid \mathbf{x}) \right] + \log Z_{\alpha}(\mathbf{x})$$

$$= \underset{\alpha}{\operatorname{argmin}} E_{q_{\theta}(\mathbf{z})} \left[\log q_{\theta}(\mathbf{z}) \right] - E_{q_{\theta}(\mathbf{z})} \left[\log \tilde{p}_{\alpha}(\mathbf{z} \mid \mathbf{x}) \right]$$

$$= \operatorname*{argmax}_{ heta} \mathsf{ELBO}(q_{ heta})$$

ELBO as Objective Function

What does maximizing ELBO(q_{θ}) accomplish?

$$\begin{aligned} \mathsf{ELBO}(q_\theta) &= E_{q_\theta(\mathbf{z})} \left[\log p_\alpha(\mathbf{x}, \mathbf{z}) \right] - E_{q_\theta(\mathbf{z})} \left[\log q_\theta(\mathbf{z}) \right] \\ &\text{ 1. The first expectation is high if q_θ puts probability mass on the same values of \mathbf{z} that p_α puts probability mass of \mathbf{z} that p_α puts probability mass evenly
$$\begin{aligned} &\mathbf{z} \cdot \mathsf{The \ second \ term \ is \ the entropy \ of \ q_\theta \ and \ the entropy \ will \ be \ high \ if \ q_\theta \ spreads \ its \ probability \ mass \ evenly \end{aligned}$$$$

ELBO as lower bound

- For a DGM:
 - ELBO(q) is a lower bound for log p(x)
- For a UGM:
 - ELBO(q) is a lower bound for log Z(x)

<u>Takeaway</u>: in variational inference, we find the q that gives the **tightest bound** on the normalization constant for $p(z \mid x)$

Variational Inference

Whiteboard

- Evidence Lower Bound (ELBO)
- ELBO's relation to log p(x)