1. Recap of Gibbs Sampling and MH algorithm

MH algorithm summary
- Draws a sample x' from $Q(x'|x)$, where x is the previous sample.
- The new sample x' is accepted or rejected with some probability $A(x'|x) = \min(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)})$
- In case that Q is symmetric, i.e. $Q(x|x') = Q(x'|x)$ (Gaussian, etc.), the acceptance probability simplifies to $\min(1, \frac{P(x')}{P(x)})$

pseudo-code for M-H algorithm
1. Initialize starting state $x^{(0)}$, set $t = 0$
2. Burn-in: while samples have “not converged”:
 - $x = x^{(t)}$
 - $t = t+1$
 - sample $x^* \sim Q(x^*|x)$ (draw proposal)
 - sample $u \sim Uniform(0, 1)$ (draw acceptance threshold)
 - if $u < A(x^*|x)$: $x^{(t)} = x^*$ (accept, make state transition)
 - else: $x^{(t)} = x$ (reject, stay in current state)
3. Takes samples from $P(x)$: after observing convergence, do the same as 2 to sample from the distribution.

Gibbs sampling
- Let $x^{(1)}$ be the initial assignment to variables.
- Set $t = 1$
- while true:
 - for $i = 1...J$:
 * sample $x_i^{(t+1)} \sim p(x_i|x\{x_j^{(t)}(j \neq i)})$
 * set $x_i^{(t+1)}$ to $x_i^{(t)}$
 * $t = t+1$
2. Consider X_1, \ldots, X_n being i.i.d. Poisson(λ). Show that a Gamma(α, β) prior on λ is a conjugate prior, and find the posterior distribution.

Likelihood:

$$L(\lambda) = \prod_{i=1}^{n} \exp(-\lambda)\frac{\lambda^{x_i}}{x_i!} = \frac{\exp(-n\lambda)\lambda^{\sum x_i}}{\prod_{i} x_i!}$$

Prior:

$$p(\lambda) \sim Gamma(\alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}\lambda^{\alpha-1}\exp(-\beta \lambda)$$

Posterior:

$$p(\lambda) \propto L(\lambda)p(\lambda) \propto \lambda^{\sum x_i + \alpha - 1}$$

So $p(\lambda)$ is Gamma($\sum_i x_i + \alpha, n + \beta$)

3. Gibbs sampling can proceed either rotationally (sweeping through indices i) or randomly (by sampling i). For the purposes of this problem consider the version where i is sampled randomly with probability π_i. Show that Gibbs sampling satisfies detailed balance.

Detailed balance means that for each pair of states x and x', (1) arriving at x then x' and (2) arriving at x' then x are equiprobable. That is,

$$S(x' \leftarrow x)p(x) = S(x \leftarrow x')p(x').$$

First, let’s consider the transition probability $S(x' \leftarrow x)$. Since Gibbs sampling samples from the full conditionals, this probability is given by:

$$S(x' \leftarrow x) = \pi_i p(x'_i | x_{\setminus i})$$

Next, let’s compute the left hand side and right hand sides of the detailed balance equation separately.

LHS:

$$S(x' \leftarrow x)p(x) = \pi_i p(x'_i | x_{\setminus i})p(x)$$

$$= \pi_i p(x'_i | x_{\setminus i})p(x_i | x_{\setminus i})p(x_{\setminus i})$$

RHS:

$$S(x \leftarrow x')p(x') = \pi_i p(x_i | x'_i)p(x')$$

$$= \pi_i p(x_i | x'_i)p(x_i | x_{\setminus i})p(x_{\setminus i})$$

$$= \pi_i p(x_i | x_{\setminus i})p(x'_i | x_{\setminus i})p(x_{\setminus i})$$

$$= S(x' \leftarrow x)p(x)$$
where the second to last step follows from the observation that $x'_{i \setminus i} = x_{i \setminus i}$ because Gibbs sampling holds the other variables constant when updating the ith variable. Thus, detailed balance holds.

Note: to prove detailed balance for the version of Gibbs sampling where we sweep through indices i, we would consider the update after a full sweep.