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Instructions for Specific Problem Types

For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?

 Matt Gormley

# Marie Curie

# Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in
the new answer:

Select One: Who taught this course?

 Matt Gormley

# Marie Curie

��@@ Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are scientists?

■ Stephen Hawking

■ Albert Einstein

■ Isaac Newton

□ I don’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and
bubble in the new answer(s):

Select all that apply: Which are scientists?

■ Stephen Hawking

■ Albert Einstein

■ Isaac Newton

��@@■ I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully
included in the given space. You may cross out answers or parts of answers, but the final
answer must still be within the given space.

Fill in the blank: What is the course number?

10-418 10-��SS4618
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1 Short Questions

1. (1 point) Multiple Choice: Suppose we have a factor graph that is a tree and we hope
to do inference. What is the best approach we’ve learned?

⃝ Variational Inference

⃝ Belief Propagation

⃝ DAgger

⃝ Loopy Belief Propagation

Belief Propagation

2. (1 point) Multiple Choice: What flaw in structured prediction as search does DAgger
hope to fix?

⃝ DAgger fixes the assumption that the output space is a small set of actions.

⃝ DAgger fixes the assumption that we have access to a reliable expert.

⃝ DAgger fixes the assumptions that the distribution over test and train states
is the same.

The distribution over test and train states.

3. (1 point) True or False: The Naive Bayes Classifier and a Hidden Markov Model are
both examples of Bayesian Networks.

⃝ True

⃝ False

True

4. (1 point) True or False: Bayesian Networks and Markov Random Fields can express
the same types of distributions. The only reason to pick one over the other is computa-
tional efficiency.

⃝ True

⃝ False

False

5. (1 point) True or False: Markov Random Fields model p(y|x) and Conditional Ran-
dom Fields model p(y,x).

⃝ True

⃝ False

False. It’s the exact opposite.
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6. (1 point) Fill in the blank: The minimum Bayes risk (MBR) decoder for on a
conditional random field (CRF) is h(x) = argmaxŷ p(ŷ|x).

⃝ Hamming loss ℓ(ŷ,y) =
∑

v(1− 1(ŷv = yv))

⃝ 0− 1 loss ℓ(ŷ,y) = 1− 1(ŷ = y)

⃝ cross entropy loss ℓ(ŷ,y) =
∑

v yv log(ŷv)

⃝ None of the above

0− 1 loss ℓ(ŷ,y) = 1− 1(ŷ = y)
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2 Monte Carlo Methods and Markov Chains

1. (1 point) True or False: Monte Carlo methods can be used to generate samples from

a distribution p(x) = p̃(x)
Z

when the partition function Z is unknown.

⃝ True

⃝ False

True.

2. Suppose we employ Rejection Sampling to draw samples from p(x) where x ∈ RM using
a proposal distribution q(x).

(a) (1 point) True or False: Many samples will be rejected if the proposal distribution
is proportional to the true distribution (i.e. q(x) ∝ p(x)). Assume kq(x) ≥ p(x)
with k chosen to give as tight an upper bound as possible.

⃝ True

⃝ False

False

(b) (1 point) True or False: The sampling procedure will scale poorly as the dimen-
sionality M increases.

⃝ True

⃝ False

True

3. (1 point) Suppose you are given a first order Markov Chain over a series of random
variables Y1, Y2, Y3, . . .. Let P (Yt) be the marginal probability for variable Yt.

True or False: The equilibrium distribution of the Markov Chain is P ∗(Y ) if and only
if limt→∞ P (Yt) = P ∗(Y ).

⃝ True

⃝ False

True



10-418/10-618 Practice Problems 2 - Page 6 of 33 December 8, 2022

3 Gibbs Sampling

1. Consider the following joint probabilities for two random variables, X and Y .[
P (X = 0, Y = 0) P (X = 0, Y = 1)
P (X = 1, Y = 0) P (X = 1, Y = 1)

]
=

[
0.1 0.2
0.5 0.2

]
Given that this is our target distribution, you wish to design a Gibbs sampler to draw
samples from it. Below, define the four “full conditionals” required to build the Gibbs
sampler.

(a) (1 point) Numerical Answer: What is the full conditional P (X = 0|Y = 0)

(b) (1 point) Numerical Answer: What is the full conditional P (X = 1|Y = 0)

(c) (1 point) Numerical Answer: What is the full conditional P (X = 0|Y = 1)

(d) (1 point) Numerical Answer: What is the full conditional P (X = 1|Y = 1)

[
0.1/0.6 0.2/0.4
0.5/0.6 0.2/0.4

]
2. Consider a new distribution over four random variables P (Z1, Z2, Z3, Z4) for which you

build a Gibbs sampler.

(a) (1 point) Numerical Answer: Suppose you begin with the sample [z0, z1, z2, z3] =
[0, 0, 0, 0]. How many sampling steps are needed to transition to the sample [1, 1, 1, 1]
?

4

(b) (1 point) Short Answer: Describe or name a (closely related) sampling method
that can transition from [0, 0, 0, 0] to [1, 1, 1, 1] in a smaller number of steps.

blocked Gibbs sampling
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4 Metropolis-Hastings

1. Now let’s sample from a density π(x), x ∈ R, using the Metropolis-Hastings algorithm.
The proposal, at time n of the algorithm (with X0 = 0) is

Y = Xn−1 + σZn

with Zn ∼ N(0, 1) (normal distribution zero mean, unit variance), σ a known scaling
factor and Zn independent of all other variables for each time point n.

Hint: Recall that the density of a Gaussian with mean µ and variance σ2 is:

N (x|µ, σ2) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
(a) (2 points) Derivation: Write down the proposal density (i.e. given Xn−1 = x for

x fixed).

q(y|x) = 1

σ
√
2π

exp

(
−(x− y)2

2σ2

)

(b) (2 points) Derivation: Suppose that for the true density π(·) we have:

π(x) ∝ (1 + x2)−1

What is the acceptance probability of the Metropolis-Hastings algorithm associated
with the proposal in (a).

min

(
(1 + y2)−1

(1 + x2)−1
, 1

)
.

(c) (2 points) Short Answer: How does the performance of the sampler change as a
function of σ? (For simplicity, you can simply describe what happens with large
and small values of

σ
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.)

σ too large, probability of rejection is very high. Too small, it will proceed with
very small steps and therefore take a long time to cover the whole sample space
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5 Bayesian Inference

1. Suppose we wish to take a Bayesian approach to linear regression. We have data con-
sisting of feature vectors x ∈ RM and outputs y(i) ∈ R. We define our probability model
as follows:

p(y|x) = N (y|wTx, σ2)

We also impose a Gaussian prior over the parameters:

p(w) =
M∏

m=1

N (wm|0, τ 2)

Above, N is the pdf of a univariate Gaussian:

N (x|µ, σ2) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
(a) (2 points) Short Answer: Consider the distribution p(w|x,y). To what family

would this distribution belong?

Gaussian

(b) (1 point) Select all that apply: Suppose we are working with a prior such as the
Laplace distribution. Which of the following methods could be used to approximate
p(w|x,y)?

2 Variational Inference

2 MCMC

2 Structured SVM

2 None of the above

VI and MCMC.

2. (1 point) Select One: Select the best description of the goal of Bayesian inference.

⃝ To find a prior over parameters.

⃝ To find a MAP estimate of parameters.

⃝ To find an MLE estimate of parameters.

⃝ To find a posterior distribution over parameters.

To find a posterior distribution.



10-418/10-618 Practice Problems 2 - Page 10 of 33 December 8, 2022

6 Deep Learning

1. (1 point) True or False: Models that combine aspects of deep learning and graphi-
cal models typically result in inference-related intractabilities that render such models
useless to the machine learning practitioner.

⃝ True

⃝ False

False.

2. (2 points) Numerical Answer: Suppose you are given the grayscale 3x3 image in
Figure 1 and the parameters of a 2x2 convolution in Figure 2. (Note: the pixel values
of a grayscale image range from 0.0 (black) to 1.0 (white).)

0.5 0.0 1.0

1.0 1.0 1.0

1.0 0.0 0.0

Figure 1: Image

1 0

1 1

Figure 2: Convolution

You apply the convolution with stride 1 and no padding to the image to produce a 2x2
convolved image. Write the pixel values of the convolved image into Figure 3.

Figure 3: Convolved Output

2.5 2.0

2.0 1.0

3. (1 point) Select one: One of the key insights in ResNet was the use of residual con-
nections. Suppose you are building a neural network. One of the layers has input x
and produces output y = f(x), where f : RM → RM . Which of the following is an
augmentation of this layer with a residual connection? Below g(x) = Wx + b is linear
function of x with g(x) ∈ RM , λ ∈ R is a hyperparameter.

⃝ y = λf(x) + (1− λ)g(x)

⃝ y = f(x) + x

⃝ y = (xTx)f(x)
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⃝ y = λf(x) + (1− λ)y

⃝ None of the above

y = f(x) + x
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7 Variational Inference

1. (1 point) Select all that apply: Which of the multivariate Gaussian distributions in
Figure 4 can be perfectly recovered by a mean-field approximation?

Figure 4: 2d Gaussian distributions with different means and covariance matrices.

2 Gaussian in Part (a)

2 Gaussian in Part (b)

2 Gaussian in Part (c)

2 Gaussian in Part (d)

2 None of the above

(a), (b), and (d). Not (c).
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2. Assume that we have a ground truth distribution p(x, y) over variables x, y and we hope
to approximate it with the mean field approximation q(x, y) = q(x)q(y). Instead of
minimizing DKL(q||p) we opt to minimize DKL(p||q).

Recall that the KL-divergence between two discrete distributions p and q is as follows:

DKL(p∥q) =
∑
x

p(x) log
p(x)

q(x)

(a) (3 points) Derivation: Show that the KL-divergence DKL(p(x, y)||q(x, y)) can be
written as a sum of KL-divergences between marginals of p and q plus some constant
(by constant, we mean a term involving p only).
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DKL(p∥q) =
∑
x,y

p(x, y) log
p(x, y)

q(x)q(y)
(1)

=
∑
x,y

p(x, y) log p(x, y)−
∑
x,y

p(x, y) log q(x)−
∑
x,y

p(x, y) log q(y) (2)

=
∑
x,y

p(x, y) log p(x, y)−
∑
x

p(x) log q(x)
∑
y

p(y|x)−
∑
y

p(y) log q(y)
∑
x

p(x|y)

(3)

=
∑
x,y

p(x, y) log p(x, y)−
∑
x

p(x) log q(x)−
∑
y

p(y) log q(y) (4)

= constant+
∑
x

(p(x) log p(x)− p(x) log q(x)) +
∑
y

(p(y) log p(y)− p(y) log q(y))

(5)

= constant +
∑
x

p(x) log
p(x)

q(x)
+
∑
y

p(y) log
p(x)

q(y)
(6)

= constant +KL(p(x)||q(x)) +KL(p(y)||q(y)) (7)

(b) (2 points) Short Answer: Argue that the equality you derived above implies that
KL(p(x, y) | q(x, y)) is minimized when q(x) = p(x) and q(y) = p(y).

The argmin of KL(p||q) is when p equals q. Thus we acheive the minimum of the
sum of these two KL’s of marginals when q(x) = p(x) and q(y) = p(y).
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3. (2 points) Short Answer: Suppose we wanted to use variational inference to model
a probability distribution over real-world photographs. If we only want to generate
realistic images, would it be better to optimize the standard KL-divergence, DKL(p∥q),
or the ”reverse” KL-divergence, DKL(q∥p)? Explain why.

Minimizing the standard KL-divergence incentivizes placing probability mass every-
where that the true distribution places mass. The reverse KL-divergence incentivizes
not putting probability anywhere that the true distribution doesn’t place mass. For this
task we would want to use the reverse KL.
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8 Expectation Maximization

These questions were never actually used on a 10-418/10-618 exam, but they are still a nice
review of the basics around EM.

1. Let’s see how to run expectation maximization for a simple problem! Assume you have
two biased dice, Red and Blue, which are two-sided (i.e. they can only roll values
{0, 1}), with parameters θred and θblue. Here, θred = P(Red = 1) and θblue = P(Blue =
1). Consider the following dice-throw procedure:

1. Choose a dice from (Red, Blue)

2. Toss the chosen dice and record the observation.

This procedure is run i times. Assume variables zi1 and zi2 record which dice was chosen
in step 1 at the ith toss. If zi1 = 1, the red dice is chosen. If zi2 = 1, the blue dice is
chosen. Binary variables oi record the outcome of the toss. If the dice lands on 0, oi = 0
and if the dice lands on 1, oi = 1.

(a) (2 points) Numerical Answer: Suppose you run this procedure 5 times, result-
ing in the sequence of dice choices {Red, Red, Blue, Blue, Red} and observations
{1, 0, 1, 1, 0}. Compute the MLE estimates for θred and θblue.

Parameter Estimate
θred
θblue

Parameter Estimate
θred 1/3
θblue 1

(b) (4 points) Numerical Answer: Now assume that we do not observe the zi1 and
zi2 variables. This means that at each toss, we do not know which dice was used to
make the toss. In this scenario, we need to use expectation maximization to esti-
mate parameters. In the E-step, we compute the expected values of latent variables
zi1, zi2 after fixing parameters θred, θblue. For our model, the E-step estimates are as
follows:

Ep(Z|O)[zi1] =
θoired(1− θred)

(1−oi)

θoired(1− θred)(1−oi) + θoiblue(1− θblue)(1−oi)
(8)

Ep(Z|O)[zi2] =
θoiblue(1− θblue)

(1−oi)

θoired(1− θred)(1−oi) + θoiblue(1− θblue)(1−oi)
(9)

(10)
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Assume θred = 1
4
, θblue = 2

3
. For the sequence of observations {1, 0}, compute the

E-step estimates for zi1 and zi2

Parameter Estimate
z01
z02
z11
z12

Parameter Estimate
z01 3/11
z02 8/11
z11 9/13
z12 4/13

(c) (2 points) Numerical Answer: After computing E-step estimates for the latent
variables zi1 and zi2, in the M-step, we use the estimates to find values for param-
eters θred, θblue which maximize the likelihood of the data. For our model, M-step
parameter estimates are computed as follows:

θred =

∑
i Ep(Z|O)[zi1]oi∑
i Ep(Z|O)[zi1]

(11)

θblue =

∑
i Ep(Z|O)[zi2]oi∑
i Ep(Z|O)[zi2]

(12)

Given E-step estimates zi1 = {4/5, 1/3} and zi2 = {1/5, 2/3} and the observation
sequence {0, 1}, compute the parameter estimates for θred and θblue.

Parameter Estimate
θred
θblue

Parameter Estimate
θred 5/17
θblue 10/13
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9 Learning with Partial Observations

1. (2 points) Short answer: Suppose we have a tree-shaped factor graph defining a CRF
over 7 output variables conditioned on 3 input variables. At training time, you only
observe the values of 5 of the output variables. To train you optimize the marginal
likelihood of the observed output variables given the inputs using SGD. How many
times must you run belief propagation to compute each stochastic gradient? Briefly
justify your answer.

2. Once for the numerator (clamped factor graph), once for the denominator (unclamped
factor graph).

2. Suppose you wish to run Variational EM for a true distribution pα(x, z) with a variational
approximation qθ(z).

(a) (1 point) Select all that apply: Which of the following describe the Variational
E-Step?

2 keep θ fixed and update α

2 keep α fixed and update θ

2 run variational inference to minimize KL(qθ||pα)

2 improve Eqθ [log pα(x, z)] by adjusting α

2 None of the above

B and C

(b) (1 point) Select all that apply: Which of the following describe the Variational
M-Step?

2 keep θ fixed and update α

2 keep α fixed and update θ

2 run variational inference to minimize KL(qθ||pα)

2 improve Eqθ [log pα(x, z)] by adjusting α

2 None of the above

A and D
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3. Answer the following questions based on your understanding of variational expectation
maximization (EM) algorithm.

(a) (1 point) True or False: Variational EM will always converge to the global opti-
mum.

⃝ True

⃝ False

False

(b) (1 point) True or False: EM is the special case of Variational EM, where the true
distribution is contained within the variational family.

⃝ True

⃝ False

True
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10 Deep Generative Models

Some of these questions are out-of-scope: We did not cover Boltzmann Machines or Sigmoid
Belief Networks or Contrastive Divergence.

1. (1 point) True or False: In a variational autoencoder the decoder pϕ(x | z) can always
be characterized as a Gaussian where the mean and variance are given by a neural
network with parameters ϕ.

⃝ True

⃝ False

False

2. (1 point) True or False: The purpose of the reparameterization trick in a varitional
autoencoder is to obtain a polynomial factor speedup of the backpropagation algorithm.

⃝ True

⃝ False

False

3. (1 point) Select all that apply: For which of the following models can we in general
compute the partition function in polynomial time?

2 Restricted Boltzmann Machine

2 Boltzmann Machine

2 Sigmoid Belief Network

2 Deep Boltzmann Machine

2 None of the above

Only the Sigmoid Belief Network. It’s a Bayesian network and so the partition function
is 1.0.

4. Suppose we wish to learn a latent variable model p(v,h) = p(v | h)p(h) where p(h) ∼
N (0,Σ) and p(v | h) ∼ N (MLP(h,θ), I). MLP(h,θ) is a feed-forward neural network
with D input units, three hidden layers, and M output units. In the training data we
only observe the visible variables v ∈ RM , not the hidden variables h ∈ RD. Now you
want to learn the parameters θ and Σ.

(a) (2 points) Short answer: You try training by contrastive divergence. Will this
approach work? If so, briefly describe one iteration of training. If not, explain why
not.
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No, this would not work. You would need to compute the full conditional p(h|v)
in order to run the one step Gibbs sampler, but the full conditional is intractable
to compute. because of the MLP.

Another valid solution would be that this does work and we can use contrastive
divergence but instead of using a Gibbs sampler, we have to swap in some other
suitable MCMC approach (e.g. Metropolis Hastings).
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(b) (2 points) Short answer: You try training by variational EM. Will this approach
work? If so, briefly describe a suitable variational approximation. If not, explain
why not.

Yes, this works fine and is much like any variational autoencoder. You could use a
variational approximation q(v,h) =

∏D
i=1 q(vi;λi)

∏M
j=1 q(hi; τj) where each q(vi;λi)

and q(hi; τj) is a Gaussian.
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11 MAP Inference and MILP

1. (1 point) True or False: The simplex algorithm returns a global optimum of an integer
linear program.

⃝ True

⃝ False

False. Branch-and-bound is the standard algorithm used to solve integer linear programs.

2. (1 point) Select all that apply: Which of the following algorithms can be used to
perform MAP inference?

2 Integer Linear Programming

2 Belief Propagation

2 Variational Inference

2 None of the above

All three (ILP, Belief Propagation, Variational Inference) can be used to perform MAP
inference.

3. (1 point) True or False: In general, MAP inference is NP-hard and marginal inference
is #P-hard.

⃝ True

⃝ False

True
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4. Suppose we define a Bayesian Network over two random variables, X1 and X2 (as shown
in figure 5) to generate binary strings of length 2. That is, X1 ∈ 0, 1 and X2 ∈ 0, 1.

X1 X2

Figure 5: Bayesian Network

We further define a set of binary node indicator variables xi,c for i ∈ 1, 2 and c ∈ 0, 1. If
xi,0 = 1, variable Xi is assigned to value 0. If xi,1 = 1, variable Xi is assigned to value
1. For this model, answer the following questions:

(a) (2 points) Short Answer: Write a constraint to ensure that each variable Xi takes
on only one value. (Note: Such constraints can also be called sanity constraints
since they ensure that you do not get invalid configurations.)

∑
c

xi,c = 1,∀i ∈ {1, 2} (13)

(b) (3 points) Short Answer: Now we define a set of binary edge indicator variables
yc,d with c ∈ {0, 1} and d ∈ {0, 1} to represent the joint assignment of X1 and X2 in
the Bayesian Network. That is, yc,d = 1 if X1 = c and X2 = d, yc,d = 0 otherwise.
Define any necessary sanity constraints and constraints to ensure that node and
edge indicator variables maintain consistent assignments.

We will have a set of 4 binary indicator variables corresponding to 4 possible config-
urations i.e. y00, y01, y10, y11. These variables need to be subjected to the following
constraints:

y00 + y01 + y10 + y11 = 1 (14)

yab ≤ x1,a (15)

yab ≤ x2,b, ∀a ∈ {0, 1}, b ∈ {0, 1} (16)
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(c) (3 points) Short Answer: Assume that node X1 is governed by a Bernoulli dis-
tribution with parameter p (i.e. P (X1 = 1) = p). The conditional distribu-
tion over X2 given X1 is governed by the transition probability matrix Q, where
P (X2 = b|X1 = a) = qab and

Q =

[
q00 q01
q10 q11

]
Given these probabilities, write the MAP inference problem as an ILP. (You need
not repeat the constraints from previous parts, defining the objective is enough.)

Solve the objective:

max log px1,1 + log(1− p)x1,0 +
1∑

a=0

1∑
b=0

yab ∗ log qab (17)
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12 Structured Perceptron and Structured SVM

1. Let’s look at building structured perceptron and structured SVM models for the POS
tagging task (i.e. assigning a part-of-speech tag to every word in a given sequence).
Assume that the set of POS tags for our task is Y = {N, V }. Throughout this question,
we will stick with the first-order Markov assumption i.e. the tag yi for a word xi is only
dependent on the tag yi−1 for the previous word xi−1. Additionally assume that each
word xi only influences the assignment of its own tag yi.

A linguist defines some feature functions for you ϕwt and ϕtt. The linguist merely informs
you that ϕwt(xi, yi) ∈ R is a feature value for when tag yi is assigned to word xi and that
ϕtt(yi−1, yi) ∈ R is the feature value for when tag yi follows tag yi−1 in the sequence.

You build a linear model using these feature functions. Assume that weights Wwt(xi, yi)
and Wtt(yi−1, yi) are the weights corresponding to word-tag and tag pair assignments.
Given this setup, the task of computing the best POS tag sequence can be formulated
as a MAP inference problem with the following objective for a sequence of length N :

argmax
y1,...,yN

N∑
i=1

Wwt(xi, yi)ϕwt(xi, yi) +
N∑
i=2

Wtt(yi−1, yi)ϕtt(yi−1, yi) (18)

Our word vocabulary is the set W = {Dogs, fly}. Consider the following scoring func-
tions and weights:

N V

Dogs 2 1
fly 1 1

(a) ϕwt

N V

N 0 1
V 1 -1

(b) ϕtt

N V

Dogs 1 1
fly 1 1

(a) Wwt

N V

N 0 1
V 1 0

(b) Wtt

Read entries in the ϕtt and Wtt tables as (yi−1, yi). For example, the element at position
(N, V ) refers to the score for the assignment yi−1 = N, yi = V .

Finally, suppose that we want to tag the sentence x = [x1, x2]: “Dogs fly” with ground
truth tagging y = [y1, y2] = [N, V ].
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(a) (2 points) Numerical Answer: Compute the scores of all possible output tag
sequences under MAP inference

Sequence Score
NN
NV
VN
VV

Sequence Score
NN 3
NV 4
VN 3
VV 2

(b) (2 points) Numerical Answer: Compute the scores of all possible output tag
sequences under Loss-Augmented inference. Use unnormalized Hamming loss.

Sequence Score
NN
NV
VN
VV

Sequence Score
NN 4
NV 4
VN 5
VV 3

2. Recall that the update rule for structured perceptron and structured SVM can be writ-
ten as:

w← w + ϕ(x,y∗)− ϕ(x, ŷ)− λw (19)

where w = (Wwt,Wtt) is the set of weights, y∗ is the correct sequence of tags, ŷ is
the sequence of tags returned by the appropriate inference method and ϕ is our feature
function. For the structured perceptron case, λ = 0.

(a) (1 point) Select One: Which tag sequence will be chosen as ŷ during structured
perceptron training?

⃝ NN

⃝ NV

⃝ VN
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⃝ VV

(N, V ) using the best scoring structure under MAP inference

(b) (1 point) Select One: Which tag sequence will be chosen as ŷ during structured
SVM training?

⃝ NN

⃝ NV

⃝ VN

⃝ VV

(V,N) using the best scoring structure under LAI
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3. (1 point) Select all that apply: Consider a POS-tagging model with a tag set of size
2, i.e. {0, 1}. which of the following loss functions can be used as a replacement for
hamming loss in loss-augmented inference?

2 Elementwise Cross-Entropy Loss

2 Elementwise Squared Error

2 Edit Distance

2 None of the above

Elementwise MSE, Edit Distance since both can compute distance between optimal
assignments in label space
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13 Bayesian Nonparametrics

We did not cover the stick-breaking construction or the Indian Buffet Process (IBP); they
are out of scope.

1. (1 point) True or False: Bayesian nonparametric models do have parameters, but the
number of parameters in use can grow or shrink with the dataset.

⃝ True

⃝ False

True

2. (1 point) True or False: If a distribution is independent and identically distributed,
then it is also exchangeable.

⃝ True

⃝ False

True. (The opposite is not true: exchangeable does not imply i.i.d.)

3. (2 points) Select all that apply: Which of the following are constructions of the
Dirichlet Process?

2 Chinese Restaurant Franchise

2 Stick breaking construction

2 Chinese Restaurant Process

2 Dirichlet process mixture model

2 Polya Urn Scheme

2 None of the above

Stick breaking construction, Chinese Restaurant Process, Polya Urn Scheme

4. (1 point) Short answer: Describe one modeling advantage that a (Gaussian) Dirichlet
Process Mixture Model (DPMM) has over a Gaussian Mixture Model (GMM).

The DPMM can adaptively learn the appropriate number of clusters, whereas the GMM
requires the number of clusters to be set as a hyperparameter.
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5. (1 point) True or False: Suppose we define a distribution over binary matrices p(Z | α)
that follows the exchangeable Indian Buffet Process with Poisson strength parameter α.
To draw a sample left-ordered-form matrix Z from this distribution, you must resort to
approximate inference techniques such as Gibbs sampling or variational inference.

⃝ True

⃝ False

False. Approximate inference would only be necessary if the model incorporated some
observed variables.

6. (1 point) Select all that apply: Now suppose we define a distribution over binary
matrices p(Z | α) that follows the exchangeable Indian Buffet Process with Poisson
strength parameter α and where Z has N rows. Given that α + N = 6, which of the
following would lead to the greatest number of non-zero entries in expectation? (You
may select multiple if there is a tie.)

2 α = 1, N = 5

2 α = 2, N = 4

2 α = 3, N = 3

2 α = 4, N = 2

2 α = 5, N = 1

2 None of the above

α = 3, N = 3 since the number of expected ones is αN

7. Numerical answer: Suppose you have a sample from a Chinese Restaurant Process
with strength parameter α = 4, as shown in Figure 6. The tables are numbered circles.
There are three customers at table 1, two at table 2, and one at table 3.

1 32 …

Figure 6

(a) (1 point) What is the probability of the next (i.e. 7th) customer sitting at table 1?

3/10
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(b) (1 point) What is the probability of the next (i.e. 7th) customer sitting at table 3?

1/10

(c) (1 point) What is the probability of the next (i.e. 7th) customer sitting at a new
table?

4/10
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