Ex: Unsupervised POS Tagging

Given: sentences only (concatenated together)
Goal: infer tags for unlabeled sentences
Model: Bayesian HMM

\[\log p(x|z) = \log \mathbb{E}_z p(x,z|\alpha) = \log \mathbb{E}_z \mathbb{E}_r p(\omega, \xi, \phi_e, \phi_r | \beta_e, \beta_r) \]

Taming Objective

Using the ELBO:

\[\log p(x|\alpha) \geq \text{ELBO}(q_\theta) = E_{q_\theta} [\log p(x,z)] - E_{q_\theta} [\log q_\theta(z)] \]

\[= E_{q_\theta} [\log p(\omega, \xi, \phi_e, \phi_r | \beta_e, \beta_r)] - E_{q_\theta} [\log q_\theta(t, \phi_e, \phi_r)] \]

Variational Inference gives:

\[q_\theta(z) \approx p(x|z) \Rightarrow q_\theta(\xi) \approx p(\xi|\beta) \quad q_\theta(\phi_e) \approx p(\phi_e|\beta) \quad q_\theta(\phi_r) \approx p(\phi_r|\beta) \]

Problem: How to estimate \(\alpha \)?

New Idea: Jointly find \(p(x) \) and \(q_\theta \) to make ELBO as large as possible.

Two Approximation:

1. **Approximate Learning:** choosing \(\alpha \) for \(p \) can't compute / by assumption
Approximations:

1. Approximate Learning: choosing α for p
 - really want to maximize $\log p(x | \alpha)$
 - instead maximize a variational lower bound

2. Approximate Inference: choosing Θ for q
 - after reaching a (local) maximum of (p_x, q_θ)
 query q_θ approximately about z
 \(\text{because directly querying } p_x \text{ about } z \text{ is intractable} \)

 Key Idea: jointly optimize ELBO as a function of both α and Θ

Variational EM

Apply Block Coordinate Ascent to ELBO

Algorithm:
- While not converged:
 1. Variational E-step:
 - adjust q_Θ given current p_x
 - i.e. run VI to minimize $KL(q_\theta \| p_x)$ for Θ only
 - maximize ELBO($q_\theta; p_x$)
 - $\Theta = \arg\max_\Theta \text{ELBO}(q_\theta; p_x) = \text{run-variational-inf}(q_\theta; p_x)$
 2. Variational M-step:
 - adjust p_x given current q_θ
 - i.e. improve $\text{ELBO}(q_\theta; p_x)$ for α only
 - only one term involves α
 - $\alpha = \arg\max_\alpha \text{ELBO}(q_\theta; p_x) = \text{argmax}_\alpha E_{q_\theta}[\log p_x(x, z)]$

Key Difference between Standard EM and Variational EM

We say that the "variational gap" in Standard EM is zero,

i.e. $\alpha(z)$ perfectly estimates $p_z(z | x)$
Standard EM is zero.

i.e. \(q_{\Theta}(z) \) perfectly estimates \(p_{\Theta}(z|x) \).