Causal Inference

+ Bayesian Nonparametrics
Reminders

• Homework 6: VAE + Structured SVM
 – Out: Wed, Nov 16
 – Due: Wed, Nov 30 at 11:59pm

• 10-618 Mini-Project
 – Team Formation Due: Tue, Nov 29
 – Proposal Due: Thu, Dec 1
 – Summary & Code Due: Fri, Dec 9
CAUSAL INFERENCE
Causal Hierarchy

Figure 1. The causal hierarchy. Questions at level 1 can be answered only if information from level i or higher is available.

<table>
<thead>
<tr>
<th>Level (Symbol)</th>
<th>Typical Activity</th>
<th>Typical Questions</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Association $P(y</td>
<td>x)$</td>
<td>Seeing</td>
<td>What is? How would seeing X change my belief in Y?</td>
</tr>
<tr>
<td>2. Intervention $P(y</td>
<td>do(x), z)$</td>
<td>Doing, Intervening</td>
<td>What if? What if I do X?</td>
</tr>
<tr>
<td>3. Counterfactuals $P(y</td>
<td>lx', y')$</td>
<td>Imagining, Retrospection</td>
<td>Why? Was it X that caused Y? What if I had acted differently?</td>
</tr>
</tbody>
</table>

Table from Pearl (2018)
Causal Models

Whiteboard:

- Structural Causal Models
 - Example: Linear SCM (structural equation model)
 - Example: Nonparametric SCM
 - Intervention
 - Graphical model induced by SCM
- Post-Intervention Distribution vs. Conditional Distribution
- Treatment Efficacy
 - average difference
 - experimental risk ratio
Identification

Identification:
– whether the causal effects are **identifiable**
– **the central question** in analysis of causal effects

Can the post-intervention distribution \(p(y \mid do(x_0)) \) *be estimated by data sampled from the pre-intervention distribution* \(p(x, y, z) \)?

Yes! (Sometimes.)

Case 1: when the model \(M \) is acyclic with all error terms \((U_X, U_Y, U_Z)\) jointly independent, **all causal effects are identifiable.**

Case 2: when we can **marginalize out the causal effects**
Causal Markov Theorem

Theorem 1 (The Causal Markov Condition). Any distribution generated by a Markovian model M can be factorized as:

$$P(v_1, v_2, \ldots, v_n) = \prod_i P(v_i | pa_i)$$ \hspace{1cm} (15)

where V_1, V_2, \ldots, V_n are the endogenous variables in M, and pa_i are (values of) the endogenous “parents” of V_i in the causal diagram associated with M.

Corollary 1 (Truncated factorization). For any Markovian model, the distribution generated by an intervention $do(X = x_0)$ on a set X of endogenous variables is given by the truncated factorization

$$P(v_1, v_2, \ldots, v_k | do(x_0)) = \prod_{i | V_i \not\in X} P(v_i | pa_i) |_{x=x_0}$$ \hspace{1cm} (17)

where $P(v_i | pa_i)$ are the pre-intervention conditional probabilities.\(^8\)
Identification

Example: Model M
(error terms not shown)

Pre-intervention distribution:
\[P(x, z_1, z_2, z_3, y) = P(z_1)P(z_2)P(z_3|z_1, z_2)P(x|z_1, z_3)P(y|z_2, z_3, x) \]

Post-intervention distribution:
\[P(z_1, z_2, z_3, y|do(x_0)) = P(z_1)P(z_2)P(z_3|z_1, z_2)P(y|z_2, z_3, x_0) \]

Causal effect of X on Y:
\[P(y|do(x_0)) = \sum_{z_1, z_2, z_3} P(z_1)P(z_2)P(z_3|z_1, z_2)P(y|z_2, z_3, x_0) \]

1. All of the terms in the post-intervention distribution are from the pre-intervention distribution
2. Those terms could be learned from observational data

Figures from Pearl (2009)
Identification

Identification:

– whether the causal effects are **identifiable**
– the central question in analysis of causal effects

Can the post-intervention distribution $p(y \mid \text{do}(x_o))$ be estimated by data sampled from the pre-intervention distribution $p(x, y, z)$?

Yes! (Sometimes.)

Case 1: when the model M is acyclic with all error terms (U_x, U_y, U_z) jointly independent, all causal effects are **identifiable**.

Case 2: when we can **marginalize out the causal effects**
Unmeasured Confounders

Example: Model M
(error terms not shown)

Suppose in our previous identifiability example, we didn’t observe z_2 in our data. Can we still estimate $p(y \mid \text{do}(x_0))$?

Pre-intervention distribution:

$$P(x, z_1, z_2, z_3, y) = P(z_1)P(z_2)P(z_3 \mid z_1, z_2)P(x \mid z_1, z_3)P(y \mid z_2, z_3, x)$$

Post-intervention distribution:

$$P(z_1, z_2, z_3, y \mid \text{do}(x_0)) = P(z_1)P(z_2)P(z_3 \mid z_1, z_2)P(y \mid z_2, z_3, x_0)$$

Causal effect of X on Y:

$$P(y \mid \text{do}(x_0)) = \sum_{z_1, z_2, z_3} P(z_1)P(z_2)P(z_3 \mid z_1, z_2)P(y \mid z_2, z_3, x_0)$$

$$P(y \mid \text{do}(x_0)) = \sum_{z_1, z_3} P(z_1)P(z_3 \mid z_1)P(y \mid z_1, z_3, x_0)$$

Figures from Pearl (2009)
Unmeasured Confounders

• Suppose we wish to measure causal effect of X on Y
• But some confounding variables are unmeasurable (e.g. genetic trait) and some are measureable (e.g. height)
• How to pick an admissible set of confounders which, if measured, would enable inference?

Definition 3 (Admissible sets – the back-door criterion). A set S is admissible (or “sufficient”) for adjustment if two conditions hold:

1. No element of S is a descendant of X
2. The elements of S “block” all “back-door” paths from X to Y, namely all paths that end with an arrow pointing to X.

Definition 1 (d-separation). A set S of nodes is said to block a path p if either
(i) p contains at least one arrow-emitting node that is in S, or (ii) p contains at least one collision node that is outside S and has no descendant in S. If S blocks all paths from X to Y, it is said to “d-separate X and Y,” and then, X and Y are independent given S, written $X \perp Y | S$.

Figures from Pearl (2009)
Unmeasured Confounders

- Suppose we wish to measure causal effect of X on Y
- But some confounding variables are unmeasurable (e.g. genetic trait) and some are measurable (e.g. height)
- How to pick an admissible set of confounders which, if measured, would enable inference?

Definition 3 (Admissible sets – the back-door criterion). A set S is admissible (or “sufficient”) for adjustment if two conditions hold:

1. No element of S is a descendant of X
2. The elements of S “block” all “back-door” paths from X to Y, namely all paths that end with an arrow pointing to X.

Based on this criterion we see, for example, that the sets $\{Z_1, Z_2, Z_3\}$, $\{Z_1, Z_3\}$, $\{W_1, Z_3\}$, and $\{W_2, Z_3\}$, each is sufficient for adjustment, because each blocks all back-door paths between X and Y. The set $\{Z_3\}$, however, is not sufficient for adjustment because, as explained above, it does not block the path $X \leftarrow W_1 \leftarrow Z_1 \rightarrow Z_3 \leftarrow Z_2 \rightarrow W_2 \rightarrow Y$.

Figures from Pearl (2009)
EXAMPLE: IDENTIFYING CAUSAL EFFECT
Simpson’s Paradox

<table>
<thead>
<tr>
<th></th>
<th>Treatment A</th>
<th>Treatment B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Stones</td>
<td>Group 1 93% (81/87)</td>
<td>Group 2 87% (234/270)</td>
</tr>
<tr>
<td>Large Stones</td>
<td>Group 3 73% (192/263)</td>
<td>Group 4 69% (55/80)</td>
</tr>
<tr>
<td>Both</td>
<td>78% (273/350)</td>
<td>83% (289/350)</td>
</tr>
</tbody>
</table>

Figure from Kun Zhang’s Spring 2019 10-708 Guest Lectures
For people with Small Stones, 93% of those who received Treatment A recovered; but only 87% of those who received Treatment B recovered.

For people with Large Stones, 73% of those who received Treatment A recovered; but only 69% of those who received Treatment B recovered.

So Treatment A is better than Treatment B right?

Not quite! Because if you look at both groups, 83% of those who received Treatment B recovered vs only 78% of those with Treatment A.

The problem is HOW the data was collected: i.e. the doctor’s looked at stone size when selecting Treatment A or B.

Figure from Kun Zhang’s Spring 2019 10-708 Guest Lectures
Identification of Causal Effects

- "Golden standard": randomized controlled experiments
- **All the other factors** that influence the outcome variable are either fixed or vary at random, so any changes in the outcome variable must be due to the controlled variable

- Usually expensive or impossible to do!
Identification of Causal Effects

Whiteboard:

– Stone-size example:
 • Model 1: path diagram for randomized control trial
 • Model 2: path diagram for observational data
 • Model 3: path diagram for intervention
Identification of Causal Effects: Example

\[P(R|T) = \sum_S P(R|T, S)P(S|T) \]

\[P(R|do(T)) = \sum_S P(R|T, S)P(S) \]

Conditioning vs. manipulating
Identification of Causal Effects: Example

\[P(R \mid \text{do}(T)) = \sum_S P(R \mid T, S)P(S) \]

conditioning vs. manipulating
Identification of Causal Effects: Example

<table>
<thead>
<tr>
<th></th>
<th>Treatment A</th>
<th>Treatment B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Stones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1</td>
<td>93% (81/87)</td>
<td></td>
</tr>
<tr>
<td>Group 2</td>
<td>87% (234/270)</td>
<td></td>
</tr>
<tr>
<td>Large Stones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 3</td>
<td>73% (192/263)</td>
<td></td>
</tr>
<tr>
<td>Group 4</td>
<td>69% (55/80)</td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td>78% (273/350)</td>
<td>83% (289/350)</td>
</tr>
</tbody>
</table>

\[
P(R \mid do(T)) = \sum_S P(R \mid T, S)P(S)
\]

\[
P(R \mid T) = \sum_S P(R \mid T, S)P(S \mid T)
\]

conditioning vs. **manipulating**

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
Identification of Causal Effects: Example

\[P(R \mid do(T)) = \sum_S P(R \mid T, S) P(S) \]

\[P(R \mid T) = \sum_S P(R \mid T, S) P(S \mid T) \]

conditioning vs. manipulating
COUNTERFACTUAL INFERENCE
Counterfactual Inference vs. Prediction

• Suppose $X \rightarrow Y$ with $Y = \log(X + E + 3)$. For an individual with (x,y), what would Y be if X had been x'?
Counterfactual Inference vs. Prediction

- Suppose $X \rightarrow Y$ with $Y = \log(X + E + 3)$. For an individual with (x, y), what would Y be if X had been x'?
Suppose $X \rightarrow Y$ with $Y = \log(X + E + 3)$. For an individual with (x, y), what would Y be if X had been x'?

Step 1: find $e = \exp(y) - x - 3$.

Step 2: Set $X = x'$.

Step 3: Find $Y = \log(x' + e + 3)$.
Standard Counterfactual Questions

• We talk about a particular situation (or unit) \(U = u \), in which \(X = x \) and \(Y = y \)

• What value would \(Y \) be had \(X \) been \(x' \) in situation \(u \)? I.e., we want to know \(Y_{X=x'}(u) \), the value of \(Y \) in situation \(u \) if we do(\(X = x' \))

• \(u \) is not directly observable, so instead

\[
P(Y_{X=x'} \mid X = x, Y = y)
\]

For identification of causal effects, \(U \) is randomized. It is fixed for counterfactual inference.
Counterfactual Inference

- Three steps
 - Abduction: find $P(U \mid \text{evidence})$
 - Action: Replace the equation for X by $X = x'$
 - Prediction: Use the modified model to predict Y

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
CAUSAL DISCOVERY
Causal Discovery

• Goal:
 – Find a path diagram (i.e. causal model) that is best supported by the data

• Key Idea:
 – find causal structures that are consistent (in a d-separation sense) with the set of conditional independencies supported by the data

• Where to learn more?
 – Kun Zhang (CMU, Philosophy / ML) guest lectures from Spring 2020 10-708:
 http://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html
Causal Structure vs. Statistical Independence (SGS, et al.)

Causal Markov condition: each variable is ind. of its non-descendants (non-effects) conditional on its parents (direct causes)

Faithfulness: all observed (conditional) independencies are entailed by Markov condition in the causal graph

Recall: \(Y \perp Z \iff P(Y|Z) = P(Y); Y \perp Z | X \iff P(Y|Z,X) = P(Y|X) \)

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
Constraint-Based vs. Score-Based

- **Constraint-based methods**

 - [Table]

- **Score-based methods**

 - [Diagram]

Which one is the best?

(Score may be BIC, AIC, etc.)
A CONUNDRUM: HOW TO PICK THE NUMBER OF LATENT CLUSTERS?
K-Means Algorithm

• **Given** unlabeled feature vectors
 \[D = \{ x^{(1)}, x^{(2)}, \ldots, x^{(N)} \} \]

• **Initialize** cluster centers \(c = \{ c^{(1)}, \ldots, c^{(K)} \} \)
 and cluster assignments \(z = \{ z^{(1)}, z^{(2)}, \ldots, z^{(N)} \} \)

• **Repeat** until convergence:
 – for \(j \) in \(\{1, \ldots, K\} \)
 \[c^{(j)} = \text{mean of all} \text{ points assigned to cluster } j \]
 – for \(i \) in \(\{1, \ldots, N\} \)
 \[z^{(i)} = \text{index } j \text{ of cluster center nearest to } x^{(i)} \]
Example: GMM

Clustering with GMM (k=3, init=random, cov=spherical, iter=13)
The 54/40' boundary dispute is still unresolved, and Canadian and US Coast Guard vessels regularly if infrequently detain each other's fish boats in the disputed waters off Dixon...

In the year before Lemieux came, Pittsburgh finished with 38 points. Following his arrival, the Pens finished...

The Orioles' pitching staff again is having a fine exhibition season. Four shutouts, low team ERA, (Well, I haven't gotten any baseball...
Familiar models for unsupervised learning:

1. K-Means
2. Gaussian Mixture Model (GMM)
3. Latent Dirichlet Allocation (LDA)

But without labeled data, how do we know the right number of clusters / topics?
Outline

• Motivation / Applications
• Background
 – de Finetti Theorem
 – Exchangeability
 – Agglomerative and decimative properties of Dirichlet distribution
• CRP and CRP Mixture Model
 – Chinese Restaurant Process (CRP) definition
 – Gibbs sampling for CRP-MM
 – Expected number of clusters
• DP and DP Mixture Model
 – Ferguson definition of Dirichlet process (DP)
 – Stick breaking construction of DP
 – Uncollapsed blocked Gibbs sampler for DP-MM
 – Truncated variational inference for DP-MM
• DP Properties
• Related Models
 – Hierarchical Dirichlet process Mixture Models (HDP-MM)
 – Infinite HMM
 – Infinite PCFG
BAYESIAN NONPARAMETRICS
Parametric vs. Nonparametric

Parametric models:
- **Finite** and **fixed** number of parameters
- Number of parameters is **independent of the dataset**

Nonparametric models:
- **Have** parameters (**“infinite dimensional”** would be a better name)
- Can be understood as having an **infinite** number of parameters
- Can be understood as having a **random** number of parameters
- Number of parameters can **grow with the dataset**

Semiparametric models:
- Have a **parametric** component and a **nonparametric** component
Parametric vs. Nonparametric

<table>
<thead>
<tr>
<th></th>
<th>Frequentist</th>
<th>Bayesian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametric</td>
<td>Logistic regression, ANOVA, Fisher discriminant analysis, ARMA, etc.</td>
<td>Conjugate analysis, hierarchical models, conditional random fields</td>
</tr>
<tr>
<td>Semiparametric</td>
<td>Independent component analysis, Cox model, nonmetric MDS, etc.</td>
<td>[Hybrids of the above and below cells]</td>
</tr>
<tr>
<td>Nonparametric</td>
<td>Nearest neighbor, kernel methods, bootstrap, decision trees, etc.</td>
<td>Gaussian processes, Dirichlet processes, Pitman-Yor processes, etc.</td>
</tr>
</tbody>
</table>
Parametric vs. Nonparametric

<table>
<thead>
<tr>
<th>Application</th>
<th>Parametric</th>
<th>Nonparametric</th>
</tr>
</thead>
<tbody>
<tr>
<td>function approximation</td>
<td>polynomial regression</td>
<td>Gaussian processes</td>
</tr>
<tr>
<td>classification</td>
<td>logistic regression</td>
<td>Gaussian process classifiers</td>
</tr>
<tr>
<td>clustering</td>
<td>mixture model, k-means</td>
<td>Dirichlet process mixture model</td>
</tr>
<tr>
<td>time series</td>
<td>hidden Markov model</td>
<td>infinite HMM</td>
</tr>
<tr>
<td>feature discovery</td>
<td>factor analysis, pPCA, PMF</td>
<td>infinite latent factor models</td>
</tr>
</tbody>
</table>

Table adapted from Ghahramani 2015
Parametric vs. Nonparametric

- **Def**: a *model* is a collection of distributions
 \[
 \{ p_\theta : \theta \in \Theta \}
 \]

- *parametric model*: the parameter vector is finite dimensional
 \[
 \Theta \subset \mathbb{R}^k
 \]

- *nonparametric model*: the parameters are from a possibly infinite dimensional space, \(\mathcal{F} \)
 \[
 \Theta \subset \mathcal{F}
 \]
Motivation #1

Model Selection

• For clustering: How many clusters in a mixture model?
• For topic modeling: How many topics in LDA?
• For grammar induction: How many non-terminals in a PCFG?
• For visual scene analysis: How many objects, parts, features?
Motivation #1

Model Selection

• **For clustering:** How many clusters in a mixture model?

• **For topic modeling:** How many topics in LDA?

• **For grammar induction:** How many non-terminals in a PCFG?

• **For visual scene analysis:** How many objects, parts, features?
Motivation #1

Model Selection

• For clustering: How many clusters in a mixture model?
• For topic modeling: How many topics in LDA?
• For grammar induction: How many non-terminals in a PCFG?
• For visual scene analysis: How many objects, parts, features?

1. Parametric approaches: cross-validation, bootstrap, AIC, BIC, DIC, MDL, Laplace, bridge sampling, etc.
2. Nonparametric approach: average of an infinite set of models
Motivation #2

Density Estimation

• Given data, estimate a probability density function that best explains it
• A nonparametric prior can be placed over an infinite set of distributions

Prior:

Motivation #2

Density Estimation

- Given data, estimate a probability density function that best explains it
- A nonparametric prior can be placed over an infinite set of distributions

Posterior:

EXCHANGEABILITY AND DE FINETTI’S THEOREM
Background: Mixed Distribution

Suppose we have a random variable X drawn from some distribution $P_\theta(X)$ and X ranges over a set S.

- **Discrete distribution:**

 S is a countable set.

- **Continuous distribution:**

 $P_\theta(X = x) = 0$ for all $x \in S$.

- **Mixed distribution:**

 S can be partitioned into two disjoint sets D and C s.t.

 1. D is countable and $0 < P_\theta(X \in D) < 1$
 2. $P_\theta(X = x) = 0$ for all $x \in C$
Background: Mixed Distribution

Example:

\[x' \sim p_{\text{mixed}}(x) = \left[\frac{1}{4} \sum_{i=1}^{3} \delta_{x(i)} \right] + \frac{1}{4} H \]

\[x' = \begin{cases} x(1) & \text{w/prob } \frac{1}{4} \\ x(2) & \text{w/prob } \frac{1}{4} \\ x(3) & \text{w/prob } \frac{1}{4} \\ x'' \sim \text{Beta}(\alpha, \beta) = H & \text{w/prob } \frac{1}{4} \end{cases} \]

point mass distribution where all prob. mass is placed on subscript value

\[x \sim \delta_{x(i)} \]

\[\Rightarrow x = \sum_{i} x(i) \text{ w/prob 1.0} \]

any other \(x'' \neq x(i) \) w/prob 0.0
Exchangability and de Finetti’s Theorem

Exchangeability:

- **Def #1**: A joint probability distribution is **exchangeable** if it is invariant to permutation.

- **Def #2**: The possibly infinite sequence of random variables \((X_1, X_2, X_3, \ldots)\) is **exchangeable** if for any finite permutation \(s\) of the indices \((1, 2, \ldots n)\):

\[
P(X_1, X_2, \ldots, X_n) = P(X_{s(1)}, X_{s(2)}, \ldots, X_{s(n)})
\]

Notes:

- *i.i.d.* and **exchangeable** are not the same!
- the latter says that if our data are reordered it doesn’t matter
Exchangability and de Finetti’s Theorem

Theorem (De Finetti, 1935). If \((x_1, x_2, \ldots)\) are infinitely exchangeable, then the joint probability \(p(x_1, x_2, \ldots, x_N)\) has a representation as a mixture:

\[
p(x_1, x_2, \ldots, x_N) = \int \left(\prod_{i=1}^{N} p(x_i | \theta) \right) dP(\theta)
\]

for some random variable \(\theta\).

- The theorem wouldn’t be true if we limited ourselves to parameters \(\theta\) ranging over Euclidean vector spaces

- In particular, we need to allow \(\theta\) to range over measures, in which case \(P(\theta)\) is a measure on measures
 - the Dirichlet process is an example of a measure on measures...

Actually, this is the Hewitt-Savage generalization of the de Finetti theorem. The original version was given for the Bernoulli distribution.
Exchangability and de Finetti’s Theorem

- A *plate* is a “macro” that allows subgraphs to be replicated:

- Note that this is a graphical representation of the De Finetti theorem

\[
p(x_1, x_2, \ldots, x_N) = \int p(\theta) \left(\prod_{i=1}^{N} p(x_i | \theta) \right) d\theta
\]
Parametric vs. Nonparametric

<table>
<thead>
<tr>
<th>Type of Model</th>
<th>Parametric Example</th>
<th>Nonparametric Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construction #1</td>
<td>Construction #2</td>
</tr>
<tr>
<td>distribution over counts</td>
<td>Dirichlet-Multinomial Model</td>
<td>Dirichlet Process (DP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chinese Restaurant Process (CRP)</td>
</tr>
<tr>
<td>mixture</td>
<td>Gaussian Mixture Model (GMM)</td>
<td>Dirichlet Process Mixture Model (DPMM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRP Mixture Model</td>
</tr>
<tr>
<td>admixture</td>
<td>Latent Dirichlet Allocation (LDA)</td>
<td>Hierarchical Dirichlet Process Mixture Model (HDPMM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chinese Restaurant Franchise</td>
</tr>
</tbody>
</table>
Chinese Restaurant Process & Stick-breaking Constructions

DIRICHLET PROCESS
Ferguson Definition
• Parameters of a DP:
 1. Base distribution, \(H \), is a probability distribution over \(\Theta \)
 2. Strength parameter, \(\alpha \in \mathcal{R} \)
• We say \(G \sim \text{DP}(\alpha, H) \)
 if for any partition \(A_1 \cup A_2 \cup \ldots \cup A_K = \Theta \)
 we have:
 \[(G(A_1), \ldots, G(A_K)) \sim \text{Dirichlet}(\alpha H(A_1), \ldots, \alpha H(A_K))\]

In English: the DP is a distribution over probability measures s.t. marginals on finite partitions are Dirichlet distributed
Imagine a Chinese restaurant with an infinite number of tables.

Each customer enters and sits down at a table:
- The first customer sits at the first unoccupied table.
- Each subsequent customer chooses a table according to the following probability distribution:

\[p(k\text{th occupied table}) \propto n_k \]
\[p(\text{next unoccupied table}) \propto \alpha \]

where \(n_k \) is the number of people sitting at the table \(k \).
Chinese Restaurant Process

Properties:
1. CRP defines a **distribution over clusterings** (i.e. partitions) of the indices $1, \ldots, n$
 - customer = index
 - table = cluster
2. We write $z_1, z_2, \ldots, z_n \sim CRP(\alpha)$ to denote a **sequence of cluster indices** drawn from a Chinese Restaurant Process
3. The CRP is an **exchangeable process**
4. **Expected number of clusters** given n customers (i.e. observations) is $O(\alpha \log(n))$
 - **rich-get-richer effect** on clusters: popular tables tend to get more crowded
5. Behavior of CRP with α:
 - As α goes to 0, the number of clusters goes to 1
 - As α goes to $+\infty$, the number of clusters goes to n
CRP vs. DP

Dirichlet Process: For both the CRP and stick-breaking constructions, if we marginalize out G, we have the following predictive distribution:

$$\theta_{n+1} | \theta_1, \ldots, \theta_n \sim \frac{1}{\alpha + n} \left(\alpha H + \sum_{i=1}^{n} \delta_{\theta_i} \right)$$

(Blackwell-MacQueen Urn Scheme)

The Chinese Restaurant Process is just a different construction of the Dirichlet Process where we have marginalized out G
Properties of the DP

1. **Base distribution** is the “mean” of the DP:
 \[\mathbb{E}[G(A)] = H(A) \text{ for any } A \subset \Theta \]

2. **Strength parameter** is like “inverse variance”
 \[V[G(A)] = H(A)(1 - H(A))/(\alpha + 1) \]

3. **Samples from a DP are discrete distributions** (stick-breaking construction of \(G \sim \text{DP}(\alpha, H) \) makes this clear)

4. **Posterior distribution** of \(G \sim \text{DP}(\alpha, H) \) given samples \(\theta_1, \ldots, \theta_n \) from \(G \) is a DP
 \[G|\theta_1, \ldots, \theta_n \sim \text{DP} \left(\alpha + n, \frac{\alpha}{\alpha+n} H + \frac{n}{\alpha+n} \frac{\sum_{i=1}^{n} \delta_{\theta_i}}{n} \right) \]
Exchangability

Question:
Select All: Which of the following properties of an infinite sequence of random variables X_1, X_2, X_3, \ldots ensure that they are infinitely exchangeable?

A. For any pair of orderings (i_1, i_2, \ldots, i_n) and (j_1, j_2, \ldots, j_n) of the indices $(1, \ldots, n)$ the joint probability of the two orderings is the same

B. The joint distribution is invariant to permutation

C. The joint distribution of the first n random variables can be represented as a mixture

D. The random variables are independent and identically distributed

Answer: