Complexity of Inference
+ Monte Carlo Methods
+ MCMC
COMPUTATIONAL COMPLEXITY OF INFERENCE
Proving Computational Complexity

Question: In order to prove that a decision problem is NP-Hard, we must...

A. ...reduce our decision problem to a known NP-Hard problem.

B. ...reduce a known NP-Hard problem to our decision problem.

C = toxic
Complexity Classes

- An algorithm runs in **polynomial time** if its runtime is a polynomial function of the input size (e.g. $O(n^k)$ for some fixed constant k)
- The **class P** consists of all problems that can be solved in polynomial time

- A problem for which the answer is binary (e.g. yes/no) is called a **decision problem**
- The **class NP** contains all decision problems where ‘yes’ answers can be verified (proved) in polynomial time
- A problem is **NP-Hard** if given an $O(1)$ oracle to solve it, every problem in NP can be solved in polynomial time (e.g. by reduction)
- A problem is **NP-Complete** if it belongs to both the classes NP and NP-Hard

Figure from https://en.wikipedia.org/wiki/NP-completeness
Complexity Classes

- A problem for which the answer is a nonnegative integer is called a **counting problem**
- The class **#P** contains the counting problems that align to decision problems in NP
 - really this is the class of problems that count the number of accepting paths in a Turing machine that is nondeterministic and runs in polynomial time
- A problem is **#P-Hard** if given an O(1) oracle to solve it, every problem in #P can be solved in polynomial time (e.g. by reduction)
- A problem is **#P-Complete** if it belongs to both the classes #P and #P-Hard
- There are no known polytime algorithms for solving #P-Complete problems. If we found one it would imply that P = NP.

Examples of **#P-Hard problems**
- #SAT, i.e. how many satisfying solutions for a given SAT problem?
- How many solutions for a given DNF formula?
- How many solutions for a 2-SAT problem?
- How many perfect matchings for a bipartite graph?
- How many graph colorings (with k colors) for a given graph G?

Examples from https://en.wikipedia.org/wiki/%E2%99%A6P-complete
5. Inference

Three Tasks:

1. **Marginal Inference (#P-Hard)**
 Compute marginals of variables and cliques
 \[
 p(x_i) = \sum_{x': x'_i = x_i} p(x') \quad \mid \quad p(x_C) = \sum_{x': x'_C = x_C} p(x')
 \]

2. **Partition Function (#P-Hard)**
 Compute the normalization constant
 \[
 Z(\theta) = \sum_x \prod_{C \in C} \psi_C(x_C)
 \]

3. **MAP Inference (NP-Hard)**
 Compute variable assignment with highest probability
 \[
 \hat{x} = \arg\max_x p(x \mid \theta)
 \]
3-SAT

Background:

• Formulas
 – **Def:** a literal is a binary variable or its negation, e.g. \(x_1 \) is a positive literal and \(\neg x_1 \) is a negative literal, where \(x_1 \in \{0, 1\} \)
 – **Def:** a clause is a disjunction of literals, e.g. \((\neg x_1 \lor x_2 \lor \neg x_3) \)
 – **Def:** a formula is in conjunctive normal form (CNF) if it is a conjunction of clauses, e.g.
 \[(\neg x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_4 \lor \neg x_6) \land (x_1 \lor \neg x_3 \lor \neg x_5) \]

• The 3-SAT Problem
 – **Given:** a CNF formula where each clause has at most 3 literals
 – **Goal:** report the satisfiability of the formula, i.e. whether there is a satisfying assignment to the variables that makes the entire formula true
Computational Complexity of MAP Inference

• **Claim:** MAP inference is NP-Hard

• **Proof Sketch:**

 Overview: we reduce 3-SAT (known to be NP-Hard) to the MAP Inference problem

 1. Construct a factor graph as follows:
 a. add a variable x_i to the factor graph for each variable in 3-SAT
 b. add a variable c_l to the factor graph for each clause in 3-SAT
 c. add a factor $\Psi(c_l, x_i, x_j, x_k)$ for each clause $c_l(x_i, x_j, x_k)$
 d. let the factor $\Psi(c_l, x_i, x_j, x_k) = 1$ if $c_l(x_i, x_j, x_k) = \text{true}$ and $\Psi(x_i, x_j, x_k) = 0$ otherwise

 2. Run MAP inference to obtain the most probable assignment

 3. Return true if all the clause variables are true; and false otherwise
- SAT

Background:

• The 3-SAT Problem
- **Given**: a CNF formula where each clause has at most 3 literals
- **Goal**: report the satisfiability of the formula, i.e. whether there is a satisfying assignment to the variables that makes the entire formula true

• The # - SAT Problem
- **Given**: a CNF formula where each clause has at most 3 literals
- **Goal**: report the number of satisfying assignments of the formula
Computational Complexity of Marginal Inference

• **Claim:** Marginal inference is \#P-Hard

• **Proof Sketch:**

 Overview: we reduce \#-SAT (known to be \#P-Hard) to the marginal inference problem

 1. Construct a factor graph as follows:

 a. ...left as an exercise...

 2. Run marginal inference

 3. Return the number of satisfying assignments by...

 a. ...left as an exercise...
APPROXIMATE MARGINAL INFERENCE
1. Data

\[\mathcal{D} = \{\mathbf{x}^{(n)}\}_{n=1}^{N} \]

2. Model

\[p(\mathbf{x} | \theta) = \frac{1}{Z(\theta)} \prod_{C \in \mathcal{C}} \psi_{C}(\mathbf{x}_{C}) \]

3. Objective

\[\ell(\theta; \mathcal{D}) = \sum_{n=1}^{N} \log p(\mathbf{x}^{(n)} | \theta) \]

4. Learning

\[\theta^{*} = \arg \max_{\theta} \ell(\theta; \mathcal{D}) \]

5. Inference

1. Marginal Inference

\[p(\mathbf{x}_{C}) = \sum_{\mathbf{x}': \mathbf{x}'_{C} = \mathbf{x}_{C}} p(\mathbf{x}' | \theta) \]

2. Partition Function

\[Z(\theta) = \sum_{\mathbf{x}} \prod_{C \in \mathcal{C}} \psi_{C}(\mathbf{x}_{C}) \]

3. MAP Inference

\[\hat{\mathbf{x}} = \arg \max_{\mathbf{x}} p(\mathbf{x} | \theta) \]
A Few Problems for a Factor Graph

Suppose we already have the parameters of a Factor Graph...

1. How do we compute the probability of a specific assignment to the variables?
 \(\Pr(T=t, H=h, A=a, C=c) \)

2. How do we draw a sample from the joint distribution?
 \(t,h,a,c \sim \Pr(T, H, A, C) \)

3. How do we compute marginal probabilities?
 \(\Pr(A) = \ldots \)

4. How do we draw samples from a conditional distribution?
 \(t,h,a \sim \Pr(T, H, A | C = c) \)

5. How do we compute conditional marginal probabilities?
 \(\Pr(H | C = c) = \ldots \)
Marginals by Sampling on Factor Graph

Suppose we took many samples from the distribution over taggings: \[p(x) = \frac{1}{Z} \prod_{\alpha} \psi_\alpha(x_\alpha) \]

Sample 1:
- \(n \)
- \(v \)
- \(p \)
- \(d \)
- \(n \)

Sample 2:
- \(n \)
- \(n \)
- \(v \)
- \(d \)
- \(n \)

Sample 3:
- \(n \)
- \(v \)
- \(p \)
- \(d \)
- \(n \)

Sample 4:
- \(v \)
- \(n \)
- \(p \)
- \(d \)
- \(n \)

Sample 5:
- \(v \)
- \(n \)
- \(v \)
- \(d \)
- \(n \)

Sample 6:
- \(n \)
- \(v \)
- \(p \)
- \(d \)
- \(n \)

<START> time flies like an arrow
Marginals by Sampling on Factor Graph

The marginal $p(X_i = x_i)$ gives the probability that variable X_i takes value x_i in a random sample.

Sample 1:
Sample 2:
Sample 3:
Sample 4:
Sample 5:
Sample 6:

ψ_0 ψ_2 ψ_4 ψ_6 ψ_8

X_0 X_1 X_2 X_3 X_4 X_5

<START>

time flies like an arrow

ψ_1 ψ_3 ψ_5 ψ_7 ψ_9
Marginals by Sampling on Factor Graph

Estimate the marginals as:

\[
\begin{array}{c|cc}
\text{Sample 1:} & n & 4/6 \\
& v & 2/6 \\
\text{Sample 2:} & n & 3/6 \\
& v & 3/6 \\
\text{Sample 3:} & n & 4/6 \\
& v & 2/6 \\
\text{Sample 4:} & n & 6/6 \\
\text{Sample 5:} & n & 6/6 \\
\text{Sample 6:} & n & 6/6 \\
\end{array}
\]
MONTE CARLO METHODS
Monte Carlo Methods

Whiteboard

- Problem 1: Generating samples from a distribution
- Problem 2: Estimating expectations
- Why is sampling from $p(x)$ hard?
- Example: estimating plankton concentration in a lake
- Algorithm: Uniform Sampling
- Example: estimating partition function of high dimensional function
Properties of Monte Carlo

Estimator: \[\int f(x)P(x) \, dx \approx \hat{f} = \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \quad x^{(s)} \sim P(x) \]

Estimator is unbiased:
\[\mathbb{E}_{P(\{x^{(s)}\})} \left[\hat{f} \right] = \frac{1}{S} \sum_{s=1}^{S} \mathbb{E}_{P(x)} [f(x)] = \mathbb{E}_{P(x)} [f(x)] \]

Variance shrinks \(\propto 1/S \):
\[\text{var}_{P(\{x^{(s)}\})} \left[\hat{f} \right] = \frac{1}{S^2} \sum_{s=1}^{S} \text{var}_{P(x)} [f(x)] = \frac{\text{var}_{P(x)} [f(x)]}{S} \]

“Error bars” shrink like \(\sqrt{S} \)
A dumb approximation of π

$$P(x, y) = \begin{cases}
1 & 0 < x < 1 \text{ and } 0 < y < 1 \\
0 & \text{otherwise}
\end{cases}$$

$$\pi = 4 \int \int \mathbb{I} \left((x^2 + y^2) < 1 \right) P(x, y) \, dx \, dy$$

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.3333

octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.1418
Aside: don’t always sample!

“Monte Carlo is an extremely bad method; it should be used only when all alternative methods are worse.”

— Alan Sokal, 1996

Example: numerical solutions to (nice) 1D integrals are fast

octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance)

Gives π to 6 dp’s in 108 evaluations, machine precision in 2598.
(NB Matlab’s quadl fails at zero tolerance)
Sampling from distributions

Draw points uniformly under the curve:

Probability mass to left of point \sim Uniform[0,1]
Sampling from distributions

How to convert samples from a Uniform[0,1] generator:

\[h(y) = \int_{-\infty}^{y} p(y') \, dy' \]

Draw mass to left of point:
\[u \sim \text{Uniform}[0,1] \]

Sample, \(y(u) = h^{-1}(u) \)

Although we can’t always compute and invert \(h(y) \)
Rejection Sampling

Whiteboard:

– Example: Rejection Sampling with a rectangular proposal
Rejection sampling

Sampling underneath a \(\tilde{P}(x) \propto P(x) \) curve is also valid

Draw underneath a simple curve \(k\tilde{Q}(x) \geq \tilde{P}(x) \):
- Draw \(x \sim Q(x) \)
- height \(u \sim \text{Uniform}[0, k\tilde{Q}(x)] \)

Discard the point if above \(\tilde{P} \), i.e. if \(u > \tilde{P}(x) \)
Importance sampling

Computing $\tilde{P}(x)$ and $\tilde{Q}(x)$, then *throwing* x away seems wasteful. Instead rewrite the integral as an expectation under Q:

$$\int f(x)P(x) \, dx = \int f(x) \frac{P(x)}{Q(x)} Q(x) \, dx, \quad (Q(x) > 0 \text{ if } P(x) > 0)$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{P(x^{(s)})}{Q(x^{(s)})}, \quad x^{(s)} \sim Q(x)$$

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation. Divide and multiply any integrand by a convenient distribution.
Importance sampling (2)

Previous slide assumed we could evaluate $P(x) = \tilde{P}(x)/Z_P$

$$\int f(x)P(x) \, dx \approx \frac{Z_Q}{Z_P} \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{\tilde{P}(x^{(s)})}{\tilde{Q}(x^{(s)})} \tilde{r}(s), \quad x^{(s)} \sim Q(x)$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{\tilde{r}(s)}{\frac{1}{S} \sum_{s'} \tilde{r}(s')} \equiv \sum_{s=1}^{S} f(x^{(s)})w^{(s)}$$

This estimator is **consistent** but **biased**

Exercise: Prove that $Z_P/Z_Q \approx \frac{1}{S} \sum_{s} \tilde{r}^{(s)}$
Summary so far

- Sums and integrals, often expectations, occur frequently in statistics
- **Monte Carlo** approximates expectations with a sample average
- **Rejection sampling** draws samples from complex distributions
- **Importance sampling** applies Monte Carlo to ‘any’ sum/integral
Pitfalls of Monte Carlo

Rejection & importance sampling scale badly with dimensionality

Example:

\[
P(x) = \mathcal{N}(0, \mathbb{I}), \quad Q(x) = \mathcal{N}(0, \sigma^2 \mathbb{I})
\]

Rejection sampling:

Requires \(\sigma \geq 1 \). Fraction of proposals accepted = \(\sigma^{-D} \)

Importance sampling:

Variance of importance weights = \(\left(\frac{\sigma^2}{2-\frac{1}{\sigma^2}} \right)^{D/2} - 1 \)

Infinite / undefined variance if \(\sigma \leq \frac{1}{\sqrt{2}} \)