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Reminders

* Homework 1: DAgger for seq2seq
— Out: Thu, Sep. 12
— Due: Thu, Sep. 26 at 11:59pm

* Homework 2: Semantic Segmentation

— Out: Thu, Sep. 26
— Due: Thu, Oct. 10 at 11:59pm




UNDIRECTED GRAPHICAL MODELS



Undirected Graphical Models

Whiteboard
— Parameterization (e.g. tabular vs. log-linear)
— Pairwise Markov Random Field (MRF)



Example MRFs

Pairwise MRF
sing model
Hopfield network

Potts model



Pairwise Markov Random Field

In a pairwise MRF, we define potential
functions on the edges and the nodes, but not
necessarily on maximal cliques




Representation of both directed and undirected graphical models

FACTOR GRAPHS
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Sampling from a Joint Distribution

This gives the proportion of samples that will equal x.

A joint distribution defines a probability p(x) for each assignment of values x to variables X.

Sample 1: ‘ ‘ @ ‘ ‘
Sample 2: ‘ ‘ ‘ ‘ ‘
Sample 3: ‘ ‘ @ ‘ ‘
Sample 4: ‘ ‘ @ ‘ ‘
Sample 5: ‘ ‘ ‘ ‘ ‘
Sample 6: ‘ ‘ @ ‘ ‘
<START> V { K %

time flies like an arrow



Sampling from a Joint Distribution

This gives the proportion of samples that will equal x.

A joint distribution defines a probability p(x) for each assignment of values x to variables X.

Sample 1: Sampleé\:J:P\-\
Sample 3: ample 4:

pefind by
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Sampling from a Joint Distribution

A joint distribution defines a probability p(x) for each assignment of values x to variables X.
This gives the proportion of samples that will equal x.
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Factors have local opinions (> 0)

Each black box looks at some of the tags X; and words W,

Note: We chose to reuse
vin/p d vin|p d the same factors at
v|(1/6[3/4| |v|1/6|3]|4 different positions in the
n 84,201 |n|8|/4/|2|01 sentence.

p|1/3|/1/3|] |[p/1[3]1]3
do18 0 0 do.18 0|0

time !
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Factors have local opinions (> 0)

Each black box looks at some of the tags X; and words W,

p(n, v, p, d, n, time, flies, like, an, arrow) — ?
vin p d v np d
v i1[6[/3]|4 vi1/6[3]|4
n(8 4/201 n|/8 4|2|01
p|1[3[1]3 p|1|3[1]3
do18/0 0 do18 0|0
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v|3|5|3 vi3|5]3
ni4, 5|2 ni4/ 5|2
p 0.10.1] 3 p 0.10.1 3
d (0.1/0.2/0.1 d [0.1/0.2/0.1 17




Global probability = product of local opinions

Each black box looks at some of the tags X; and words W,

p(n, v, p, d, n, time, flies, like, an, arrow) = %(4 * 8 * 5 * 3 * )
vin/p d vin|p d Uh-oh! The probabilities of
v i1/6|3|4 vi1/6[3]|4 the various assignments sum
n /42041 n/ 8 4 201 up to Z > 1.
pl1/3/1]3 pl1(3][1]3 So divide them all by Z.
do.18 00 do.18 0|0
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Markov Random Field (MRF)

Joint distribution over tags X; and words W,
The individual factors aren’t necessarily probabilities.

1
p(n,v,p,d,n,time,ﬂies,like,an,arrow) = ?(4*8*5*3 *)
vin p d v np d
v 1/6[(3/4| |v|1]6|3]|4
n/ < 4201 n|l8 42|01
p 1/3[1]3 p 1/3[1]3
do.18 00 do.18 0|0
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v|i3|5|3 V{353
n 452 n 4|52
p [0.10.1] 3 p (0.10.1 3
d |0.1/0.2/0.1 d |0.1/0.2/0.1 19




Bayesian Networks

But sometimes we choose to make them probabilities.
Constrain each row of a factor to sum to one. Now Z = |.

p(n, v, p, d, n, time, flies, like, an, arrow) — %{(3 *8* 0% 5 ® )
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Markov Random Field (MRF)

Joint distribution over tags X; and words W,

p(n,v,p,d,n,time,ﬂies,like,an,arrow) = %(4*8*5*3 *)
vin p d v np d
v|i1/6(3]|4 v|i1/6/3|4
n/ < 4201 n|l8 42|01
p|1[3[1]3 p|1|3[1]3
do18/0 0 do18 0|0
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d (0.1/0.2/0.1 d [0.1/0.2/0.1 21




Conditional Random Field (CRF)

Conditional distribution over tags X; given words w,.
The factors and Z are now specific to the sentence w.

1
n,v,p,d, n | time, flies, like, an, arrow — = *8* * *...
P Z
vin p d v np d
v 1/6[(3/4| |v|1]6|3]|4
n/ < 4201 n|l8 42|01
p 1/3[1]3 p 1/3[1]3
do.18 o do.18 0|0
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How General Are Factor Graphs?

* Factor graphs can be used to describe

— Markov Random Fields (undirected graphical models)
* i.e., log-linear models over a tuple of variables

— Conditional Random Fields
— Bayesian Networks (directed graphical models)

* Inference treats all of these interchangeably.
— Convert your model to a factor graph first.

— Pearl (1988) gave key strategies for exact inference:
* Belief propagation, for inference on acyclic graphs

* Junction tree algorithm, for making any graph acyclic
(by merging variables and factors: blows up the runtime)



Factor Graph Notation

e Variables:
X = {)(1,...,)Y;,...

e Factors:

Vo, Vg, Py, - -

where a, 5,7,... C {1,...n}

Joint Distribution

p(@) = - [] v(wa)




Factors are Tensors

e Factors:

Vo, Vg, Py, - -

Q.0 B |<
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Converting to Factor Graphs

Each conditional and Each maximal clique in an
marginal distribution in a undirected GM becomes a
directed GM becomes a factor

factor

by B
K W



Equivalence of directed and
undirected trees

Any undirected tree can be converted to a directed tree by choosing a root
node and directing all edges away from it

A directed tree and the corresponding undirected tree make the same
conditional independence assertions

Parameterizations are essentially the same.

— Undirected tree:

pla) = ;(wa I1 ¢<:cz-,wj>)
— Directed tree: icV

(i,j)eE

— Equivalence:



Factor Graph Examples

* Example1

® m

o

P(X;) P(X;) P(X3[XyX,) P(X5[X,X3) P(X[X,,X5)

141 1 1 l

fa(x1) 1:b(Xz) fc(x3rx1rxz) fd(X5;X1;X3) fe(X4,X2,X3)

© Eric Xing @ CMU, 2005-2015
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Factor Graph Examples

* Example 2

W(X1;X2;X3) = fa(xvXz)fb(xz)x3)fc(x3:x1) :
. ”:'/3\ on =w

\V(X17X27X3) = fa(X1,X2,X3)

© Eric Xing @ CMU, 2005-2015 29




Tree-like Undirected GMs to Factor

Trees

* Example 4

.

>

© Eric Xing @ CMU, 2005-2015



Poly-trees to Factor trees

. <.. /":r”

© Eric Xing @ CMU, 2005-2015 31

* Examples




Why factor graphs?

e Because FG turns tree-like
graphs to factor trees,

 Trees are a data-structure that

— guarantees correctness of BP !

© Eric Xing @ CMU, 2005-2015
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EXACT INFERENCE



Exact Inference
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(#P-Hard)

(#P-Hard)

(NP-Hard)




Marginals by Sampling on Factor Graph

Suppose we took many samples from the distribution over
taggings: ») =[] valea)

Sample 1:
Sample 2:
Sample 3:

Sample 4:

Sample 5:

Sample 6:
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Marginals by Sampling on Factor Graph

The marginal p(X; = x,) gives the probability that variable X;
takes value x; in a random sample

Sample 1:
Sample 2:
Sample 3:

Sample 4:

Sample 5:

Sample 6:

E
[\S}

2HQO00000

?
10000000

<START>




I\/\argmals by Sampling on Factor Graph
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Simple and general exact inference for graphical models

VARIABLE ELIMINATION



Brute Force (Naive) Inference

For all i, suppose the range of X;is {0, 1, 2}.
Let k=3 denote the size of the range.
The distribution factorizes as:

S(x) =12(x1, w2)Y13(21, T3)24 (22, 74)

V234(T2, T3, T4)Va5(Ta, T5)Ys(x5)

Naively, we compute the partition function

as:
Z=3.2.2.2. 2 5@
r1 Xo X3 x4 Is




Brute Force (Naive) Inference

For all i, suppose the range of X;is {0, 1, 2}. s(x) can be represented as a

Let k=3 denote the size of the range.

The distribution factorizes as: Shues:

S(x) =t2(x1, z2)Y13(21, £3) P24 (22, T4)

V234(T2, T3, T4)Va5(Ta, T5)Ys(x5)

Naively, we compute the partition function

as:
Z=3.2.2.2. 2 5@
r1 Xo X3 x4 Is

joint probability table with 3°

s(x)

0.019517693

0.017090249

0.014885825

0.024117638

0.000925849

0.028112576

0.028050205

0.004812689

0.007987737

0.028433687

0.037073469

0.013558227

0.019479016

0.012312901

0.023439775

0.038206131

0.038996005

0.041458783

0.044616806

0.020846989

0.03006475

0.048436964

0.02854376

0.029191506

0.031531118

0.005132392

EOOOOOOOOOOOOOOOOOOOOOOOOOOO\%<
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0.032027091




Brute Force (Naive) Inference

For all i, suppose the range of X;is {0, 1, 2}. s(x) can be represented as a

Let k=3 denote the size of the range. joint probability table with 3°
The distribution factorizes as: entries: O_ofg(s’f7)693
S(x) =Y12(x1, v2)Y13(71, £3) 24 (T2, T4) 0148858,
0.024117638

0.000925849

77b234 (3727 X3, $4)¢45 (3347 Zlf5)¢5 ($5) 0.028112576

0.028050205

0.004812689

0.007987737

0.028433687

0.037073469

0.013558227

0.019479016

0.012312901

0.023439775

0.038206131

0.038996005

0.041458783

0.044616806

Naively, we compute the partition function 0.020846989

0.03006475

0.048436964

OOOOOOOOOOOOOOOOOOOOOOO\%<

ooooooooooooooooooooooo\§<

NNNNN—\—\—\—\—\—‘—‘—‘—‘OOOOOOOOOJ§<

_‘_‘OOONNN—‘—‘—‘OOONNN—X—X—xooob

—\ow—\ow—now—now—now—now—\ow—\oj<

0.02854376

as:
Z=) 22022
2. 2.2_2_2.95 (ZB) Naive computation of Z requires
L1 X2 I3 X4 5

3’ additions.
Can we do better?



The Variable Elimination Algorithm

Instead, capitalize on the factorization of s(x).

7 = yj y: yj y: Sj P12(x1, 2)Y13(21, £3) V24 (22, Ta) Y234 (T2, T3, T4)Vas (24, T5) Y5 (T5)

T2 I3 T4

= y: y: y: y: Yn2(x1, x2)V13(21, £3) V24 (T2, Ta) 234 (T2, T3, Ta) Z Yas(xa, 5)s(xs5)

2 xr3 T4

This “factor” is a
much smaller table
with 37 entries:

S(X4,Xk)
0.019517693
0.017090249
0.014885825
0.024117638
0.000925849
0.028112576
0.028050205
0.004812689

0.007987737

~
N

N[ NIV |[2 a2 |o|o|o
N|(m|o|N|[=|lo|Nn|= o\f




The Variable Elimination Algorithm

Instead, capitalize on the factorization of s(x).

7 = yj y: yj yj Sj P12(x1, 2)Y13(21, £3) V24 (22, Ta) Y234 (T2, T3, T4)Vas (24, T5) Y5 (T5)

1 2 r3 T4 Ts

= y: y: y: y: Yn2(x1, x2)V13(21, £3) V24 (T2, Ta) 234 (T2, T3, Ta) Z Yas(xa, 5)s(xs5)

r1 X2 T3 T4 | *5 J
i

Only 32 This “factor” is a
additions are much smaller table
needed to with 3 entries:
marginalize X, ms(xg)

0 | 0.019517693
out X5. 1 | 0.017090249
We denote the 2. 0014885825
marginal’s
table by

ms(Xy).



The Variable Elimination Algorithm

Instead, capitalize on the factorization of s(x).

7 = yj yj yj y: Sj P12(x1, 22)Y13(21, £3) 24 (22, Ta) Y234 (T2, T3, £4)Vas (24, T5) Y5 (T5)

T1 T2 r3 T4 Ts

—YYYY@DQ (1, 22)Y13(21, 3)V24(T2, T4) V234 (22, 73, 24) Z¢45 T4, T5)P5(Ts5)

Tq o xr3 T4

— y: y: y: y: V12(1, 22)V13(21, £3) 24 (T2, Ta) V234 (T2, X3, 334)7“5(334)

1 T2 T3 T4

L Z¢45(x4,x5)¢5(375)




The Variable Elimination Algorithm

Instead, capitalize on the factorization of s(x).

7 = yj yj yj yj Sj P12(x1, 22)Y13(21, £3) 24 (22, Ta) Y234 (T2, T3, £4)Vas (24, T5) Y5 (T5)

1 2 xr3 T4 s

—YYYY@DQ (1, 22)Y13(21, 3)V24(T2, T4) V234 (22, 73, 24) Z¢45 T4, T5)P5(Ts5)

1 T2 T3 T4

— y: y: y: y: V12(T1, 22)V13(21, £3) Y24 (T2, Ta) V234 (2, X3, 334)7“5(334)

I 2 xr3 T4

This “factor” is stilla 3¢ table so 175 (554) £ 2: Va5 (3347 5135)@5 (;1;5)
apply the same trick again.




The Variable Elimination Algorithm

Instead, capitalize on the factorization of s(x).

Z = Zzwm L1, T2 Z%B x1,23 2%4 T2, T4)P234(T2, T3, T4) Z¢45 (x4, x5)5(x5)
_ZZ@DM T1,T2 Z¢13 T1,T3 2%4 x2,$4)¢234(a:2,a:3,a:4)m5(x4) %
o 2 0.0

—22%2 L1, L2 Z%g T1,23) M4 ( 332,333)% 3 additions

- 3% additions
Zzzwu 1, x2)m3(T1, T2)
o 3% additions
- Z ma(z1)
32 additions Naive solution requires 3°=243
ﬁ additions.
3 additions Variable elimination only requires

3+32+33+33+32 = 75 additions.



The Variable Elimination Algorithm

The same trick can be used to compute
marginal probabilities. Just choose the
variable elimination order such that the
query variables are last.

p(x1) :% D ra(wr,2) Y this(wr,w) Y thou(we, a)hosa (e, 3, 04) Y thus (w4, w5) s (w5)
O\ o T3 T4 Ts5

:% Z P12(x1, T2) Z YP13(x1, 3) Z V24(Z2, Ta)tho3a(22, 23, Ta) 05 (2 4) %
o2 s o 32 additions
:% Zwlz(m,xz) Z¢13($1,$3)m4($27$3) %
1 2 e % 33 additions
=7 Z%z(xl,xz)ms(xlax?)

1 % 33 additions
=—=1mM>9 (33‘1)

/ D e For directed graphs, Z = 1.

For undirected graphs, if we compute
each (unnormalized) value on the LHS,
we can sum them to get Z.

3 different values on LHS



The Variable Elimination Algorithm

Z = Zzwm X1, T2 21013 T1,T3 2%4 T2, X4)Y234(x2, T3, 24) Z¢45 T4, 25)P5(Ts5)

1 X2

222%2 L1, L2 Z%g L1, L3 Z¢24 $2,$4)¢234(33279337374)m5(334)

r1 X2

_22%2 X1,T2 Z%g $1,333 my 332,333)

r1 X2

In a factor graph, variable elimination
corresponds to replacement of a subgraph
with a factor.



The Variable Elimination Algorithm

Z = Zzwm X1, T2 21013 T1,T3 2%4 T2, X4)Y234(x2, T3, 24) Z¢45 T4, 25)P5(Ts5)

1 X2

222%2 L1, L2 Z%g L1, L3 2%4 $2,$4)¢234($2ax37w4)m5($4)

r1 X2

_22%2 X1,T2 Z%g $1,333 my 332,333)

r1 X2

In a factor graph, variable elimination
corresponds to replacement of a subgraph
with a factor.



The Variable Elimination Algorithm

X <X2>'_ Xy

Z = Zzwm X1, T2 21013 T1,T3 2%4 T2, X4)Y234(x2, T3, 24) 21045 (74, 25)05(25)

1 X2

222%2 L1, L2 Z%g L1, L3 2%4 332,$4)¢234($27w37w4)m5(334)

r1 X2

_22%2 X1,T2 Z%g $1,333 my 332,51?3)

r1 X2

In a factor graph, variable elimination
corresponds to replacement of a subgraph
with a factor.



The Variable Elimination Algorithm

Z = Zzwm X1, T2 21013 T1,T3 2%4 T2, X4)Y234(x2, T3, 24) Z¢45 (74, 25)05(25)

1 X2

222%2 L1, L2 Z%g L1, L3 2%4 332,$4)¢234($27w37w4)m5($4)

r1 X2

_22%2 X1,T2 Z%g $1,333 my 332,51?3)

r1 X2

In a factor graph, variable elimination
corresponds to replacement of a subgraph
with a factor.



Variable Elimination
for Marginal Inference

Algorithm 1: Variable Elimination for Marginal Inference
Input: the factor graph and the query variable
Output: the marginal distribution for the query variable

a. Run a breadth-first-search starting at the query variable to obtain an ordering of the
variable nodes

b. Reverse that ordering

C. Eliminate each variable in the reversed ordering using Algorithm 2

Eliminate One Variable
Input: the variable to be eliminated

Output: new factor graph with the variable marginalized out
a. Find the input variable and its neighboring factors -- call this set the eliminated set

b. Replace the eliminated set with a new factor

a. The neighbors of the new factor should be all the neighbors of all the factors in the eliminated
set

The new factor should assign a score to each possible assighment of its neighboring variables

C. Said score should be identical to the product of the factors it is replacing, summing over the
eliminated variable



Variable Elimination
for Marginal Inference

Variable Elimination for the Partition Function
Input: the factor graph
Output: the partition function

a. Run a breadth-first-search starting at an arbitrary variable to obtain an ordering of the
variable nodes
b. Eliminate each variable in the ordering using Algorithm 2

Algorithm 2: Eliminate One Variable
Input: the variable to be eliminated

Output: new factor graph with the variable marginalized out
a. Find the input variable and its neighboring factors -- call this set the eliminated set

b. Replace the eliminated set with a new factor

a. The neighbors of the new factor should be all the neighbors of all the factors in the eliminated
set

The new factor should assign a score to each possible assighment of its neighboring variables

C. Said score should be identical to the product of the factors it is replacing, summing over the
eliminated variable



Variable Elimination Complexity

In-Class Exercise: Fill in the blank
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