

10-418 / 10-618 Machine Learning for Structured Data

Machine Learning Department School of Computer Science Carnegie Mellon University

Factor Graphs + Exact Inference

Matt Gormley Lecture 8 Sep. 23, 2019

Q&A

Reminders

- Homework 1: DAgger for seq2seq
 - Out: Thu, Sep. 12
 - Due: Thu, Sep. 26 at 11:59pm
- Homework 2: Semantic Segmentation
 - Out: Thu, Sep. 26
 - Due: Thu, Oct. 10 at 11:59pm

Markov Random Fields

UNDIRECTED GRAPHICAL MODELS

Undirected Graphical Models

Whiteboard

- Parameterization (e.g. tabular vs. log-linear)
- Pairwise Markov Random Field (MRF)

Example MRFs

- Pairwise MRF
- Ising model
- Hopfield network
- Potts model

Pairwise Markov Random Field

In a **pairwise MRF**, we define potential functions on the edges and the nodes, but not necessarily on maximal cliques

Representation of both directed and undirected graphical models

FACTOR GRAPHS

Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.

Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.

Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.

Factors have local opinions (≥ 0)

Each black box looks at *some* of the tags X_i and words W_i

	v	n	p	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

Note: We chose to reuse the same factors at different positions in the sentence.

Factors have local opinions (≥ 0)

Each black box looks at *some* of the tags X_i and words W_i

Global probability = product of local opinions

Each black box looks at *some* of the tags X_i and words W_i

	v	n	р	d
V	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	О

Uh-oh! The probabilities of the various assignments sum up to Z > 1.

So divide them all by Z.

Markov Random Field (MRF)

Joint distribution over tags X_i and words W_i The individual factors aren't necessarily probabilities.

0.1 0.1 3

0.1 0.2 0.1

19

0.1 0.1 3

0.1 0.2 0.1

Bayesian Networks

But sometimes we *choose* to make them probabilities. Constrain each row of a factor to sum to one. Now Z = 1.

Markov Random Field (MRF)

Joint distribution over tags X_i and words W_i

$$p(n, v, p, d, n, time, flies, like, an, arrow) = \frac{1}{Z}(4*8*5*3*...)$$

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

21

Conditional Random Field (CRF)

Conditional distribution over tags X_i given words w_i . The factors and Z are now specific to the sentence w.

$$p(n, v, p, d, n \mid time, flies, like, an, arrow) = \frac{1}{Z} (4 * 8 * 5 * 3 * ...)$$

$$v \mid p \mid d$$

$$v \mid 1 \mid 6 \mid 3 \mid 4$$

$$n \mid 8 \mid 4 \mid 2 \mid 0.1$$

$$p \mid 1 \mid 3 \mid 1 \mid 3$$

$$d \mid 0.1 \mid 8 \mid 0 \mid 0$$

$$v \mid 5$$

$$n \mid 5$$

$$p \mid 0.1$$

$$d \mid 0.1$$

like

an

arrow

time

flies

How General Are Factor Graphs?

- Factor graphs can be used to describe
 - Markov Random Fields (undirected graphical models)
 - i.e., log-linear models over a tuple of variables
 - Conditional Random Fields
 - Bayesian Networks (directed graphical models)
- Inference treats all of these interchangeably.
 - Convert your model to a factor graph first.
 - Pearl (1988) gave key strategies for exact inference:
 - Belief propagation, for inference on acyclic graphs
 - Junction tree algorithm, for making any graph acyclic (by merging variables and factors: blows up the runtime)

Factor Graph Notation

$$\mathcal{X} = \{X_1, \dots, X_i, \dots, X_n\}$$

Factors:

$$\psi_{\alpha}, \psi_{\beta}, \psi_{\gamma}, \dots$$

where $\alpha, \beta, \gamma, \ldots \subseteq \{1, \ldots n\}$

Joint Distribution

$$p(\boldsymbol{x}) = \frac{1}{Z} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{x}_{\alpha})$$

Factors are Tensors

 $\psi_{\alpha}, \psi_{\beta}, \psi_{\gamma}, \dots$

Converting to Factor Graphs

Each conditional and marginal distribution in a directed GM becomes a factor

Each maximal clique in an undirected GM becomes a factor

Equivalence of directed and undirected trees

- Any undirected tree can be converted to a directed tree by choosing a root node and directing all edges away from it
- A directed tree and the corresponding undirected tree make the same conditional independence assertions
- Parameterizations are essentially the same.
 - Undirected tree:
 - Directed tree:
 - Equivalence:

$$p(x) = \frac{1}{Z} \left(\prod_{i \in V} \psi(x_i) \prod_{(i,j) \in E} \psi(x_i, x_j) \right)$$

$$p(x) = p(x_r) \prod_{(i,j) \in E} p(x_j | x_i)$$

$$\psi(x_r) = p(x_r); \quad \psi(x_i, x_j) = p(x_j | x_i);$$

$$Z = 1, \quad \psi(x_i) = 1$$

Factor Graph Examples

Example 1

Factor Graph Examples

Example 2

• Example 3 x_1 x_2 x_3 $\psi(x_1,x_2,x_3) = f_a(x_1,x_2,x_3)$

Tree-like Undirected GMs to Factor Trees

Example 4

Poly-trees to Factor trees

• Example 5

Why factor graphs?

- Because FG turns tree-like graphs to factor trees,
- Trees are a data-structure that guarantees correctness of BP!

EXACT INFERENCE

Exact Inference

1. Data

2. Model

$$p(\boldsymbol{x}\mid\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{C\in\mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. Objective

$$\ell(\theta; \mathcal{D}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}^{(n)} \mid \boldsymbol{\theta})$$

5. Inference

1. Marginal Inference

$$p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

2. Partition Function

$$Z(\boldsymbol{\theta}) = \sum \prod \psi_C(\boldsymbol{x}_C)$$

3. MAP Inference

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

4. Learning

$$\boldsymbol{\theta}^* = \operatorname*{argmax}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathcal{D})$$

5. Inference

Three Tasks:

1. Marginal Inference (#P-Hard)

Compute marginals of variables and cliques

$$p(x_i) = \sum_{\boldsymbol{x}': x_i' = x_i} p(\boldsymbol{x}' \mid \boldsymbol{\theta}) \qquad \qquad p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

2. Partition Function (#P-Hard)

Compute the normalization constant

$$Z(\boldsymbol{\theta}) = \sum_{\boldsymbol{x}} \prod_{C \in \mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. MAP Inference (NP-Hard)

Compute variable assignment with highest probability

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

Marginals by Sampling on Factor Graph

Suppose we took many samples from the distribution over taggings: $p(x) = \frac{1}{Z} \prod \psi_{\alpha}(x_{\alpha})$

Marginals by Sampling on Factor Graph

The marginal $p(X_i = x_i)$ gives the probability that variable X_i takes value x_i in a random sample

Marginals by Sampling on Factor Graph

Simple and general exact inference for graphical models

VARIABLE ELIMINATION

Brute Force (Naïve) Inference

For all *i*, suppose the **range** of X_i is $\{0, 1, 2\}$.

Let k=3 denote the size of the range.

The distribution **factorizes** as:

Naively, we compute the **partition function** as:

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} S(\boldsymbol{x})$$

Brute Force (Naïve) Inference

For all i, suppose the **range** of X_i is $\{0, 1, 2\}$. Let k=3 denote the **size of the range**.

The distribution **factorizes** as:

$$S(\mathbf{x}) = \psi_{12}(x_1, x_2)\psi_{13}(x_1, x_3)\psi_{24}(x_2, x_4)$$
$$\psi_{234}(x_2, x_3, x_4)\psi_{45}(x_4, x_5)\psi_{5}(x_5)$$

Naively, we compute the **partition function** as:

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} s(x)$$

s(x) can be represented as a joint probability table with 3^5

entries:

x_1	x_2	x_3	x_4	x_5	$S(\mathbf{x})$
0	0	0	0	0	0.019517693
0	0	0	0	1	0.017090249
0	0	0	0	2	0.014885825
0	0	0	1	0	0.024117638
0	0	0	1	1	0.000925849
0	0	0	1	2	0.028112576
0	0	0	2	0	0.028050205
0	0	0	2	1	0.004812689
0	0	0	2	2	0.007987737
0	0	1	0	0	0.028433687
0	0	1	0	1	0.037073469
0	0	1	0	2	0.013558227
0	0	1	1	0	0.019479016
0	0	1	1	1	0.012312901
0	0	1	1	2	0.023439775
0	0	1	2	0	0.038206131
0	0	1	2	1	0.038996005
0	0	1	2	2	0.041458783
0	0	2	0	0	0.044616806
0	0	2	0	1	0.020846989
0	0	2	0	2	0.03006475
0	0	2	1	0	0.048436964
0	0	2	1	1	0.02854376
0	0	2	1	2	0.029191506
0	0	2	2	0	0.031531118
0	0	2	2	1	0.005132392
0	0	2	2	2	0.032027091

Brute Force (Naïve) Inference

For all i, suppose the **range** of X_i is $\{0, 1, 2\}$. Let k=3 denote the **size of the range**.

The distribution **factorizes** as:

$$S(\mathbf{x}) = \psi_{12}(x_1, x_2)\psi_{13}(x_1, x_3)\psi_{24}(x_2, x_4)$$
$$\psi_{234}(x_2, x_3, x_4)\psi_{45}(x_4, x_5)\psi_{5}(x_5)$$

Naively, we compute the **partition function** as:

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} s(\boldsymbol{x})$$

s(x) can be represented as a joint probability table with 3^5

entries:

П						
Ŀ	x_1	x_2	x_3	x_4	x_5	$S(\mathbf{x})$
	0	0	0	0	0	0.019517693
	0	0	0	0	1	0.017090249
	0	0	0	0	2	0.014885825
	0	0	0	1	0	0.024117638
	0	0	0	1	1	0.000925849
	0	0	0	1	2	0.028112576
	0	0	0	2	0	0.028050205
	0	0	0	2	1	0.004812689
	0	0	0	2	2	0.007987737
	0	0	1	0	0	0.028433687
	0	0	1	0	1	0.037073469
	0	0	1	0	2	0.013558227
	0	0	1	1	0	0.019479016
	0	0	1	1	1	0.012312901
	0	0	1	1	2	0.023439775
	0	0	1	2	0	0.038206131
	0	0	1	2	1	0.038996005
	0	0	1	2	2	0.041458783
	0	0	2	0	0	0.044616806
	0	0	2	0	1	0.020846989
	0	0	2	0	2	0.03006475
	0	0	2	1	0	0.048436964
	0	0	2	1	1	0.02854376

Naïve computation of Z requires 3^5 additions.

Can we do better?

Instead, capitalize on the factorization of s(x).

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

This "factor" is a much smaller table with 3^2 entries:

x_4	x_5	$S(x_4, x_5)$
0	0	0.019517693
0	1	0.017090249
0	2	0.014885825
1	0	0.024117638
1	1	0.000925849
1	2	0.028112576
2	0	0.028050205
2	1	0.004812689
2	2	0.007987737

Instead, capitalize on the factorization of s(x).

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

Only 3^2 additions are needed to marginalize out x_5 .

We denote the marginal's table by $m_5(x_4)$.

This "factor" is a much smaller table with 3 entries:

x_4	$m_5(x_4)$
0	0.019517693
1	0.017090249
2	0.014885825

Instead, capitalize on the factorization of s(x).

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_{5}(x_4)$$

$$m_5(x_4) \triangleq \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

Instead, capitalize on the factorization of s(x).

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_{5}(x_4)$$

This "factor" is still a 3⁴ table so apply the same trick again.

$$m_5(x_4) \triangleq \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

Instead, capitalize on the factorization of s(x).

$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$3^2 \text{ additions}$$

 $-\sum_{i=1}^{x_1}\sum_{j=1}^{x_2}\sqrt{x_1}x_2$

 3^3 additions

 $= \sum \sum \psi_{12}(x_1, x_2) m_3(x_1, x_2)$

 3^3 additions

 $=\sum m_2(x_1)$

 3^2 additions

3 additions

Naïve solution requires $3^5=243$ additions.

Variable elimination only requires $3+3^2+3^3+3^3+3^2=75$ additions.

The same trick can be used to compute marginal probabilities. Just choose the variable elimination order such that the query variables are last.

$$p(x_1) = \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

$$= \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

$$= \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$= \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$3^2 \text{ additions}$$
33 additions

 3^3 additions

 3^2 additions

 $= \frac{1}{Z} \sum \psi_{12}(x_1, x_2) m_3(x_1, x_2)$

For directed graphs, Z = 1.

For undirected graphs, if we compute each (unnormalized) value on the LHS, we can sum them to get Z.

3 different values on LHS

 $=\frac{1}{7}m_2(x_1)$

$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_{5}(x_4)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_{4}(x_2, x_3)$$

$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

Variable Elimination for Marginal Inference

Algorithm 1: Variable Elimination for Marginal Inference

Input: the factor graph and the query variable

Output: the marginal distribution for the query variable

- a. Run a breadth-first-search starting at the query variable to obtain an ordering of the variable nodes
- b. Reverse that ordering
- c. Eliminate each variable in the reversed ordering using Algorithm 2

Algorithm 2: Eliminate One Variable

Input: the variable to be eliminated

Output: new factor graph with the variable marginalized out

- a. Find the input variable and its neighboring factors -- call this set the eliminated set
- b. Replace the eliminated set with a new factor
 - a. The neighbors of the new factor should be all the neighbors of all the factors in the eliminated set
 - b. The new factor should assign a score to each possible assignment of its neighboring variables
 - c. Said score should be identical to the product of the factors it is replacing, summing over the eliminated variable

Variable Elimination for Marginal Inference

Algorithm 3: Variable Elimination for the Partition Function

Input: the factor graph

Output: the partition function

- a. Run a breadth-first-search starting at an arbitrary variable to obtain an ordering of the variable nodes
- b. Eliminate each variable in the ordering using Algorithm 2

Algorithm 2: Eliminate One Variable

Input: the variable to be eliminated

Output: new factor graph with the variable marginalized out

- a. Find the input variable and its neighboring factors -- call this set the eliminated set
- b. Replace the eliminated set with a new factor
 - a. The neighbors of the new factor should be all the neighbors of all the factors in the eliminated set
 - b. The new factor should assign a score to each possible assignment of its neighboring variables
 - c. Said score should be identical to the product of the factors it is replacing, summing over the eliminated variable

Variable Elimination Complexity

In-Class Exercise: Fill in the blank

Brute force, naïve, inference is O(____)

Variable elimination is O()

where n = # of variables

k = max # values a variable can take

r = # variables participating in largest "intermediate" table