

#### 10-418 / 10-618 Machine Learning for Structured Data



Machine Learning Department School of Computer Science Carnegie Mellon University

# Factor Graphs + Exact Inference

Matt Gormley Lecture 8 Sep. 23, 2019

# Q&A

#### Reminders

- Homework 1: DAgger for seq2seq
  - Out: Thu, Sep. 12
  - Due: Thu, Sep. 26 at 11:59pm
- Homework 2: Semantic Segmentation
  - Out: Thu, Sep. 26
  - Due: Thu, Oct. 10 at 11:59pm

Markov Random Fields

#### **UNDIRECTED GRAPHICAL MODELS**

# Undirected Graphical Models

#### Whiteboard

- Parameterization (e.g. tabular vs. log-linear)
- Pairwise Markov Random Field (MRF)

# Example MRFs

- Pairwise MRF
- Ising model
- Hopfield network
- Potts model

#### Pairwise Markov Random Field

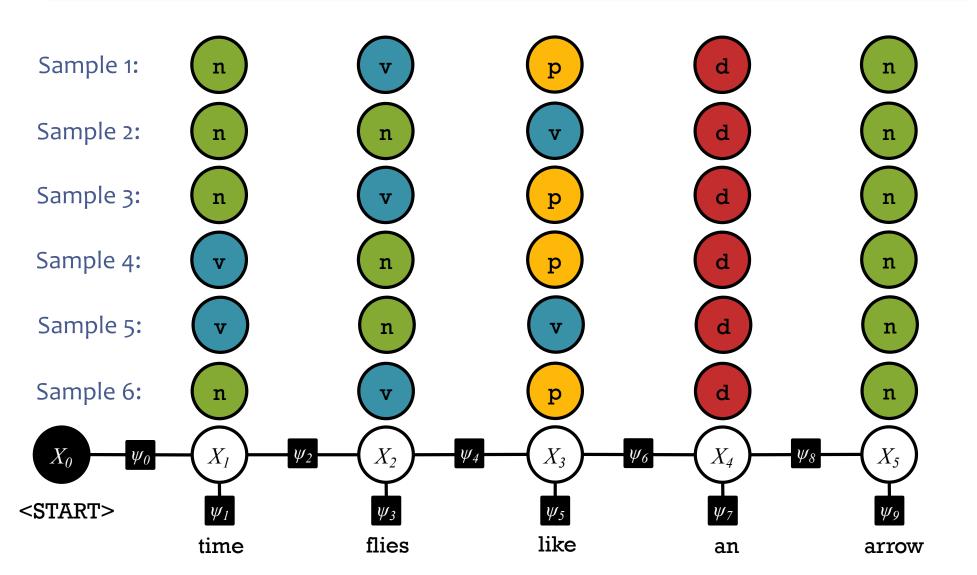
In a **pairwise MRF**, we define potential functions on the edges and the nodes, but not necessarily on maximal cliques

Representation of both directed and undirected graphical models

#### **FACTOR GRAPHS**

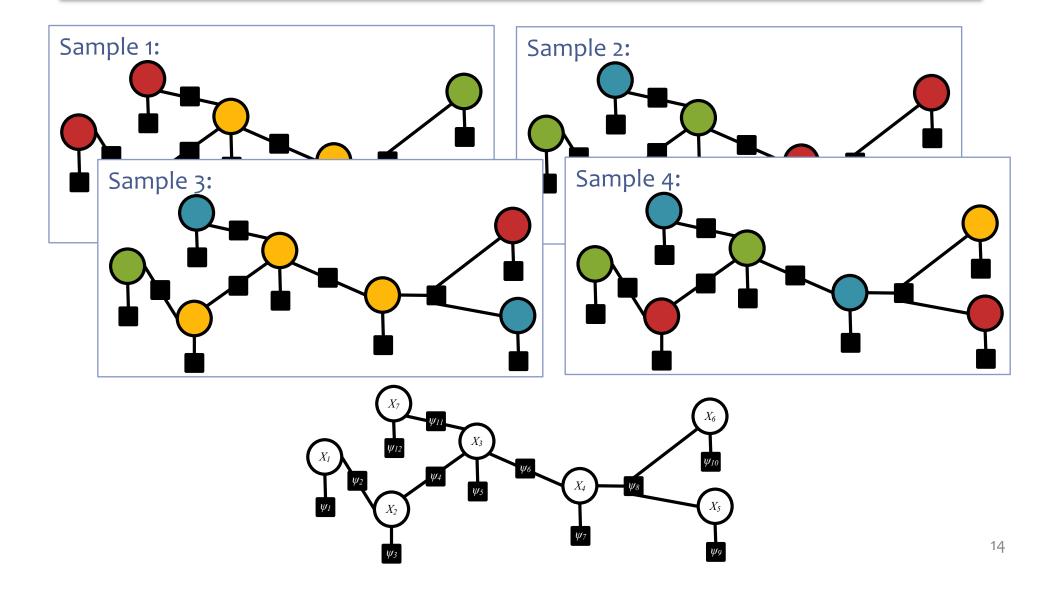
#### Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.



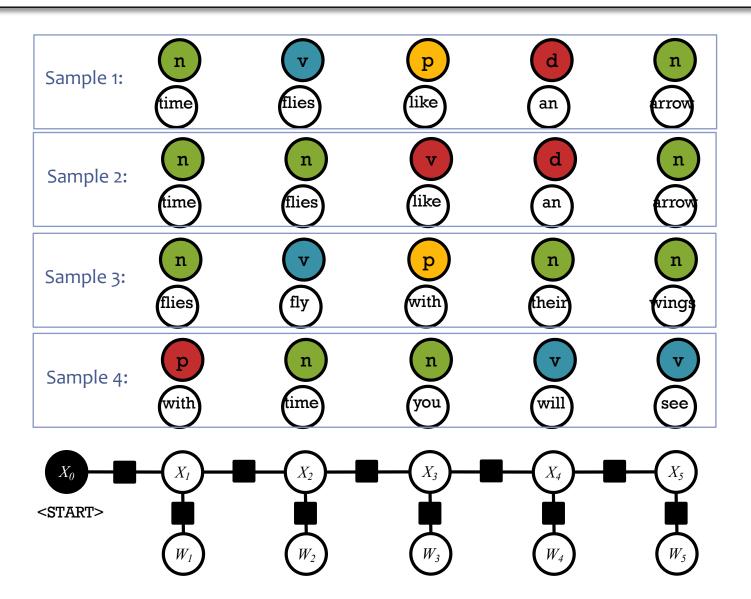
#### Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.



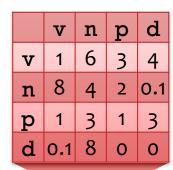
#### Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.



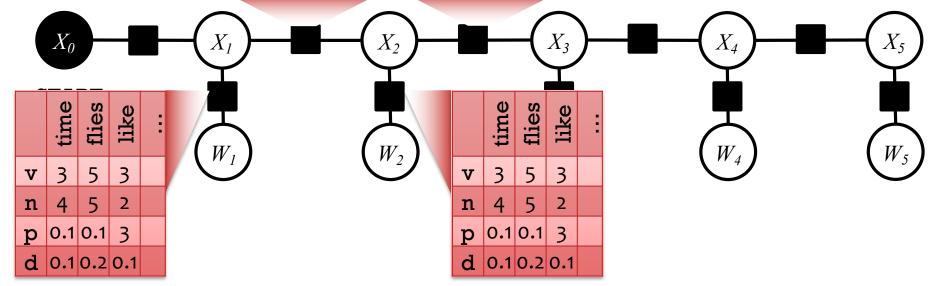
# Factors have local opinions (≥ 0)

Each black box looks at *some* of the tags  $X_i$  and words  $W_i$ 



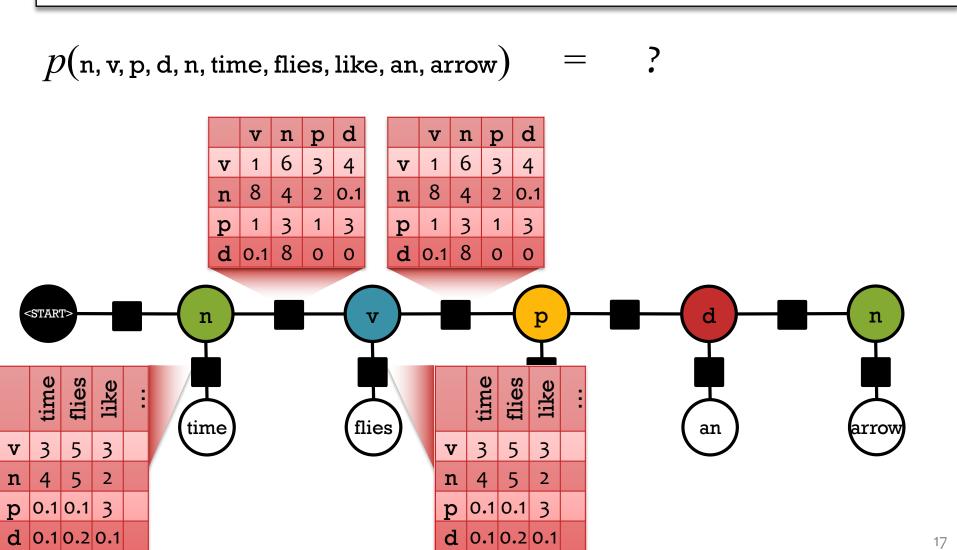
|   | v   | n | p | d   |
|---|-----|---|---|-----|
| v | 1   | 6 | 3 | 4   |
| n | 8   | 4 | 2 | 0.1 |
| р | 1   | 3 | 1 | 3   |
| d | 0.1 | 8 | 0 | 0   |

Note: We chose to reuse the same factors at different positions in the sentence.



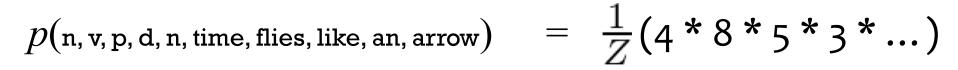
# Factors have local opinions (≥ 0)

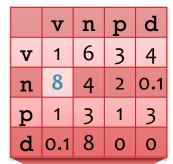
Each black box looks at *some* of the tags  $X_i$  and words  $W_i$ 



#### Global probability = product of local opinions

Each black box looks at *some* of the tags  $X_i$  and words  $W_i$ 

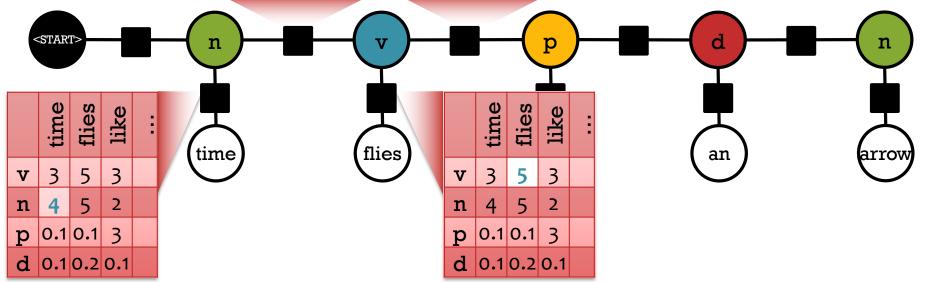




|   | v   | n | р | d   |
|---|-----|---|---|-----|
| V | 1   | 6 | 3 | 4   |
| n | 8   | 4 | 2 | 0.1 |
| р | 1   | 3 | 1 | 3   |
| d | 0.1 | 8 | 0 | О   |

Uh-oh! The probabilities of the various assignments sum up to Z > 1.

So divide them all by Z.



### Markov Random Field (MRF)

Joint distribution over tags  $X_i$  and words  $W_i$ The individual factors aren't necessarily probabilities.

0.1 0.1 3

0.1 0.2 0.1

19

0.1 0.1 3

0.1 0.2 0.1

# Bayesian Networks

But sometimes we *choose* to make them probabilities. Constrain each row of a factor to sum to one. Now Z = 1.

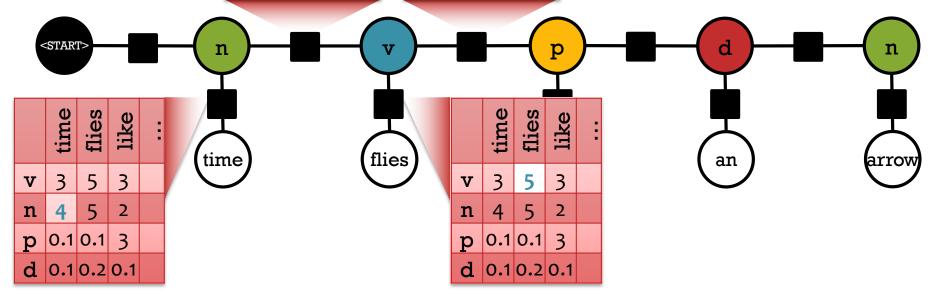
### Markov Random Field (MRF)

Joint distribution over tags  $X_i$  and words  $W_i$ 

$$p(n, v, p, d, n, time, flies, like, an, arrow) = \frac{1}{Z}(4*8*5*3*...)$$

|   | v   | n | р | d   |
|---|-----|---|---|-----|
| v | 1   | 6 | 3 | 4   |
| n | 8   | 4 | 2 | 0.1 |
| р | 1   | 3 | 1 | 3   |
| d | 0.1 | 8 | 0 | 0   |

|   | v   | n | р | d   |
|---|-----|---|---|-----|
| v | 1   | 6 | 3 | 4   |
| n | 8   | 4 | 2 | 0.1 |
| р | 1   | 3 | 1 | 3   |
| d | 0.1 | 8 | 0 | 0   |



21

# Conditional Random Field (CRF)

Conditional distribution over tags  $X_i$  given words  $w_i$ . The factors and Z are now specific to the sentence w.

$$p(n, v, p, d, n \mid time, flies, like, an, arrow) = \frac{1}{Z} (4 * 8 * 5 * 3 * ...)$$

$$v \mid p \mid d$$

$$v \mid 1 \mid 6 \mid 3 \mid 4$$

$$n \mid 8 \mid 4 \mid 2 \mid 0.1$$

$$p \mid 1 \mid 3 \mid 1 \mid 3$$

$$d \mid 0.1 \mid 8 \mid 0 \mid 0$$

$$v \mid 5$$

$$n \mid 5$$

$$p \mid 0.1$$

$$d \mid 0.1$$

like

an

arrow

time

flies

## How General Are Factor Graphs?

- Factor graphs can be used to describe
  - Markov Random Fields (undirected graphical models)
    - i.e., log-linear models over a tuple of variables
  - Conditional Random Fields
  - Bayesian Networks (directed graphical models)
- Inference treats all of these interchangeably.
  - Convert your model to a factor graph first.
  - Pearl (1988) gave key strategies for exact inference:
    - Belief propagation, for inference on acyclic graphs
    - Junction tree algorithm, for making any graph acyclic (by merging variables and factors: blows up the runtime)

# **Factor Graph Notation**



$$\mathcal{X} = \{X_1, \dots, X_i, \dots, X_n\}$$

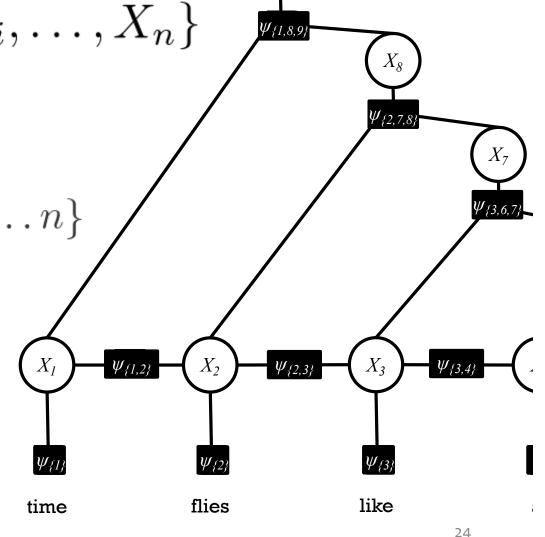
Factors:

$$\psi_{\alpha}, \psi_{\beta}, \psi_{\gamma}, \dots$$

where  $\alpha, \beta, \gamma, \ldots \subseteq \{1, \ldots n\}$ 

#### **Joint Distribution**

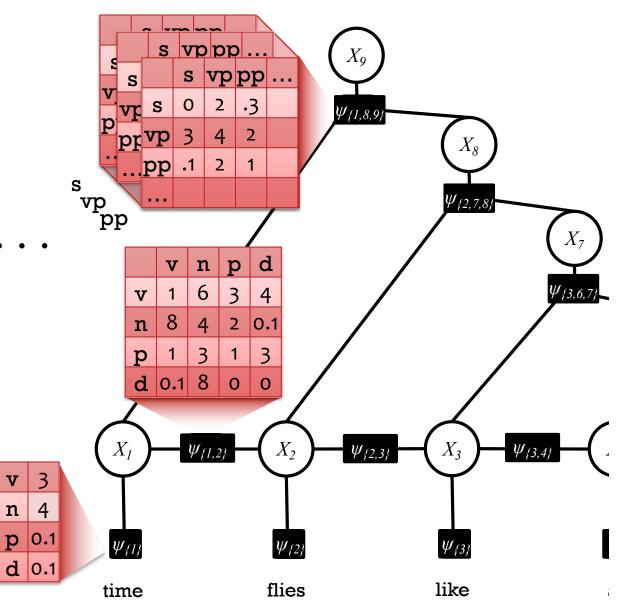
$$p(\boldsymbol{x}) = \frac{1}{Z} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{x}_{\alpha})$$



#### Factors are Tensors



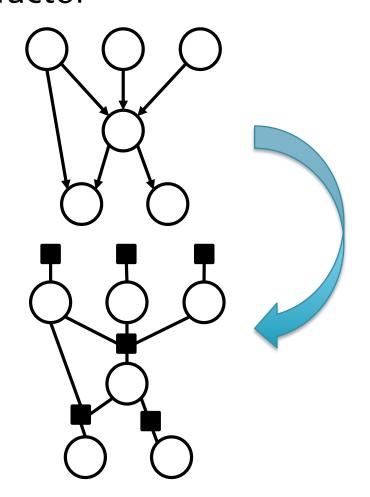
 $\psi_{\alpha}, \psi_{\beta}, \psi_{\gamma}, \dots$ 

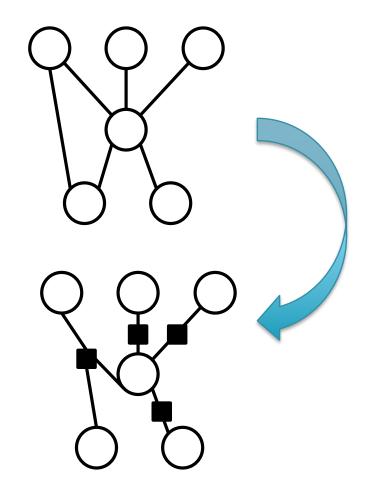


# Converting to Factor Graphs

Each conditional and marginal distribution in a directed GM becomes a factor

Each maximal clique in an undirected GM becomes a factor





# Equivalence of directed and undirected trees

- Any undirected tree can be converted to a directed tree by choosing a root node and directing all edges away from it
- A directed tree and the corresponding undirected tree make the same conditional independence assertions
- Parameterizations are essentially the same.
  - Undirected tree:
  - Directed tree:
  - Equivalence:

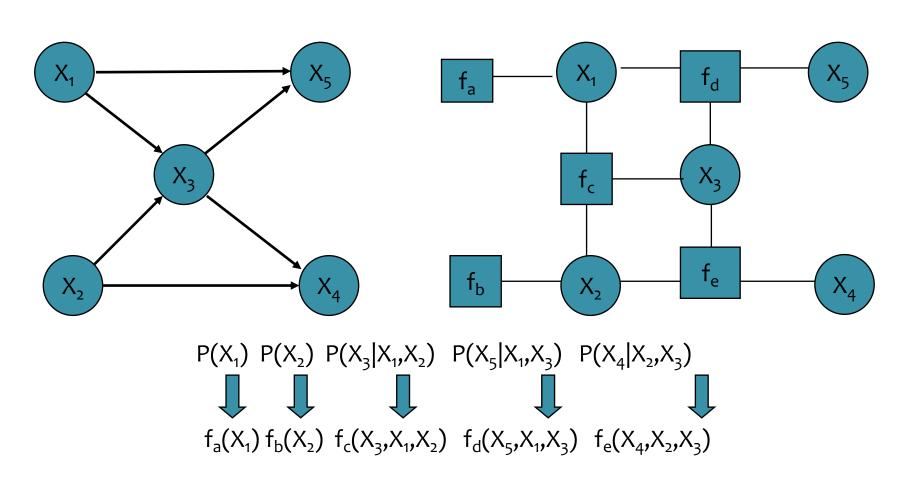
$$p(x) = \frac{1}{Z} \left( \prod_{i \in V} \psi(x_i) \prod_{(i,j) \in E} \psi(x_i, x_j) \right)$$

$$p(x) = p(x_r) \prod_{(i,j) \in E} p(x_j | x_i)$$

$$\psi(x_r) = p(x_r); \quad \psi(x_i, x_j) = p(x_j | x_i);$$
  
$$Z = 1, \quad \psi(x_i) = 1$$

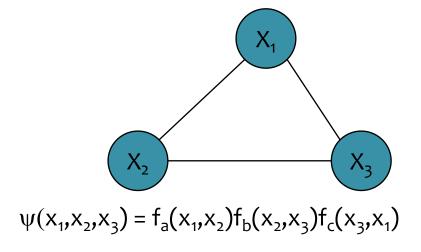
# Factor Graph Examples

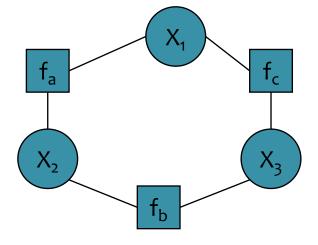
Example 1



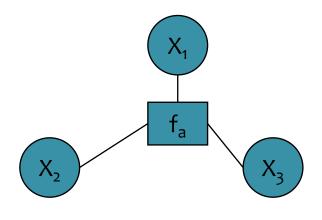
# Factor Graph Examples

Example 2



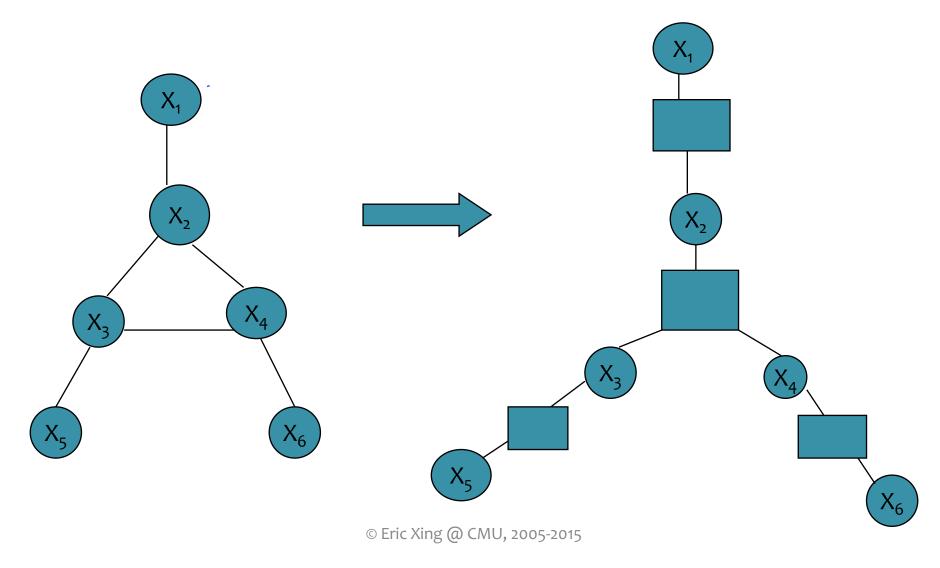


• Example 3  $x_1$   $x_2$   $x_3$   $\psi(x_1,x_2,x_3) = f_a(x_1,x_2,x_3)$ 



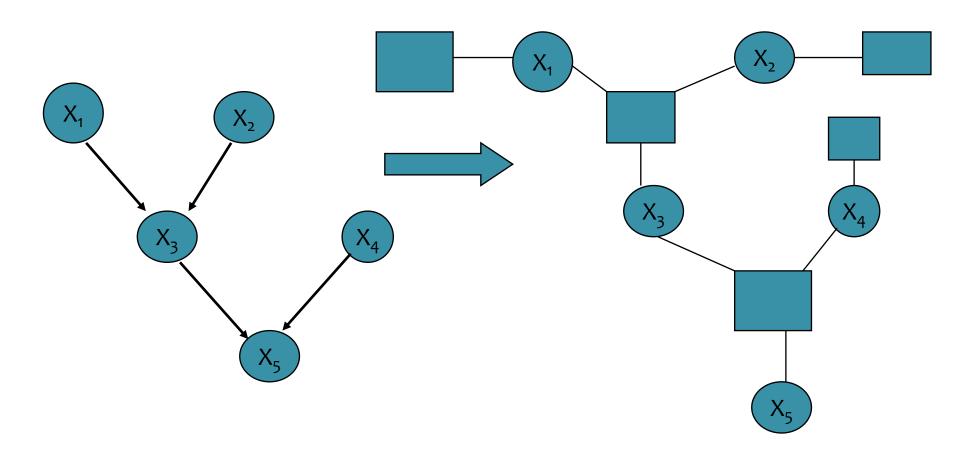
# Tree-like Undirected GMs to Factor Trees

Example 4

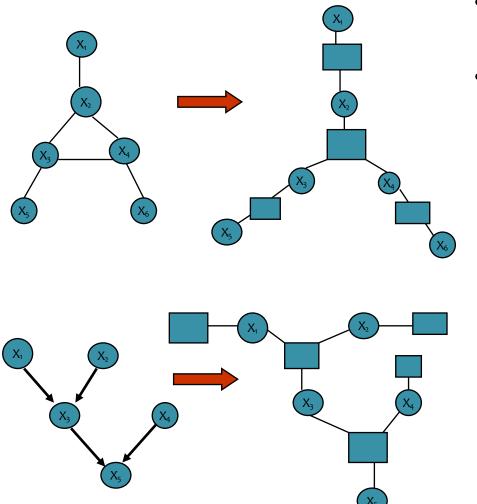


# Poly-trees to Factor trees

• Example 5



# Why factor graphs?

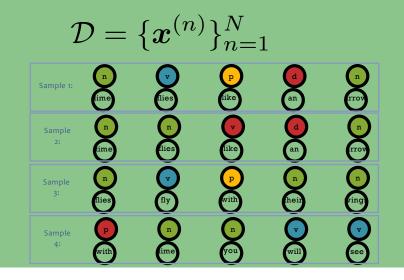


- Because FG turns tree-like graphs to factor trees,
- Trees are a data-structure that guarantees correctness of BP!

#### **EXACT INFERENCE**

#### **Exact Inference**

#### 1. Data



#### 2. Model

$$p(\boldsymbol{x}\mid\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{C\in\mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

#### 3. Objective

$$\ell(\theta; \mathcal{D}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}^{(n)} \mid \boldsymbol{\theta})$$

#### 5. Inference

1. Marginal Inference

$$p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

2. Partition Function

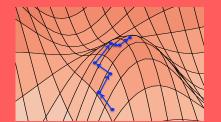
$$Z(\boldsymbol{\theta}) = \sum \prod \psi_C(\boldsymbol{x}_C)$$

3. MAP Inference

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

#### 4. Learning

$$\boldsymbol{\theta}^* = \operatorname*{argmax}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathcal{D})$$



# 5. Inference

#### Three Tasks:

#### 1. Marginal Inference (#P-Hard)

Compute marginals of variables and cliques

$$p(x_i) = \sum_{\boldsymbol{x}': x_i' = x_i} p(\boldsymbol{x}' \mid \boldsymbol{\theta}) \qquad \qquad p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

#### 2. Partition Function (#P-Hard)

Compute the normalization constant

$$Z(\boldsymbol{\theta}) = \sum_{\boldsymbol{x}} \prod_{C \in \mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

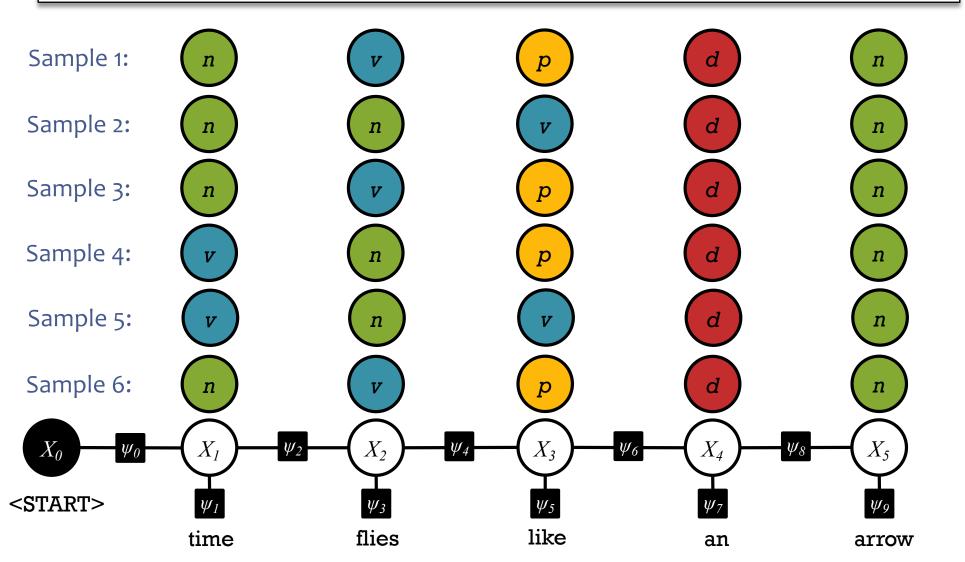
#### 3. MAP Inference (NP-Hard)

Compute variable assignment with highest probability

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

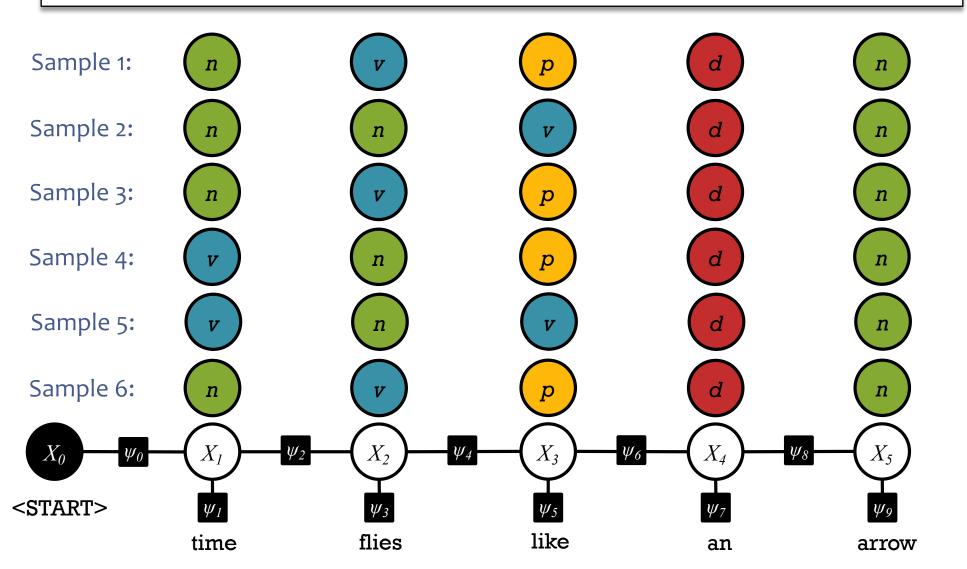
### Marginals by Sampling on Factor Graph

Suppose we took many samples from the distribution over taggings:  $p(x) = \frac{1}{Z} \prod \psi_{\alpha}(x_{\alpha})$ 

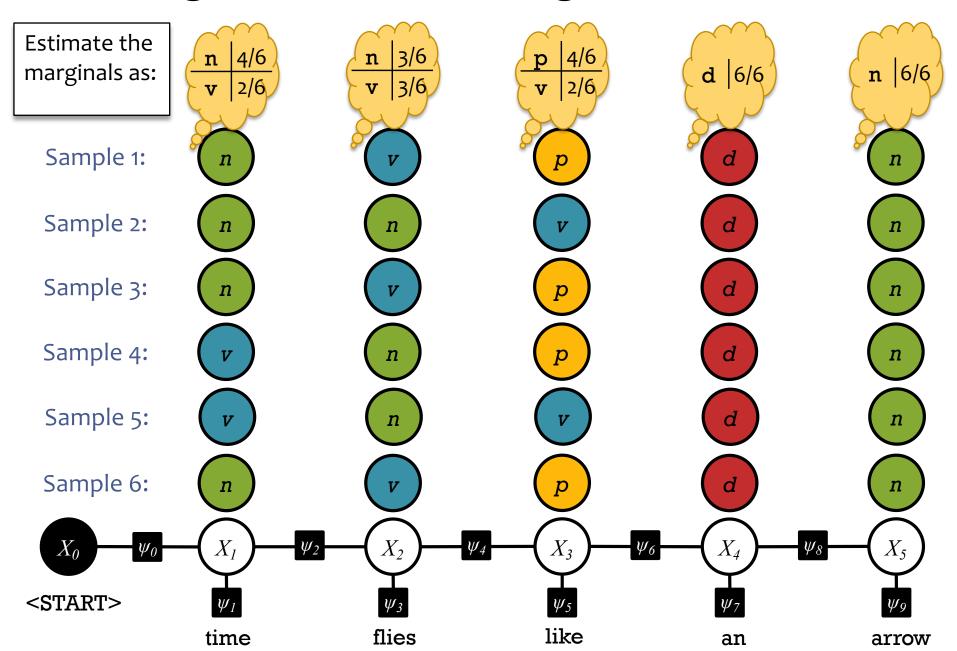


## Marginals by Sampling on Factor Graph

The marginal  $p(X_i = x_i)$  gives the probability that variable  $X_i$  takes value  $x_i$  in a random sample



## Marginals by Sampling on Factor Graph



Simple and general exact inference for graphical models

#### **VARIABLE ELIMINATION**

# Brute Force (Naïve) Inference

For all *i*, suppose the **range** of  $X_i$  is  $\{0, 1, 2\}$ .

Let k=3 denote the size of the range.

The distribution **factorizes** as:

Naively, we compute the **partition function** as:

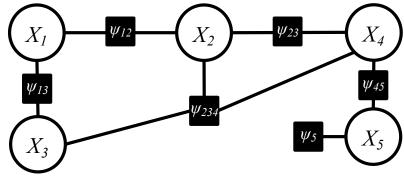
$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} S(\boldsymbol{x})$$

#### Brute Force (Naïve) Inference

For all i, suppose the **range** of  $X_i$  is  $\{0, 1, 2\}$ . Let k=3 denote the **size of the range**.

The distribution **factorizes** as:

$$S(\mathbf{x}) = \psi_{12}(x_1, x_2)\psi_{13}(x_1, x_3)\psi_{24}(x_2, x_4)$$
$$\psi_{234}(x_2, x_3, x_4)\psi_{45}(x_4, x_5)\psi_{5}(x_5)$$



Naively, we compute the **partition function** as:

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} s(x)$$

s(x) can be represented as a joint probability table with  $3^5$ 

entries:

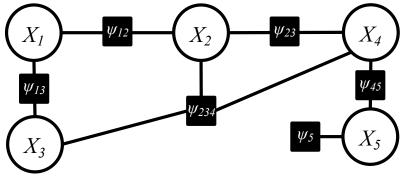
| $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $S(\mathbf{x})$ |
|-------|-------|-------|-------|-------|-----------------|
| 0     | 0     | 0     | 0     | 0     | 0.019517693     |
| 0     | 0     | 0     | 0     | 1     | 0.017090249     |
| 0     | 0     | 0     | 0     | 2     | 0.014885825     |
| 0     | 0     | 0     | 1     | 0     | 0.024117638     |
| 0     | 0     | 0     | 1     | 1     | 0.000925849     |
| 0     | 0     | 0     | 1     | 2     | 0.028112576     |
| 0     | 0     | 0     | 2     | 0     | 0.028050205     |
| 0     | 0     | 0     | 2     | 1     | 0.004812689     |
| 0     | 0     | 0     | 2     | 2     | 0.007987737     |
| 0     | 0     | 1     | 0     | 0     | 0.028433687     |
| 0     | 0     | 1     | 0     | 1     | 0.037073469     |
| 0     | 0     | 1     | 0     | 2     | 0.013558227     |
| 0     | 0     | 1     | 1     | 0     | 0.019479016     |
| 0     | 0     | 1     | 1     | 1     | 0.012312901     |
| 0     | 0     | 1     | 1     | 2     | 0.023439775     |
| 0     | 0     | 1     | 2     | 0     | 0.038206131     |
| 0     | 0     | 1     | 2     | 1     | 0.038996005     |
| 0     | 0     | 1     | 2     | 2     | 0.041458783     |
| 0     | 0     | 2     | 0     | 0     | 0.044616806     |
| 0     | 0     | 2     | 0     | 1     | 0.020846989     |
| 0     | 0     | 2     | 0     | 2     | 0.03006475      |
| 0     | 0     | 2     | 1     | 0     | 0.048436964     |
| 0     | 0     | 2     | 1     | 1     | 0.02854376      |
| 0     | 0     | 2     | 1     | 2     | 0.029191506     |
| 0     | 0     | 2     | 2     | 0     | 0.031531118     |
| 0     | 0     | 2     | 2     | 1     | 0.005132392     |
| 0     | 0     | 2     | 2     | 2     | 0.032027091     |
|       |       |       |       |       |                 |

## Brute Force (Naïve) Inference

For all i, suppose the **range** of  $X_i$  is  $\{0, 1, 2\}$ . Let k=3 denote the **size of the range**.

The distribution **factorizes** as:

$$S(\mathbf{x}) = \psi_{12}(x_1, x_2)\psi_{13}(x_1, x_3)\psi_{24}(x_2, x_4)$$
$$\psi_{234}(x_2, x_3, x_4)\psi_{45}(x_4, x_5)\psi_{5}(x_5)$$



Naively, we compute the **partition function** as:

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} s(\boldsymbol{x})$$

s(x) can be represented as a joint probability table with  $3^5$ 

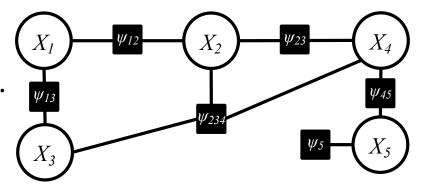
entries:

| П |       |       |       |       |       |                 |
|---|-------|-------|-------|-------|-------|-----------------|
| Ŀ | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $S(\mathbf{x})$ |
|   | 0     | 0     | 0     | 0     | 0     | 0.019517693     |
|   | 0     | 0     | 0     | 0     | 1     | 0.017090249     |
|   | 0     | 0     | 0     | 0     | 2     | 0.014885825     |
|   | 0     | 0     | 0     | 1     | 0     | 0.024117638     |
|   | 0     | 0     | 0     | 1     | 1     | 0.000925849     |
|   | 0     | 0     | 0     | 1     | 2     | 0.028112576     |
|   | 0     | 0     | 0     | 2     | 0     | 0.028050205     |
|   | 0     | 0     | 0     | 2     | 1     | 0.004812689     |
|   | 0     | 0     | 0     | 2     | 2     | 0.007987737     |
|   | 0     | 0     | 1     | 0     | 0     | 0.028433687     |
|   | 0     | 0     | 1     | 0     | 1     | 0.037073469     |
|   | 0     | 0     | 1     | 0     | 2     | 0.013558227     |
|   | 0     | 0     | 1     | 1     | 0     | 0.019479016     |
|   | 0     | 0     | 1     | 1     | 1     | 0.012312901     |
|   | 0     | 0     | 1     | 1     | 2     | 0.023439775     |
|   | 0     | 0     | 1     | 2     | 0     | 0.038206131     |
|   | 0     | 0     | 1     | 2     | 1     | 0.038996005     |
|   | 0     | 0     | 1     | 2     | 2     | 0.041458783     |
|   | 0     | 0     | 2     | 0     | 0     | 0.044616806     |
|   | 0     | 0     | 2     | 0     | 1     | 0.020846989     |
|   | 0     | 0     | 2     | 0     | 2     | 0.03006475      |
|   | 0     | 0     | 2     | 1     | 0     | 0.048436964     |
|   | 0     | 0     | 2     | 1     | 1     | 0.02854376      |
|   |       |       |       |       |       |                 |

Naïve computation of Z requires  $3^5$  additions.

Can we do better?

Instead, capitalize on the factorization of s(x).



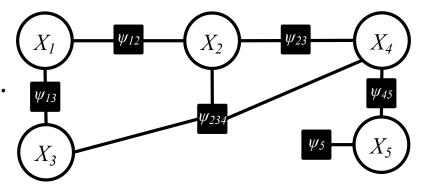
$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

This "factor" is a much smaller table with  $3^2$  entries:

| $x_4$ | $x_5$ | $S(x_4, x_5)$ |
|-------|-------|---------------|
| 0     | 0     | 0.019517693   |
| 0     | 1     | 0.017090249   |
| 0     | 2     | 0.014885825   |
| 1     | 0     | 0.024117638   |
| 1     | 1     | 0.000925849   |
| 1     | 2     | 0.028112576   |
| 2     | 0     | 0.028050205   |
| 2     | 1     | 0.004812689   |
| 2     | 2     | 0.007987737   |

Instead, capitalize on the factorization of s(x).



$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

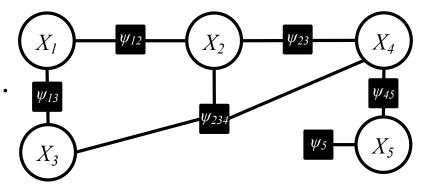
Only  $3^2$  additions are needed to marginalize out  $x_5$ .

We denote the marginal's table by  $m_5(x_4)$ .

This "factor" is a much smaller table with 3 entries:

| $x_4$ | $m_5(x_4)$  |
|-------|-------------|
| 0     | 0.019517693 |
| 1     | 0.017090249 |
| 2     | 0.014885825 |

Instead, capitalize on the factorization of s(x).



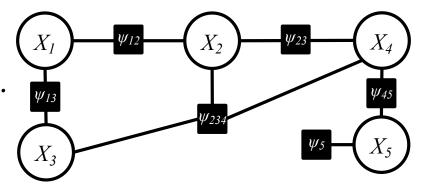
$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_{5}(x_4)$$

$$m_5(x_4) \triangleq \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

Instead, capitalize on the factorization of s(x).



$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

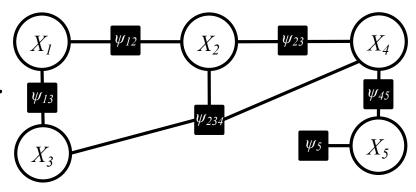
$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_{5}(x_4)$$

This "factor" is still a 3<sup>4</sup> table so apply the same trick again.

$$m_5(x_4) \triangleq \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

Instead, capitalize on the factorization of s(x).



$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$3^2 \text{ additions}$$

 $-\sum_{i=1}^{x_1}\sum_{j=1}^{x_2}\sqrt{x_1}x_2$ 

 $3^3$  additions

 $= \sum \sum \psi_{12}(x_1, x_2) m_3(x_1, x_2)$ 

 $3^3$  additions

 $=\sum m_2(x_1)$ 

 $3^2$  additions

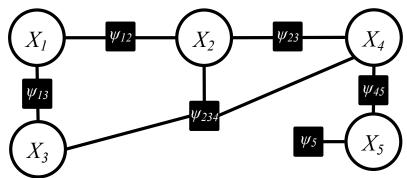


3 additions

Naïve solution requires  $3^5=243$  additions.

Variable elimination only requires  $3+3^2+3^3+3^3+3^2=75$  additions.

The same trick can be used to compute marginal probabilities. Just choose the variable elimination order such that the query variables are last.



$$p(x_1) = \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

$$= \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

$$= \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$= \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$3^2 \text{ additions}$$
33 additions

 $3^3$  additions

 $3^2$  additions

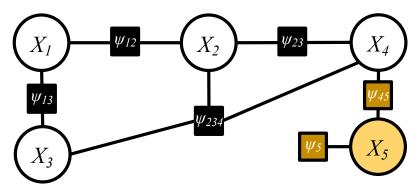
 $= \frac{1}{Z} \sum \psi_{12}(x_1, x_2) m_3(x_1, x_2)$ 

For directed graphs, Z = 1.

For undirected graphs, if we compute each (unnormalized) value on the LHS, we can sum them to get Z.

3 different values on LHS

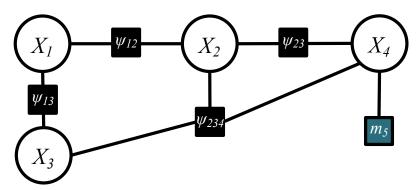
 $=\frac{1}{7}m_2(x_1)$ 



$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

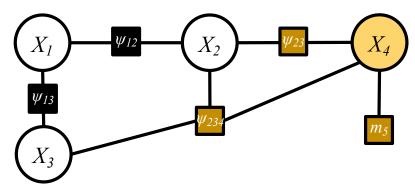
$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$



$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_{5}(x_4)$$

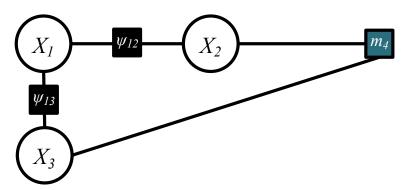
$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_{4}(x_2, x_3)$$



$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$



$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

# Variable Elimination for Marginal Inference

#### **Algorithm 1:** Variable Elimination for Marginal Inference

Input: the factor graph and the query variable

Output: the marginal distribution for the query variable

- a. Run a breadth-first-search starting at the query variable to obtain an ordering of the variable nodes
- b. Reverse that ordering
- c. Eliminate each variable in the reversed ordering using Algorithm 2

#### **Algorithm 2: Eliminate One Variable**

Input: the variable to be eliminated

Output: new factor graph with the variable marginalized out

- a. Find the input variable and its neighboring factors -- call this set the eliminated set
- b. Replace the eliminated set with a new factor
  - a. The neighbors of the new factor should be all the neighbors of all the factors in the eliminated set
  - b. The new factor should assign a score to each possible assignment of its neighboring variables
  - c. Said score should be identical to the product of the factors it is replacing, summing over the eliminated variable

# Variable Elimination for Marginal Inference

#### **Algorithm 3: Variable Elimination for the Partition Function**

**Input:** the factor graph

Output: the partition function

- a. Run a breadth-first-search starting at an arbitrary variable to obtain an ordering of the variable nodes
- b. Eliminate each variable in the ordering using Algorithm 2

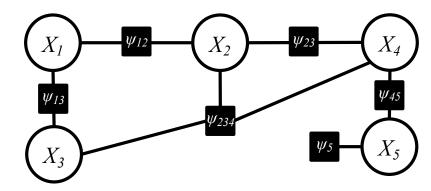
#### **Algorithm 2: Eliminate One Variable**

Input: the variable to be eliminated

Output: new factor graph with the variable marginalized out

- a. Find the input variable and its neighboring factors -- call this set the eliminated set
- b. Replace the eliminated set with a new factor
  - a. The neighbors of the new factor should be all the neighbors of all the factors in the eliminated set
  - b. The new factor should assign a score to each possible assignment of its neighboring variables
  - c. Said score should be identical to the product of the factors it is replacing, summing over the eliminated variable

#### Variable Elimination Complexity



#### **In-Class Exercise:** Fill in the blank

Brute force, naïve, inference is O(\_\_\_\_)

Variable elimination is O( )

where n = # of variables

k = max # values a variable can take

r = # variables participating in largest "intermediate" table