

10-418 / 10-618 Machine Learning for Structured Data

Machine Learning Department School of Computer Science Carnegie Mellon University

Bayesian Networks

Matt Gormley Lecture 6 Sep. 16, 2019

Reminders

- Homework 1: DAgger for seq2seq
 - Out: Thu, Sep. 12
 - Due: Thu, Sep. 26 at 11:59pm

APPLICATIONS OF SEQ2SEQ

seq2seq for MT

Basic Architecture:

Figure 1: Neural machine translation – a stacking recurrent architecture for translating a source sequence A B C D into a target sequence X Y Z. Here, <eos> marks the end of a sentence.

Results from Sutskever et al. (2014)

Method	test BLEU score (ntst14)
Bahdanau et al. [2]	28.45
Baseline System [29]	33.30
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59
Ensemble of 5 reversed LSTMs, beam size 1	33.00
Ensemble of 2 reversed LSTMs, beam size 12	33.27
Ensemble of 5 reversed LSTMs, beam size 2	34.50
Ensemble of 5 reversed LSTMs, beam size 12	34.81

Table: performance on WMT'14 English to French test set

Visualization from Sutskever et al. (2014)

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that both clusters have similar internal structure.

seq2seq for ASR

Listen Attend and Spell

Figure 1: LAS model.

 $\mathbf{h} = \text{Listen}(\mathbf{x})$ $P(y_i | \mathbf{x}, y_{< i}) = \text{AttendAndSpell}(y_{< i}, \mathbf{h})$

Figure from Irie et al. (2019)

seq2seq for ASR

Listen Attend and Spell

Speller

(sos y_{S-1} $h = (h_1, \ldots, h_U)$ Listener

Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input sequence x into high level features h, the speller is an attention-based decoder generating the ycharacters from h.

Results from Park et al. (2019)

Table 3: LibriSpeech 960h WERs (%).

Method	No LM		nod No LM		Witl	With LM	
	clean	other	clean	other			
НММ							
Panayotov et al., (2015) [19]			5.51	13.97			
Povey et al., (2016) [29]			4.28				
Han et al., (2017) [30]			3.51	8.58			
Yang et al. (2018) [31]			2.97	7.50			
CTC/ASG							
Collobert et al., (2016) [32]	7.2						
Liptchinsky et al., (2017) [33]	6.7	20.8	4.8	14.5			
Zhou et al., (2018) [34]			5.42	14.70			
Zeghidour et al., (2018) [35]			3.44	11.24			
Li et al., (2019) [36]	3.86	11.95	2.95	8.79			
LAS							
Zeyer et al., (2018) [23]	4.87	15.39	3.82	12.76			
Zeyer et al., (2018) [37]	4.70	15.20					
Irie et al., (2019) [24]	4.7	13.4	3.6	10.3			
Sabour et al., (2019) [38]	4.5	13.3					

seq2seq for ASR

Listen Attend and Spell

Speller (sos y_{S-1} $h = (h_1, \ldots, h_U)$ Listener

Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input sequence x into high level features h, the speller is an attention-based decoder generating the ycharacters from h.

Results from Park et al. (2019)

Table 3: LibriSpeech 960h WERs (%).

Method	No LM		No LM With LN		n LM
	clean	other	clean	other	
HMM					
Panayotov et al., (2015) [19]			5.51	13.97	
Povey et al., (2016) [29]			4.28		
Han et al., (2017) [30]			3.51	8.58	
Yang et al. (2018) [31]			2.97	7.50	
CTC/ASG					
Collobert et al., (2016) [32]	7.2				
Liptchinsky et al., (2017) [33]	6.7	20.8	4.8	14.5	
Zhou et al., (2018) [34]			5.42	14.70	
Zeghidour et al., (2018) [35]			3.44	11.24	
Li et al., (2019) [36]	3.86	11.95	2.95	8.79	
LAS					
Zeyer et al., (2018) [23]	4.87	15.39	3.82	12.76	
Zeyer et al., (2018) [37]	4.70	15.20			
Irie et al., (2019) [24]	4.7	13.4	3.6	10.3	
Sabour et al., (2019) [38]	4.5	13.3			
Our Work					
LAS	4.1	12.5	3.2	9.8	
LAS + SpecAugment	2.8	6.8	2.5	5.8	

Park et al. (2019) used the **LAS model** from prior work, and introduced a **data augmentation** method that gave state-of-the-art performance on LibriSpeech 960h and Swichboard 300h tasks

- 1. Vinyals, O., et al. "Show and Tell: A Neural Image Caption Generator." CVPR (2015).
- 2. Mao, J., et al. "Deep captioning with multimodal recurrent neural networks (m-rnn)." ICLR (2015).
- 3. Karpathy, A., Li, F., "Deep visual-semantic alignments for generating image descriptions." CVPR (2015).

Human: A close up of two bananas with bottles in the background.

BestModel: A bunch of bananas and a bottle of wine.

InitialModel: A close up of a plate of food on a table.

Human: A woman holding up a yellow banana to her face.

BestModel: A woman holding a banana up to her face.

InitialModel: A close up of a person eating a hot dog.

Human: A man outside cooking with a sub in his hand.

BestModel: A man is holding a sandwich in his hand.

InitialModel: A man cutting a cake with a knife.

Human: Someone is using a small grill to melt his sandwich.

BestModel: A person is cooking some food on a grill.

InitialModel: A pizza sitting on top of a white plate.

Human: A blue , yellow and red train travels across the tracks near a depot.

BestModel: A blue and yellow train traveling down train tracks.

InitialModel: A train that is sitting on the tracks.

Learning Objectives

Sequence to Sequence Models

You should be able to...

- Explain the difference between RNNs, RNNLMs, encode-decoder models, and seq2seq models
- 2. Implement a basic seq2seq model
- 3. Employ learning to search algorithms to train RNNs (and related models)

COMPUTATIONAL COMPLEXITY

Analysis of Algorithms

Key Questions:

- Given a single algorithm, will it complete on a given input in a reasonable amount of time/space?
- 2. Given two algorithms which one is better?

Computational Complexity	Name
O(1)	constant
O(log(n))	logarithmic
O(n)	linear
O(n log(n))	"n log n"
O(n ²)	quadratic
O(n ³)	cubic
O(2 ⁿ)	exponential
O(n!)	factorial
O(n ⁿ)	superexponential

Complexity Classes

- An algorithm runs in **polynomial time** if its runtime is a polynomial function of the input size (e.g. O(n^k) for some fixed constant k)
- The class P consists of all problems that can be solved in polynomial time
- A problem for which the answer is binary (e.g. yes/no) is called a **decision problem**
- The **class NP** contains all decision problems where 'yes' answers can be verified (proved) in polynomial time
- A problem is NP-Hard if given an O(1) oracle to solve it, every problem in NP can be solved in polynomial time (e.g. by reduction)
- A problem is **NP-Complete** if it belongs to both the classes NP and NP-Hard

INFERENCE PROBLEMS

Inference Problems

Whiteboard

- Running example: exponential search space for sequence tagging
- Assumptions leading to a probability distribution
- Intractable problems for arbitrary search spaces:
 - **Problem 1**: Computing the total probability of the hidden states given the observations (Evaluation)
 - **Problem 2:** Computing the marginal probability for a specific observation / timestep (Marginals)
 - **Problem 3:** Finding the most probable assignment to the hidden states (Viterbi decoding)

Exact Inference

1. Data

5. Inference

1. Marginal Inference

$$p(\boldsymbol{x}_{C}) = \sum_{\boldsymbol{x}': \boldsymbol{x}_{C}' = \boldsymbol{x}_{C}} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

2. Partition Function

$$Z(m{ heta}) = \sum_{m{x}} \prod_{C \in \mathcal{C}} \psi_C(m{x}_C)$$
3. MAP Inference

 $\hat{\boldsymbol{x}} = \operatorname{argmax} \, p(\boldsymbol{x} \mid \boldsymbol{\theta})$

2. Model

$$p(\boldsymbol{x} \mid \boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{C \in \mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. Objective $\ell(\theta; \mathcal{D}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}^{(n)} \mid \boldsymbol{\theta})$

4. Learning

$$\boldsymbol{\theta}^* = \operatorname*{argmax}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathcal{D})$$

5. Inference

Three Tasks:

1. Marginal Inference (#P-Hard)

Compute marginals of variables and cliques

$$p(x_i) = \sum_{\boldsymbol{x}': x_i' = x_i} p(\boldsymbol{x}' \mid \boldsymbol{\theta}) \qquad \qquad p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

2. Partition Function (#P-Hard) Compute the normalization constant

$$Z(\boldsymbol{\theta}) = \sum_{\boldsymbol{x}} \prod_{C \in \mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. MAP Inference (NP-Hard)

Compute variable assignment with highest probability

$$\hat{\boldsymbol{x}} = \operatorname*{argmax}_{\boldsymbol{x}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

Bayesian Networks

DIRECTED GRAPHICAL MODELS

Example: Tornado Alarms

- Imagine that you work at the 911 call center in Dallas
- You receive six calls informing you that the Emergency Weather Sirens are going off
 What do you conclude?

Directed Graphical Models (Bayes Nets)

Whiteboard

- Example: Tornado Alarms
- Writing Joint Distributions
 - Idea #1: Giant Table
 - Idea #2: Rewrite using chain rule
 - Idea #3: Assume full independence
 - Idea #4: Drop variables from RHS of conditionals
- Definition: Bayesian Network

Bayesian Network

 $p(X_1, X_2, X_3, X_4, X_5) =$ $p(X_5|X_3)p(X_4|X_2,X_3)$ $p(X_3)p(X_2|X_1)p(X_1)$

Bayesian Network

Definition:

$$P(X_1...X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$$

- A Bayesian Network is a **directed graphical model**
- It consists of a graph **G** and the conditional probabilities **P**
- These two parts full specify the distribution:
 - Qualitative Specification: G
 - Quantitative Specification: P

Qualitative Specification

- Where does the qualitative specification come from?
 - Prior knowledge of causal relationships
 - Prior knowledge of modular relationships
 - Assessment from experts
 - Learning from data (i.e. structure learning)
 - We simply prefer a certain architecture (e.g. a layered graph)

— ...

Quantitative Specification

Example: Conditional probability tables (CPTs) for discrete random variables

Quantitative Specification

Example: Conditional probability density functions (CPDs) for continuous random variables

© Eric Xing @ CMU, 2006-2011

Quantitative Specification

Example: Combination of CPTs and CPDs for a mix of discrete and continuous variables

P(a,b,c.d) =P(a)P(b)P(c|a,b)P(d|c)

Observed Variables

• In a graphical model, **shaded nodes** are **"observed"**, i.e. their values are given

Familiar Models as Bayesian Networks

Question:

Match the model name to the corresponding Bayesian Network

- 1. Logistic Regression
- 2. Linear Regression
- 3. Bernoulli Naïve Bayes
- 4. Gaussian Naïve Bayes
- 5. 1D Gaussian

Answer:

