
Bayesian Networks

1

10-418 / 10-618 Machine Learning for Structured Data

Matt Gormley
Lecture 6

Sep. 16, 2019

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 1: DAgger for seq2seq
– Out: Thu, Sep. 12
– Due: Thu, Sep. 26 at 11:59pm

3

APPLICATIONS OF SEQ2SEQ

4

seq2seq for MT

5

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1412–1421,
Lisbon, Portugal, 17-21 September 2015. c�2015 Association for Computational Linguistics.

Effective Approaches to Attention-based Neural Machine Translation

Minh-Thang Luong Hieu Pham Christopher D. Manning
Computer Science Department, Stanford University, Stanford, CA 94305

{lmthang,hyhieu,manning}@stanford.edu

Abstract
An attentional mechanism has lately been
used to improve neural machine transla-
tion (NMT) by selectively focusing on
parts of the source sentence during trans-
lation. However, there has been little
work exploring useful architectures for
attention-based NMT. This paper exam-
ines two simple and effective classes of at-
tentional mechanism: a global approach
which always attends to all source words
and a local one that only looks at a subset
of source words at a time. We demonstrate
the effectiveness of both approaches on the
WMT translation tasks between English
and German in both directions. With local
attention, we achieve a significant gain of
5.0 BLEU points over non-attentional sys-
tems that already incorporate known tech-
niques such as dropout. Our ensemble
model using different attention architec-
tures yields a new state-of-the-art result in
the WMT’15 English to German transla-
tion task with 25.9 BLEU points, an im-
provement of 1.0 BLEU points over the
existing best system backed by NMT and
an n-gram reranker.1

1 Introduction

Neural Machine Translation (NMT) achieved
state-of-the-art performances in large-scale trans-
lation tasks such as from English to French (Luong
et al., 2015) and English to German (Jean et al.,
2015). NMT is appealing since it requires minimal
domain knowledge and is conceptually simple.
The model by Luong et al. (2015) reads through all
the source words until the end-of-sentence symbol
<eos> is reached. It then starts emitting one tar-
get word at a time, as illustrated in Figure 1. NMT

1All our code and models are publicly available at http:
//nlp.stanford.edu/projects/nmt.

B C D <eos> X Y Z

X Y Z <eos>

A

Figure 1: Neural machine translation – a stack-
ing recurrent architecture for translating a source
sequence A B C D into a target sequence X Y

Z. Here, <eos> marks the end of a sentence.

is often a large neural network that is trained in an
end-to-end fashion and has the ability to general-
ize well to very long word sequences. This means
the model does not have to explicitly store gigantic
phrase tables and language models as in the case
of standard MT; hence, NMT has a small memory
footprint. Lastly, implementing NMT decoders is
easy unlike the highly intricate decoders in stan-
dard MT (Koehn et al., 2003).

In parallel, the concept of “attention” has gained
popularity recently in training neural networks, al-
lowing models to learn alignments between dif-
ferent modalities, e.g., between image objects
and agent actions in the dynamic control problem
(Mnih et al., 2014), between speech frames and
text in the speech recognition task (Chorowski et
al., 2014), or between visual features of a picture
and its text description in the image caption gen-
eration task (Xu et al., 2015). In the context of
NMT, Bahdanau et al. (2015) has successfully ap-
plied such attentional mechanism to jointly trans-
late and align words. To the best of our knowl-
edge, there has not been any other work exploring
the use of attention-based architectures for NMT.

In this work, we design, with simplicity and ef-
fectiveness in mind, two novel types of attention-

1412

Figure from Luong et al. (2015)

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
State of the art [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is within 0.5
BLEU points of the previous state of the art by rescoring the 1000-best list of the baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis

−8 −6 −4 −2 0 2 4 6 8 10
−6

−5

−4

−3

−2

−1

0

1

2

3

4

John respects Mary

Mary respects John
John admires Mary

Mary admires John

Mary is in love with John

John is in love with Mary

−15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

I gave her a card in the garden

In the garden , I gave her a card
She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

Basic Architecture: Results from Sutskever et al. (2014)

Visualization from Sutskever et al. (2014)

Table: performance on WMT’14 English to French test set

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
State of the art [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is within 0.5
BLEU points of the previous state of the art by rescoring the 1000-best list of the baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis

−8 −6 −4 −2 0 2 4 6 8 10
−6

−5

−4

−3

−2

−1

0

1

2

3

4

John respects Mary

Mary respects John
John admires Mary

Mary admires John

Mary is in love with John

John is in love with Mary

−15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

I gave her a card in the garden

In the garden , I gave her a card
She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

seq2seq for ASR

6
Figure from Irie et al. (2019)

Listen Attend and Spell

x1 x2 xT

hUh1

x3 x4

h = (h1, . . . , hU)

y2 y3

hsosi

heosi

y2 y3

y4

yS�1

c1 c2

Speller

Listener

s1 s2

h h h

Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y

characters from h.

consumes h and produces a probability distribution over character
sequences:

h = Listen(x) (2)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)

Figure 1 depicts these two components. We provide more details of
these components in the following sections.

2.1. Listen

The Listen operation uses a Bidirectional Long Short Term Memory
RNN (BLSTM) [15, 16, 2] with a pyramidal structure. This modi-
fication is required to reduce the length U of h, from T , the length
of the input x, because the input speech signals can be hundreds to
thousands of frames long. A direct application of BLSTM for the
operation Listen converged slowly and produced results inferior to
those reported here, even after a month of training time. This is
presumably because the operation AttendAndSpell has a hard time
extracting the relevant information from a large number of input time
steps.

We circumvent this problem by using a pyramidal BLSTM
(pBLSTM). In each successive stacked pBLSTM layer, we reduce
the time resolution by a factor of 2. In a typical deep BLSTM
architecture, the output at the i-th time step, from the j-th layer is
computed as follows:

hj
i = BLSTM(hj

i�1, h
j�1
i) (4)

In the pBLSTM model, we concatenate the outputs at consecutive
steps of each layer before feeding it to the next layer, i.e.:

hj
i = pBLSTM(hj

i�1,
h
hj�1
2i , hj�1

2i+1

i
) (5)

In our model, we stack 3 pBLSTMs on top of the bottom
BLSTM layer to reduce the time resolution 2

3
= 8 times. This

allows the attention model (described in the next section) to extract
the relevant information from a smaller number of times steps. In
addition to reducing the resolution, the deep architecture allows the
model to learn nonlinear feature representations of the data. See
Figure 1 for a visualization of the pBLSTM.

The pyramidal structure also reduces the computational com-
plexity. The attention mechanism in the speller U has a computa-
tional complexity of O(US). Thus, reducing U speeds up learning
and inference significantly. Other neural network architectures have
been described in literature with similar motivations, including the
hierarchical RNN [17], clockwork RNN [18] and CNN [19].

2.2. Attend and Spell

The AttendAndSpell function is computed using an attention-
based LSTM transducer [10, 12]. At every output step, the trans-
ducer produces a probability distribution over the next character
conditioned on all the characters seen previously. The distribution
for yi is a function of the decoder state si and context ci. The de-
coder state si is a function of the previous state si�1, the previously
emitted character yi�1 and context ci�1. The context vector ci is
produced by an attention mechanism. Specifically,

ci = AttentionContext(si,h) (6)
si = RNN(si�1, yi�1, ci�1) (7)

P (yi|x, y<i) = CharacterDistribution(si, ci) (8)

where CharacterDistribution is an MLP with softmax outputs
over characters, and where RNN is a 2 layer LSTM.

At each time step, i, the attention mechanism, AttentionContext
generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext

function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
weights for blending the listener features hu to the context vector ci
for output time step i:

ei,u = h�(si), (hu)i (9)

↵i,u =

exp(ei,u)P
u0 exp(ei,u0

)

(10)

ci =
X

u

↵i,uhu (11)

4961

On the Choice of Modeling Unit for Sequence-to-Sequence Speech Recognition

Kazuki Irie1⇤, Rohit Prabhavalkar2, Anjuli Kannan2, Antoine Bruguier2,
David Rybach2, Patrick Nguyen2

1Human Language Technology and Pattern Recognition Group, Computer Science Department
RWTH Aachen University, D-52056 Aachen, Germany

2Google, Mountain View, CA 94043, USA
irie@cs.rwth-aachen.de, {prabhavalkar, anjuli, tonybruguier, rybach, drpng}@google.com

Abstract
In conventional speech recognition, phoneme-based mod-
els outperform grapheme-based models for non-phonetic lan-
guages such as English. The performance gap between the two
typically reduces as the amount of training data is increased. In
this work, we examine the impact of the choice of modeling unit
for attention-based encoder-decoder models. We conduct exper-
iments on the LibriSpeech 100hr, 460hr, and 960hr tasks, us-
ing various target units (phoneme, grapheme, and word-piece);
across all tasks, we find that grapheme or word-piece models
consistently outperform phoneme-based models, even though
they are evaluated without a lexicon or an external language
model. We also investigate model complementarity: we find
that we can improve WERs by up to 9% relative by rescor-
ing N-best lists generated from a strong word-piece based base-
line with either the phoneme or the grapheme model. Rescor-
ing an N-best list generated by the phonemic system, however,
provides limited improvements. Further analysis shows that
the word-piece-based models produce more diverse N-best hy-
potheses, and thus lower oracle WERs, than phonemic models.
Index Terms: End-to-end speech recognition, word-pieces,
graphemes, phonemes, sequence-to-sequence

1. Introduction
Sequence-to-sequence learning [2] based on encoder-decoder
attention models [3] has become popular for both ma-
chine translation [4] and speech recognition [5, 6, 7, 8, 9].
Such models are typically trained to output character-based
units: graphemes, byte-pair encodings (BPEs) [10], or word-
pieces [11], which allow the model to directly map the frame-
level input audio features to the output word sequence, without
using a hand-crafted pronunciation lexicon. Thus, when using
such character-based output units, end-to-end speech recogni-
tion models [12] jointly learn the acoustic model, pronuncia-
tion model, and language model within a single neural network.
In fact, such models outperform conventional hybrid recogniz-
ers [13] when trained on sufficiently large amounts of data [9].

One of the main advantages of character-based sequence-
to-sequence models lies in their simplicity: both for train-
ing, as well as decoding. In fact, the use of characters as
units for acoustic modeling has a long history for conventional
HMM-based automatic speech recognition (ASR) systems (e.g.,
[14, 15, 16], inter alia). In the context of conventional ASR sys-
tems, for non-phonetic languages such as English, where the
correspondence between orthography and pronunciation is less

*Work performed during internship at Google. We thank Tara
Sainath and Yu Zhang for helpful discussion, and Jinxi Guo for shar-
ing his language model setup. An initial version of this paper appears
as a pre-print [1].

clear, previous works [14, 15] have found that phoneme-based
models outperform grapheme-based models; grapheme-based
systems approach the performance of phoneme-based systems
only when much larger amounts of training training data are
available [16]. It is therefore, natural to ask whether similar
observations also apply to recently proposed attention-based
encoder-decoder models: specifically, how do attention-based
encoder-decoder models perform when using phonemes instead
of character-based output units? To the best of our knowledge,
this question has only been empirically investigated in the set-
ting where a large amount of labeled training data are avail-
able. In previous work [17, 18], it has been empirically shown
that the grapheme-based encoder-decoder models outperform
the phoneme-based approach, while [17] find that use of lexica
is still useful for recognizing rare words such as named entities.

In this work, we first investigate whether the previous result
[17] which establishes the dominance of lexicon-free graphemic
models over the phoneme-based models also hold on tasks with
smaller amounts of training data. We carry out evaluations on
the three subsets of the LibriSpeech task [19]: 100hr, 460hr,
and 960hr, where we find that grapheme or word-piece mod-
els do indeed consistently outperform phoneme-based models,
even when training data is limited. In Sec. 6, we further in-
vestigate the benefits offered by phonemic models by studying
the complementarity of different units. In experimental evalu-
ations, we find that simple N-best list rescoring results in large
improvements in WER. Finally, we conduct a detailed analy-
sis of the differences in the hypotheses produced by the models
with various output units, in terms of quality of the top hypothe-
ses, as well as the oracle error rate of the N-best list.

2. Sequence-to-Sequence Speech Models
All our models are Listen, Attend, and Spell (LAS) [12] speech
models. The LAS model, which is depicted in Figure 1, has en-
coder, attention, and decoder modules. The encoder transforms
the input frame-level audio feature sequence into a sequence of
hidden activations. The attention module summarizes the en-
coder sequence into a single vector for each prediction step,

t h e _ c a t

h e _ c a t _

Figure 1: LAS model.

ar
X

iv
:1

90
2.

01
95

5v
2

 [c
s.C

L]
 2

3
Ju

l 2
01

9

seq2seq for ASR

7
Figure from Chan et al. (2016)

Listen Attend and Spell Results from Park et al. (2019)

x1 x2 xT

hUh1

x3 x4

h = (h1, . . . , hU)

y2 y3

hsosi

heosi

y2 y3

y4

yS�1

c1 c2

Speller

Listener

s1 s2

h h h

Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y

characters from h.

consumes h and produces a probability distribution over character
sequences:

h = Listen(x) (2)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)

Figure 1 depicts these two components. We provide more details of
these components in the following sections.

2.1. Listen

The Listen operation uses a Bidirectional Long Short Term Memory
RNN (BLSTM) [15, 16, 2] with a pyramidal structure. This modi-
fication is required to reduce the length U of h, from T , the length
of the input x, because the input speech signals can be hundreds to
thousands of frames long. A direct application of BLSTM for the
operation Listen converged slowly and produced results inferior to
those reported here, even after a month of training time. This is
presumably because the operation AttendAndSpell has a hard time
extracting the relevant information from a large number of input time
steps.

We circumvent this problem by using a pyramidal BLSTM
(pBLSTM). In each successive stacked pBLSTM layer, we reduce
the time resolution by a factor of 2. In a typical deep BLSTM
architecture, the output at the i-th time step, from the j-th layer is
computed as follows:

hj
i = BLSTM(hj

i�1, h
j�1
i) (4)

In the pBLSTM model, we concatenate the outputs at consecutive
steps of each layer before feeding it to the next layer, i.e.:

hj
i = pBLSTM(hj

i�1,
h
hj�1
2i , hj�1

2i+1

i
) (5)

In our model, we stack 3 pBLSTMs on top of the bottom
BLSTM layer to reduce the time resolution 2

3
= 8 times. This

allows the attention model (described in the next section) to extract
the relevant information from a smaller number of times steps. In
addition to reducing the resolution, the deep architecture allows the
model to learn nonlinear feature representations of the data. See
Figure 1 for a visualization of the pBLSTM.

The pyramidal structure also reduces the computational com-
plexity. The attention mechanism in the speller U has a computa-
tional complexity of O(US). Thus, reducing U speeds up learning
and inference significantly. Other neural network architectures have
been described in literature with similar motivations, including the
hierarchical RNN [17], clockwork RNN [18] and CNN [19].

2.2. Attend and Spell

The AttendAndSpell function is computed using an attention-
based LSTM transducer [10, 12]. At every output step, the trans-
ducer produces a probability distribution over the next character
conditioned on all the characters seen previously. The distribution
for yi is a function of the decoder state si and context ci. The de-
coder state si is a function of the previous state si�1, the previously
emitted character yi�1 and context ci�1. The context vector ci is
produced by an attention mechanism. Specifically,

ci = AttentionContext(si,h) (6)
si = RNN(si�1, yi�1, ci�1) (7)

P (yi|x, y<i) = CharacterDistribution(si, ci) (8)

where CharacterDistribution is an MLP with softmax outputs
over characters, and where RNN is a 2 layer LSTM.

At each time step, i, the attention mechanism, AttentionContext
generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext

function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
weights for blending the listener features hu to the context vector ci
for output time step i:

ei,u = h�(si), (hu)i (9)

↵i,u =

exp(ei,u)P
u0 exp(ei,u0

)

(10)

ci =
X

u

↵i,uhu (11)

4961

As discussed further in section 5, we can improve the perfor-
mance of the trained network by using a longer schedule. We
thus introduce the following schedule:

3. L(ong): (sr, snoise, si, sf) = (1k, 20k, 140k, 320k)

which we use to train the largest model to improve performance.
When using schedule L, label smoothing with uncertainty 0.1 is
introduced for time steps < si = 140k for LibriSpeech 960h,
and is subsequently turned off. For Switchboard 300h, label
smoothing is turned on throughout training.

3.3. Shallow Fusion with Language Models

While we are able to get state-of-the-art results with augmen-
tation, we can get further improvements by using a language
model. We thus incorporate an RNN language model by shal-
low fusion for both tasks. In shallow fusion, the “next token”
y

⇤ in the decoding process is determined by

y

⇤
= argmax

y
(logP (y|x) + � logPLM (y)) , (1)

i.e., by jointly scoring the token using the base ASR model and
the language model. We also use a coverage penalty c [28].

For LibriSpeech, we use a two-layer RNN with embedding
dimension 1024 used in [24] for the LM, which is trained on
the LibriSpeech LM corpus. We use identical fusion parameters
(� = 0.35 and c = 0.05) used in [24] throughout.

For Switchboard, we use a two-layer RNN with embedding
dimension 256, which is trained on the combined transcripts of
the Fisher and Switchboard datasets. We find the fusion pa-
rameters via grid search by measuring performance on RT-03
(LDC2007S10). We discuss the fusion parameters used in indi-
vidual experiments in section 4.2.

4. Experiments
In this section, we describe our experiments on LibriSpeech and
Switchboard with SpecAugment. We report state-of-the-art re-
sults that out-perform heavily engineered hybrid systems.

4.1. LibriSpeech 960h

For LibriSpeech, we use the same setup as [24], where we use
80-dimensional filter banks with delta and delta-delta accelera-
tion, and a 16k word piece model [25].

The three networks LAS-4-1024, LAS-6-1024 and LAS-6-
1280 are trained on LibriSpeech 960h with a combination of
augmentation policies (None, LB, LD) and training schedules
(B/D). Label smoothing was not applied in these experiments.
The experiments were ran with peak learning rate of 0.001 and
batch size of 512, on 32 Google Cloud TPU chips for 7 days.
Other than the augmentation policies and learning rate sched-
ules, all other hyperparameters were fixed, and no additional
tuning was applied. We report test set numbers validated by the
dev-other set in Table 2. We see that augmentation consistently
improves the performance of the trained network, and that the
benefit of a larger network and a longer learning rate schedule
is more apparent with harsher augmentation.

We take the largest network, LAS-6-1280, and use sched-
ule L and policy LD to train the network to maximize perfor-
mance. We turn label smoothing on for time steps < 140k as
noted before. The test set performance is reported by evalu-
ating the checkpoint with best dev-other performance. State of
the art performance is achieved by the LAS-6-1280 model, even
without a language model. We can incorporate an LM using

Table 2: LibriSpeech test WER (%) evaluated for varying net-
works, schedules and policies. First row from [24].

Network Sch Pol No LM With LM

clean other clean other

LAS-4-1024 [24] B - 4.7 13.4 3.6 10.3

LAS-4-1024

B LB 3.7 10.0 3.4 8.3
B LD 3.6 9.2 2.8 7.5

D - 4.4 13.3 3.5 10.4
D LB 3.4 9.2 2.7 7.3
D LD 3.4 8.3 2.8 6.8

LAS-6-1024
D - 4.5 13.1 3.6 10.3
D LB 3.4 8.6 2.6 6.7
D LD 3.2 8.0 2.6 6.5

LAS-6-1280
D - 4.3 12.9 3.5 10.5
D LB 3.4 8.7 2.8 7.1
D LD 3.2 7.7 2.7 6.5

shallow fusion to further improve performance. The results are
presented in Table 3.

Table 3: LibriSpeech 960h WERs (%).

Method No LM With LM
clean other clean other

HMM
Panayotov et al., (2015) [19] 5.51 13.97
Povey et al., (2016) [29] 4.28
Han et al., (2017) [30] 3.51 8.58
Yang et al. (2018) [31] 2.97 7.50

CTC/ASG
Collobert et al., (2016) [32] 7.2
Liptchinsky et al., (2017) [33] 6.7 20.8 4.8 14.5
Zhou et al., (2018) [34] 5.42 14.70
Zeghidour et al., (2018) [35] 3.44 11.24
Li et al., (2019) [36] 3.86 11.95 2.95 8.79

LAS
Zeyer et al., (2018) [23] 4.87 15.39 3.82 12.76
Zeyer et al., (2018) [37] 4.70 15.20
Irie et al., (2019) [24] 4.7 13.4 3.6 10.3
Sabour et al., (2019) [38] 4.5 13.3

Our Work
LAS 4.1 12.5 3.2 9.8
LAS + SpecAugment 2.8 6.8 2.5 5.8

4.2. Switchboard 300h

For Switchboard 300h, we use the Kaldi [39] “s5c” recipe to
process our data, but we adapt the recipe to use 80-dimensional
filter banks with delta and delta-delta acceleration. We use a 1k
WPM [25] to tokenize the output, constructed using the com-
bined vocabulary of the Switchboard and Fisher transcripts.

We train LAS-4-1024 with policies (None, SM, SS) and
schedule B. As before, we set the peak learning rate to 0.001
and total batch size to 512, and train using 32 Google Cloud
TPU chips. Here the experiments are run with and without la-
bel smoothing. Not having a canonical development set, we
choose to evaluate the checkpoint at the end point of the train-
ing schedule, which we choose to be 100k steps for schedule B.
We note that the training curve relaxes after the decay schedule
is completed (step sf), and the performance of the network does
not vary much. The performance of various augmentation poli-

seq2seq for ASR

8
Figure from Chan et al. (2016)

Listen Attend and Spell Results from Park et al. (2019)

x1 x2 xT

hUh1

x3 x4

h = (h1, . . . , hU)

y2 y3

hsosi

heosi

y2 y3

y4

yS�1

c1 c2

Speller

Listener

s1 s2

h h h

Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y

characters from h.

consumes h and produces a probability distribution over character
sequences:

h = Listen(x) (2)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)

Figure 1 depicts these two components. We provide more details of
these components in the following sections.

2.1. Listen

The Listen operation uses a Bidirectional Long Short Term Memory
RNN (BLSTM) [15, 16, 2] with a pyramidal structure. This modi-
fication is required to reduce the length U of h, from T , the length
of the input x, because the input speech signals can be hundreds to
thousands of frames long. A direct application of BLSTM for the
operation Listen converged slowly and produced results inferior to
those reported here, even after a month of training time. This is
presumably because the operation AttendAndSpell has a hard time
extracting the relevant information from a large number of input time
steps.

We circumvent this problem by using a pyramidal BLSTM
(pBLSTM). In each successive stacked pBLSTM layer, we reduce
the time resolution by a factor of 2. In a typical deep BLSTM
architecture, the output at the i-th time step, from the j-th layer is
computed as follows:

hj
i = BLSTM(hj

i�1, h
j�1
i) (4)

In the pBLSTM model, we concatenate the outputs at consecutive
steps of each layer before feeding it to the next layer, i.e.:

hj
i = pBLSTM(hj

i�1,
h
hj�1
2i , hj�1

2i+1

i
) (5)

In our model, we stack 3 pBLSTMs on top of the bottom
BLSTM layer to reduce the time resolution 2

3
= 8 times. This

allows the attention model (described in the next section) to extract
the relevant information from a smaller number of times steps. In
addition to reducing the resolution, the deep architecture allows the
model to learn nonlinear feature representations of the data. See
Figure 1 for a visualization of the pBLSTM.

The pyramidal structure also reduces the computational com-
plexity. The attention mechanism in the speller U has a computa-
tional complexity of O(US). Thus, reducing U speeds up learning
and inference significantly. Other neural network architectures have
been described in literature with similar motivations, including the
hierarchical RNN [17], clockwork RNN [18] and CNN [19].

2.2. Attend and Spell

The AttendAndSpell function is computed using an attention-
based LSTM transducer [10, 12]. At every output step, the trans-
ducer produces a probability distribution over the next character
conditioned on all the characters seen previously. The distribution
for yi is a function of the decoder state si and context ci. The de-
coder state si is a function of the previous state si�1, the previously
emitted character yi�1 and context ci�1. The context vector ci is
produced by an attention mechanism. Specifically,

ci = AttentionContext(si,h) (6)
si = RNN(si�1, yi�1, ci�1) (7)

P (yi|x, y<i) = CharacterDistribution(si, ci) (8)

where CharacterDistribution is an MLP with softmax outputs
over characters, and where RNN is a 2 layer LSTM.

At each time step, i, the attention mechanism, AttentionContext
generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext

function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
weights for blending the listener features hu to the context vector ci
for output time step i:

ei,u = h�(si), (hu)i (9)

↵i,u =

exp(ei,u)P
u0 exp(ei,u0

)

(10)

ci =
X

u

↵i,uhu (11)

4961

Park et al. (2019) used the LAS model from prior work,
and introduced a data augmentation method that gave
state-of-the-art performance on LibriSpeech 960h and

Swichboard 300h tasks

As discussed further in section 5, we can improve the perfor-
mance of the trained network by using a longer schedule. We
thus introduce the following schedule:

3. L(ong): (sr, snoise, si, sf) = (1k, 20k, 140k, 320k)

which we use to train the largest model to improve performance.
When using schedule L, label smoothing with uncertainty 0.1 is
introduced for time steps < si = 140k for LibriSpeech 960h,
and is subsequently turned off. For Switchboard 300h, label
smoothing is turned on throughout training.

3.3. Shallow Fusion with Language Models

While we are able to get state-of-the-art results with augmen-
tation, we can get further improvements by using a language
model. We thus incorporate an RNN language model by shal-
low fusion for both tasks. In shallow fusion, the “next token”
y

⇤ in the decoding process is determined by

y

⇤
= argmax

y
(logP (y|x) + � logPLM (y)) , (1)

i.e., by jointly scoring the token using the base ASR model and
the language model. We also use a coverage penalty c [28].

For LibriSpeech, we use a two-layer RNN with embedding
dimension 1024 used in [24] for the LM, which is trained on
the LibriSpeech LM corpus. We use identical fusion parameters
(� = 0.35 and c = 0.05) used in [24] throughout.

For Switchboard, we use a two-layer RNN with embedding
dimension 256, which is trained on the combined transcripts of
the Fisher and Switchboard datasets. We find the fusion pa-
rameters via grid search by measuring performance on RT-03
(LDC2007S10). We discuss the fusion parameters used in indi-
vidual experiments in section 4.2.

4. Experiments
In this section, we describe our experiments on LibriSpeech and
Switchboard with SpecAugment. We report state-of-the-art re-
sults that out-perform heavily engineered hybrid systems.

4.1. LibriSpeech 960h

For LibriSpeech, we use the same setup as [24], where we use
80-dimensional filter banks with delta and delta-delta accelera-
tion, and a 16k word piece model [25].

The three networks LAS-4-1024, LAS-6-1024 and LAS-6-
1280 are trained on LibriSpeech 960h with a combination of
augmentation policies (None, LB, LD) and training schedules
(B/D). Label smoothing was not applied in these experiments.
The experiments were ran with peak learning rate of 0.001 and
batch size of 512, on 32 Google Cloud TPU chips for 7 days.
Other than the augmentation policies and learning rate sched-
ules, all other hyperparameters were fixed, and no additional
tuning was applied. We report test set numbers validated by the
dev-other set in Table 2. We see that augmentation consistently
improves the performance of the trained network, and that the
benefit of a larger network and a longer learning rate schedule
is more apparent with harsher augmentation.

We take the largest network, LAS-6-1280, and use sched-
ule L and policy LD to train the network to maximize perfor-
mance. We turn label smoothing on for time steps < 140k as
noted before. The test set performance is reported by evalu-
ating the checkpoint with best dev-other performance. State of
the art performance is achieved by the LAS-6-1280 model, even
without a language model. We can incorporate an LM using

Table 2: LibriSpeech test WER (%) evaluated for varying net-
works, schedules and policies. First row from [24].

Network Sch Pol No LM With LM

clean other clean other

LAS-4-1024 [24] B - 4.7 13.4 3.6 10.3

LAS-4-1024

B LB 3.7 10.0 3.4 8.3
B LD 3.6 9.2 2.8 7.5

D - 4.4 13.3 3.5 10.4
D LB 3.4 9.2 2.7 7.3
D LD 3.4 8.3 2.8 6.8

LAS-6-1024
D - 4.5 13.1 3.6 10.3
D LB 3.4 8.6 2.6 6.7
D LD 3.2 8.0 2.6 6.5

LAS-6-1280
D - 4.3 12.9 3.5 10.5
D LB 3.4 8.7 2.8 7.1
D LD 3.2 7.7 2.7 6.5

shallow fusion to further improve performance. The results are
presented in Table 3.

Table 3: LibriSpeech 960h WERs (%).

Method No LM With LM
clean other clean other

HMM
Panayotov et al., (2015) [19] 5.51 13.97
Povey et al., (2016) [29] 4.28
Han et al., (2017) [30] 3.51 8.58
Yang et al. (2018) [31] 2.97 7.50

CTC/ASG
Collobert et al., (2016) [32] 7.2
Liptchinsky et al., (2017) [33] 6.7 20.8 4.8 14.5
Zhou et al., (2018) [34] 5.42 14.70
Zeghidour et al., (2018) [35] 3.44 11.24
Li et al., (2019) [36] 3.86 11.95 2.95 8.79

LAS
Zeyer et al., (2018) [23] 4.87 15.39 3.82 12.76
Zeyer et al., (2018) [37] 4.70 15.20
Irie et al., (2019) [24] 4.7 13.4 3.6 10.3
Sabour et al., (2019) [38] 4.5 13.3

Our Work
LAS 4.1 12.5 3.2 9.8
LAS + SpecAugment 2.8 6.8 2.5 5.8

4.2. Switchboard 300h

For Switchboard 300h, we use the Kaldi [39] “s5c” recipe to
process our data, but we adapt the recipe to use 80-dimensional
filter banks with delta and delta-delta acceleration. We use a 1k
WPM [25] to tokenize the output, constructed using the com-
bined vocabulary of the Switchboard and Fisher transcripts.

We train LAS-4-1024 with policies (None, SM, SS) and
schedule B. As before, we set the peak learning rate to 0.001
and total batch size to 512, and train using 32 Google Cloud
TPU chips. Here the experiments are run with and without la-
bel smoothing. Not having a canonical development set, we
choose to evaluate the checkpoint at the end point of the train-
ing schedule, which we choose to be 100k steps for schedule B.
We note that the training curve relaxes after the decay schedule
is completed (step sf), and the performance of the network does
not vary much. The performance of various augmentation poli-

Image Captioning

p(English | French)

p(English | Image)

1. Vinyals, O., et al. "Show and Tell: A Neural Image Caption Generator." CVPR (2015).
2. Mao, J., et al. "Deep captioning with multimodal recurrent neural networks (m-rnn).” ICLR (2015).
3. Karpathy, A., Li, F., “Deep visual-semantic alignments for generating image descriptions.” CVPR (2015).

Slide from Vinyals & Jaitly (ICML Tutorial, 2017)

Image Captioning

W __ A cake with

A cake wit
h a

a

cherry

cherry

on

on

top

Slide from Vinyals & Jaitly (ICML Tutorial, 2017)

Image Captioning

BestModel: A bunch of
bananas and a bottle of
wine.

Human: A close up of two
bananas with bottles in the
background.

InitialModel: A close up of a
plate of food on a table.

Slide from Vinyals & Jaitly (ICML Tutorial, 2017)

Image Captioning

BestModel: A woman
holding a banana up to her
face.

Human: A woman holding
up a yellow banana to her
face.

InitialModel: A close up of a
person eating a hot dog.

Slide from Vinyals & Jaitly (ICML Tutorial, 2017)

Image Captioning

BestModel: A man is
holding a sandwich in his
hand.

Human: A man outside
cooking with a sub in his
hand.

InitialModel: A man cutting
a cake with a knife.

Slide from Vinyals & Jaitly (ICML Tutorial, 2017)

Image Captioning

BestModel: A person is
cooking some food on a
grill.

Human: Someone is using
a small grill to melt his
sandwich.

InitialModel: A pizza sitting
on top of a white plate.

Slide from Vinyals & Jaitly (ICML Tutorial, 2017)

Image Captioning

BestModel: A blue and
yellow train traveling down
train tracks.

Human: A blue , yellow and
red train travels across the
tracks near a depot.

InitialModel: A train that is
sitting on the tracks.

Slide from Vinyals & Jaitly (ICML Tutorial, 2017)

Learning Objectives

Sequence to Sequence Models
You should be able to…
1. Explain the difference between RNNs,

RNNLMs, encode-decoder models, and
seq2seq models

2. Implement a basic seq2seq model
3. Employ learning to search algorithms to

train RNNs (and related models)

20

COMPUTATIONAL COMPLEXITY

21

Analysis of Algorithms

Key Questions:
1. Given a single

algorithm, will it
complete on a given
input in a reasonable
amount of time/space?

2. Given two algorithms
which one is better?

22

Comparing Algorithm Runtimes

23

Comparing Algorithm Runtimes

24

Comparing Algorithm Runtimes

25

Comparing Algorithm Runtimes

26

Comparing Algorithm Runtimes

27

Comparing Algorithm Runtimes

28

Comparing Algorithm Runtimes

29

Comparing Algorithm Runtimes

30

Comparing Algorithm Runtimes

31

Computational Complexity Name

O(1) constant

O(log(n)) logarithmic

O(n) linear

O(n log(n)) “n log n”

O(n2) quadratic

O(n3) cubic

O(2n) exponential

O(n!) factorial

O(nn) superexponential

Complexity Classes

• A problem for which the answer is
binary (e.g. yes/no) is called a
decision problem

• The class NP contains all decision
problems where ‘yes’ answers can
be verified (proved) in polynomial
time

• A problem is NP-Hard if given an
O(1) oracle to solve it, every
problem in NP can be solved in
polynomial time (e.g. by reduction)

• A problem is NP-Complete if it
belongs to both the classes NP and
NP-Hard

32

• An algorithm runs in polynomial time if its runtime is a polynomial function of
the input size (e.g. O(nk) for some fixed constant k)

• The class P consists of all problems that can be solved in polynomial time

Figure from https://en.wikipedia.org/wiki/NP-completeness

INFERENCE PROBLEMS

33

Inference Problems

Whiteboard
– Running example: exponential search space for

sequence tagging
– Assumptions leading to a probability distribution
– Intractable problems for arbitrary search spaces:
• Problem 1: Computing the total probability of the

hidden states given the observations (Evaluation)
• Problem 2: Computing the marginal probability for a

specific observation / timestep (Marginals)
• Problem 3: Finding the most probable assignment to

the hidden states (Viterbi decoding)

34

Exact Inference

35

1. Data 2. Model

4. Learning5. Inference

3. Objective
`(✓;D) =

NX

n=1

log p(x(n) | ✓)

p(x | ✓) = 1

Z(✓)

Y

C2C
 C(xC)

✓⇤
= argmax

✓
`(✓;D)p(xC) =

X

x

0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

D = {x(n)}Nn=1

n n v d nSample
2:

time likeflies an arrow

n v p d n
Sample 1:

time likeflies an arrow

p n n v vSample
4:

with youtime will see

n v p n nSample
3:

flies withfly their wings

W1 W2 W3 W4 W5

T1 T2 T3 T4 T5

1. Marginal Inference

2. Partition Function

ˆ

x = argmax

x

p(x | ✓)
3. MAP Inference

36

p(xC) =
X

x

0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

ˆ

x = argmax

x

p(x | ✓)

1. Marginal Inference (#P-Hard)
Compute marginals of variables and cliques

2. Partition Function (#P-Hard)
Compute the normalization constant

3. MAP Inference (NP-Hard)
Compute variable assignment with highest probability

p(x
i

) =
X

x

0:x0
i=xi

p(x0 | ✓)

Three Tasks:

5. Inference

DIRECTED GRAPHICAL MODELS
Bayesian Networks

37

Example: Tornado Alarms
1. Imagine that

you work at the
911 call center
in Dallas

2. You receive six
calls informing
you that the
Emergency
Weather Sirens
are going off

3. What do you
conclude?

38

Directed Graphical Models
(Bayes Nets)

Whiteboard
– Example: Tornado Alarms
– Writing Joint Distributions
• Idea #1: Giant Table
• Idea #2: Rewrite using chain rule
• Idea #3: Assume full independence
• Idea #4: Drop variables from RHS of conditionals

– Definition: Bayesian Network

40

Bayesian Network

41

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X3X2

X4 X5

Bayesian Network

• A Bayesian Network is a directed graphical model
• It consists of a graph G and the conditional probabilities P
• These two parts full specify the distribution:

– Qualitative Specification: G
– Quantitative Specification: P

42

X1

X3X2

X4 X5

Definition:

P(X1…Xn) = P(Xi | parents(Xi))
i=1

n

∏

Qualitative Specification

• Where does the qualitative specification

come from?

– Prior knowledge of causal relationships

– Prior knowledge of modular relationships

– Assessment from experts

– Learning from data (i.e. structure learning)

– We simply prefer a certain architecture (e.g. a

layered graph)

– …

© Eric Xing @ CMU, 2006-2011 43

a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) =

P(a)P(b)P(c|a,b)P(d|c)

D

c0 c1

d0 0.3 0.5
d1 07 0.5

Quantitative Specification

44© Eric Xing @ CMU, 2006-2011

Example: Conditional probability tables (CPTs)
for discrete random variables

A B

C

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C

P(
D|

 C
)

Quantitative Specification

45© Eric Xing @ CMU, 2006-2011

Example: Conditional probability density functions (CPDs)
for continuous random variables

A B

C

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

D

C~N(A+B, Σc)

D~N(μd+C, Σd)

Quantitative Specification

46© Eric Xing @ CMU, 2006-2011

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

a0 0.75
a1 0.25

b0 0.33
b1 0.67

Example:

Observed Variables

• In a graphical model, shaded nodes are
“observed”, i.e. their values are given

47

X1

X3X2

X4 X5

Familiar Models as Bayesian
Networks

48

Question:
Match the model name to
the corresponding Bayesian
Network
1. Logistic Regression
2. Linear Regression
3. Bernoulli Naïve Bayes
4. Gaussian Naïve Bayes
5. 1D Gaussian

Answer:
Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

X

µ σ2

X

A B

C D

E F

