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Reminders

* Homework 1: DAgger for seq2seq
— Out: Thu, Sep. 12
— Due: Thu, Sep. 26 at 11:59pm




APPLICATIONS OF SEQ2SEQ



seq2seq for MT

Results from Sutskever et al. (2014)

Basic Architecture:

Z <eos>

A B C D <eos> X Y Z

Figure 1: Neural machine translation — a stack-
ing recurrent architecture for translating a source
sequence A B C D into a target sequence X Y
Z. Here, <eos> marks the end of a sentence.

Figure from Luong et al. (2015)

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45
Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59
Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table: performance on WMT’14 English to French test set

Visualization from Sutskever et al. (2014)

3r OMary admires John 101

2r OMary is in love with John

OMary respects John
| OdJohn admires Mary

-2 OdJohn is in love with Mary

51 OdJohn respects Mary

iy L L L L L L L L , _20

O | was given a card by her in the garden

O In the garden , she gave me a card
O She gave me a card in the garden

O She was given a card by me in the garden

O In the garden , | gave her a card

O | gave her a card in the garden

-8 -6 -4 -2 [ 2 4 6 8 10 -15

-10 -5 0 5 10 15 20

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that

both clusters have similar internal structure.



seq2seq for ASR

Listen Attend and Spell

Attention

1

Encoder

Fo 1

X1 XT

Figure 1: LAS model.

h = Listen(x)
P(y:i|x,y<i) = AttendAndSpell(y<i, h)

Figure from Irie et al. (2019)



seq2seq for ASR

Listen Attend and Spell

Speller

h
Listener /\

o 2 x3 aia Tp

Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y
characters from h.

Figure from Chan et al. (2016)

Results from Park et al. (2019)

Table 3: LibriSpeech 960h WERs (%).

Method No LM With LM
clean other clean other
HMM
Panayotov et al., (2015) [19] 5.51 13.97
Povey et al., (2016) [29] 4.28
Han et al., (2017) [30] 3.51 8.58
Yang et al. (2018) [31] 2.97 7.50
CTC/ASG
Collobert et al., (2016) [32] 7.2
Liptchinsky et al., (2017) [33] 6.7 20.8 4.8 14.5
Zhou et al., (2018) [34] 542  14.70
Zeghidour et al., (2018) [35] 344  11.24
Lietal., (2019) [36] 386 1195 295 8.79
LAS
Zeyer et al., (2018) [23] 487 1539 382 12.76
Zeyer et al., (2018) [37] 470  15.20
Irie et al., (2019) [24] 4.7 13.4 3.6 10.3
Sabour et al., (2019) [38] 4.5 13.3




seq2seq for ASR

Results from Park et al. (2019)

Listen Attend and Spell
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Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y
characters from h.

Figure from Chan et al. (2016)

Table 3: LibriSpeech 960h WERs (%).

Method No LM With LM
clean other clean other
HMM
Panayotov et al., (2015) [19] 5.51 13.97
Povey et al., (2016) [29] 4.28
Han et al., (2017) [30] 3.51 8.58
Yang et al. (2018) [31] 2.97 7.50
CTC/ASG
Collobert et al., (2016) [32] 7.2
Liptchinsky et al., (2017) [33] 6.7 20.8 4.8 14.5
Zhou et al., (2018) [34] 542  14.70
Zeghidour et al., (2018) [35] 344  11.24
Liet al., (2019) [36] 386 1195 295 8.79
LAS
Zeyer et al., (2018) [23] 487 1539 382 12.76
Zeyer et al., (2018) [37] 470 15.20
Irie et al., (2019) [24] 4.7 134 3.6 10.3
Sabour et al., (2019) [38] 4.5 13.3
Our Work
LAS 4.1 12.5 32 9.8
LAS + SpecAugment 2.8 6.8 2.5 5.8

Park et al. (2019) used the LAS model from prior work,
and introduced a data augmentation method that gave
state-of-the-art performance on LibriSpeech 960h and

Swichboard 300h tasks



Image Captioning

p(English | French)

p(English | Image)

1. Vinyals, O., et al. "Show and Tell: A Neural Image Caption Generator." CVPR (2015).
2. Mao, J,, et al. "Deep captioning with multimodal recurrent neural networks (m-rnn).” ICLR (2015).
3. Karpathy, A, Li, F., “Deep visual-semantic alignments for generating image descriptions.” CVPR (2015).

Slide from Vinyals & Jaitly (ICML Tutorial, 2017)



Image Captioning

wit
A cake h a cherry on top
A A A A A A A
a a S 1\ 1& 4k a a
W A cake with a cherry on

0* = arg meaxp(S|I)

Slide from Vinyals & Jaitly (ICML Tutorial, 2017)




Image Captioning

Human: A close up of two
bananas with bofttles in the
background.

BestModel: A bunch of
bananas and a botftle of
wine.

InitialModel: A close up of a
plate of food on a table.

Slide from Vinyals & Jaitly (ICML Tutorial, 2017)



Image Captioning

Slide from Vinyals & Jaitly (ICML Tutorial, 2017)

Human: A woman holding
up a yellow banana to her
face.

BestModel: A woman
holding a banana up to her
face.

InitialModel: A close up of a
person eating a hot dog.




Image Captioning

Human: A man outside
cooking with a sub in his
hand.

BestModel: A man is

holding a sandwich in his
hand.

InitialModel: A man cutting
a cake with a knife.




Image Captioning

Slide from Vinyals & Jaitly (ICML Tutorial, 2017)

Human: Someone is using
a small grill to melt his
sandwich.

BestModel: A person is
cooking some food on a
grill.

InitialModel: A pizza sitting
on top of a white plate.



Image Captioning

Slide from Vinyals & Jaitly (ICML Tutorial, 2017)

Human: A blue , yellow and
red train travels across the
tracks near a depot.

BestModel: A blue and

yellow train traveling down
train tracks.

InitialModel: A train that is
sitting on the tracks.



Learning Objectives

Sequence to Sequence Models
You should be able to...

1. Explain the difference between RNNs,
RNNLMs, encode-decoder models, and
seq2seq models

2. Implement a basic seq2seq model

3. Employ learning to search algorithms to
train RNNs (and related models)



COMPUTATIONAL COMPLEXITY



Analysis of Algorithms

Key Questions:
1. Given asingle

algorithm, will it 0l

complete on a given 17 ottogny

input in a reasonable =

amount of time/space? g

2. Given two algorithms
which one is better?



Comparing Algorithm Runtimes
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Comparing Algorithm Runtimes
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Comparing Algorithm Runtimes
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Comparing Algorithm Runtimes
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Comparing Algorithm Runtimes
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Comparing Algorithm Runtimes
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Comparing Algorithm Runtimes
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Comparing Algorithm Runtimes
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Comparing Algorithm Runtimes

O(1) constant
O(log(n)) logarithmic
O(n) linear

O(n log(n)) “nlogn”
O(n?) quadratic
O(n3) cubic

o(2") exponential
O(n!) factorial

O(n") superexponential



Complexity Classes

* Analgorithm runs in polynomial time if its runtime is a polynomial function of
the input size (e.g. O(n¥) for some fixed constant k)

* Theclass P consists of all problems that can be solved in polynomial time

* A problem for which the answer is
binary (e.g. yes/no) is called a
decision problem

* The class NP contains all decision !
problems where ‘yes’ answers can

NP-Hard NP-Hard
be verified (proved) in polynomial
time e — .

« Aproblem is NP-Hard if given an Ve NP-Complete X f" N
O(1) oracle to solve it, every f \ [ awre )
problem in NP can be solved in | we '| | NP-Complete |
polynomial time (e.g. by reduction) \ 7 WA

e Aproblemis NP-Complete if it N
belongs to both the classes NP and S~ :

NP-Hard P = NP P = NP

32
Figure from https://en.wikipedia.org/wiki/NP-completeness



INFERENCE PROBLEMS



Inference Problems

Whiteboard

— Running example: exponential search space for
sequence tagging

— Assumptions leading to a probability distribution

— Intractable problems for arbitrary search spaces:

* Problem 1: Computing the total probability of the
hidden states given the observations (Evaluation)

* Problem 2: Computing the marginal probability for a
specific observation [ timestep (Marginals)

* Problem 3: Finding the most probable assignment to
the hidden states (Viterbi decoding)



Exact Inference
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DIRECTED GRAPHICAL MODELS



Example: Tornado Alarms

1. Imagine that
you work at the
911 call center

in Dallas

2. Youreceive six
calls informing
you that the
Emergency
Weather Sirens
are going off

3. What do you

conclude?



Directed Graphical Models

(Bayes Nets)
Whiteboard

— Example: Tornado Alarms

— Writing Joint Distributions
* Idea #1: Giant Table
* |dea #2: Rewrite using chain rule
* Idea #3: Assume full independence
* |dea #4: Drop variables from RHS of conditionals

— Definition: Bayesian Network



Bayesian Network

@ @ p(X17X27X37X47X5) —
& p(X5|X3)p(X4]| X2, X3)

x) () p(X3)p(X2| X1)p(X1)



Bayesian Network

Definition:

O
(x:, D P(X,..X )= ﬁP(X,. | parents(X,))

* A Bayesian Network is a directed graphical model
* It consists of a graph G and the conditional probabilities P

* These two parts full specify the distribution:
— Qualitative Specification: G
— Quantitative Specification: P



Qualitative Specification

* Where does the qualitative specification
come from?

— Prior knowledge of causal relationships

— Prior knowledge of modular relationships
— Assessment from experts

— Learning from data (i.e. structure learning)

— We simply prefer a certain architecture (e.g. a
layered graph)



0.75

0.25

Quantitative Specification

Example: Conditional probability tables (CPTs)
for discrete random variables

bO

0.33

b1

0.67

P(a)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

a’bO a’b’ a’b? a'b’
cV 0.45 1 0.9 0.7
c' 0.55 0 0.1 0.3
c? c’
0.3 |05
07 |05

© Eric Xing @ CMU, 2006-2011
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Quantitative Specification

Example: Conditional probability density functions (CPDs)
for continuous random variables

P(a,b,c.d) =
A-N(Uo Z)  B~N(Wy, 5) P(a)P(b)P(c|a,b)P(d|c)

VV"""‘V‘

0
”,..w";"\\ ﬁ‘H ‘\
“o‘w“& W L
C~N M‘ “
~N(A+B, %) sN W

w :

‘ D~N(ug+C, Z4) C
D
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,,\ss‘ s\

”(.‘?./..‘.). _




Quantitative Specification

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

a0

0.75

phO

s P(a)P(b)P(c|a,b)P(d|c)

a’

0.25

b1

P(a,b,c.d) =

0.67

|
o

C~N(A+B, Z.)

D~N(ug+C, Zy)

© Eric Xing @ CMU, 2006-2011
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Observed Variables

* In a graphical model, shaded nodes are
“observed”, i.e. their values are given




Familiar Models as Bayesian

Networks
Question: Answer:

Match the model name to

the corresponding Bayesian (v) (1)
Network
1. Logistic Regression (0) (e) = ()| [ @D @ - @

Linear Regression

Bernoulli Naive Bayes (x) (%) = (%) (x) (%) - (u)
Gaussian Naive Bayes L si }
1D Gaussian (1) O

N

()




