
Variational Autoencoders
+

Deep Generative Models

1

10-418 / 10-618 Machine Learning for Structured Data

Matt Gormley
Lecture 27

Dec. 4, 2019

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Final Exam

– Evening Exam

– Thu, Dec. 5 at 6:30pm – 9:00pm

• 618 Final Poster:

– Submission: Tue, Dec. 10 at 11:59pm

– Presentation: Wed, Dec. 11
(time will be announced on Piazza)

3

FINAL EXAM LOGISTICS

6

Final Exam
• Time / Location

– Time: Evening Exam
Thu, Dec. 5 at 6:30pm – 9:00pm

– Room: Doherty Hall A302
– Seats: There will be assigned seats. Please arrive early to find yours.
– Please watch Piazza carefully for announcements

• Logistics
– Covered material: Lecture 1 – Lecture 26

(not the new material in Lecture 27)
– Format of questions:

• Multiple choice
• True / False (with justification)

• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet of notes (front and back)

7

Final Exam
• Advice (for during the exam)
– Solve the easy problems first

(e.g. multiple choice before derivations)
• if a problem seems extremely complicated you’re likely

missing something
– Don’t leave any answer blank!
– If you make an assumption, write it down
– If you look at a question and don’t know the

answer:
• we probably haven’t told you the answer
• but we’ve told you enough to work it out
• imagine arguing for some answer and see if you like it

8

Final Exam

• Exam Contents
– ~30% of material comes from topics covered

before Midterm Exam
– ~70% of material comes from topics covered

after Midterm Exam

9

Topics from before Midterm Exam

• Search-Based Structured
Prediction
– Reductions to Binary

Classification

– Learning to Search
– RNN-LMs
– seq2seq models

• Graphical Model
Representation
– Directed GMs vs.

Undirected GMs vs.
Factor Graphs

– Bayesian Networks vs.
Markov Random Fields vs.
Conditional Random Fields

• Graphical Model Learning
– Fully observed Bayesian

Network learning
– Fully observed MRF learning
– Fully observed CRF learning

– Parameterization of a GM
– Neural potential functions

• Exact Inference
– Three inference problems:

(1) marginals
(2) partition function
(3) most probably assignment

– Variable Elimination
– Belief Propagation (sum-

product and max-product)
– MAP Inference via MILP

10

Topics from after Midterm Exam

• Learning for Structure
Prediction
– Structured Perceptron
– Structured SVM
– Neural network potentials

• Approximate MAP Inference
– MAP Inference via MILP
– MAP Inference via LP

relaxation

• Approximate Inference by
Sampling
– Monte Carlo Methods

– Gibbs Sampling
– Metropolis-Hastings
– Markov Chains and MCMC

• Approximate Inference by
Optimization
– Variational Inference
– Mean Field Variational

Inference
– Coordinate Ascent V.I. (CAVI)
– Variational EM

– Variational Bayes

• Bayesian Nonparametrics
– Dirichlet Process

– DP Mixture Model

• Deep Generative Models
– Variational Autoencoders

11

VARIATIONAL EM

12

Variational EM

Whiteboard
– Example: Unsupervised POS Tagging
– Variational Bayes
– Variational EM

13

Unsupervised POS Tagging

14

Figure from Wang & Blunsom (2013)

 601

Pengyu Wang, Phil Blunsom

p(z
t

= k|x, z¬t, ↵, �) /
C¬t

k,w

+ �

C¬t

k,· + W�
·

C¬t

zt�1

,k

+ ↵

C¬t

zt�1

,· + K↵
·
C¬t

k,zt+1

+ ↵ + �(z
t�1 = k = z

t+1)
C¬t

k,· + K↵ + �(z
t�1 = k)

Figure 1: The conditional distribution for a single hidden state z
i

in the collapsed Gibbs sampler, conditioned
on all other hidden states z

¬t. C¬i is the count that does not include z
i

, w is the observation at time step t, W
is the size of observation space, and K is the size of hidden state space. � is the standard indicator function.

Solving the above equation results in Dirichlet distri-
butions with updated hyperparameters. Equivalently,
Beal (2003) suggested the mean parameters ✓̃ instead.
This involves only a minor change in the M step:

Ã
k,k

0 =
f(

P
T�1
t=0 q(z

t

= k, z
t+1 = k0) + ↵)

f(
P

T�1
t=0 q(z

t

= k) + K↵)

B̃
k,w

=
f(

P
T

t=1 q(z
t

= k)�(x
t

= w) + �)
f(

P
T

t=1 q(z
t

= k) + W�)
f(x) = exp((x))

where (x) = @�(x)
@x

is the digamma function.

Ignoring how fluctuations in ✓ induce fluctuations in
z (and vice-versa) allows for analytic iterations, and
both EM and VB inference algorithms are e�cient and
easy to implement. Nevertheless, the independence
assumption may potentially lead to very inaccurate
estimations. The parameters and latent variables are
strongly dependent in the true posterior p(z, ✓|x, ↵, �),
which is proportional to the joint distribution in (1).
As we shall see in the following, CGS and CVB model
the dependencies between parameters and hidden vari-
ables in an exact fashion.

2.2 Collapsed Gibbs sampling

The collapsed Gibbs sampler produces a hidden state
sequence z sampled from the posterior distribution

p(z|x, ↵, �) =
Z

p(z,x|✓)p(✓|↵,�)d✓ (12)

Because Dirichlet priors are conjugate to discrete dis-
tributions, it is possible to integrate out the model pa-
rameters ✓ to yield the conditional distribution for z

i

shown in Figure 1. The derivation is quite standard by
following the tutorial (Resnik and Hardisty, 2010). It
also appeared in Goldwater and Gri�ths (2007), and
Gao and Johnson (2008).

CGS does not make any independence assumptions
between parameters and hidden variables, and draws
samples from the true posterior. However, as with
other MCMC samplers, it is often hard to assess con-
vergence, and one needs to set the number of sam-
ples and the burn-in period based on experience. In

practice, one often draws as many samples as possible
(within the limited time frame) to reduce sampling
variance, and thus it is much less e�cient than EM
and VB.

Gri�ths and Steyvers (2004) observed that the CGS
for LDA converged relatively quickly. In LDA, the
conditional distribution for the currently updating
variable depends on other variables only through the
counts, i.e. the dependency on any particular other
variable is very small. Hence quick convergence is to
be expected. For HMMs the conditional distribution
for z

t

in Figure 1 depends on the states of the previ-
ous hidden variable (z

t�1) and the next hidden vari-
able (z

t+1), as well as the global counts. Such strong
dependencies makes CGS for HMMs much slower to
converge (Gao and Johnson, 2008).

3 Collapsed variational inference for
i.i.d. hidden variables

The rapid convergence of CGS for LDA indicates that
VB in the collapsed space is likely to be e↵ective. For
any independent and identically distributed models,1
collapsing the parameters induces only weak depen-
dencies among the hidden variables. The sum of the
dependencies is decisive, but any particular depen-
dency is tiny, especially for large data sets. This fits
exactly with the assumptions underlying mean field
theory. The currently updating variable relies on the
field (i.e. summary statistics), through which it inter-
acts with other variables. As the influence from any
single variable on the field is small we may expect mean
field updates in the collapsed space to be accurate.

Formally, CVB models the dependencies between pa-
rameters and hidden variables in an exact fashion.

q(z, ✓) = q(z)q(✓|z) (13)

The mean field method requires independent variables,
and thus the induced weak dependencies among hid-

1We define a model to be i.i.d., if any two hidden vari-
ables are conditionally independent given the parameters.
LDA and mixture models are typical examples. HMMs
are not i.i.d., as each hidden variable is dependent on the
previous one given the parameters.

CGS full conditional:

 603

Pengyu Wang, Phil Blunsom

q(z
t

= k) /
exp(E

q(z¬t)[log(C¬t

k,w

+ �) + log(C¬t

zt�1

,k

+ ↵) + log(C¬t

k,zt+1

+ ↵ + �(z
t�1 = k = z

t+1))])
exp(E

q(z¬t)[log(C¬t

k,· + W�) + log(C¬t

zt�1

,· + K↵) + log(C¬t

k,· + K↵ + �(z
t�1 = k))])

Figure 2: The exact mean field update for the first CVB inference algorithm.

q(z
t

= k) /
E

q(z¬t)[C¬t

k,w

] + �

E
q(z¬t)[C¬t

k,·] + W�
·

E
q(z¬t)[C¬t

zt�1

,k

] + ↵

E
q(z¬t)[C¬t

zt�1

,·] + K↵
·

E
q(z¬t)[C¬t

k,zt+1

] + ↵ + E
q(z¬t)[�(zt�1 = k = z

t+1)]
E

q(z¬t)[C¬t

k,·] + K↵ + E
q(z¬t)[�(zt�1 = k)]

Figure 3: The update for the first CVB algorithm using a first order Taylor series approximation.

can be computed as follows,

E
q(z¬t)[�(zt�1 = k = z

t+1)] = q(z
t�1 = k)q(z

t+1 = k)
(21)

The implementation for the first CVB algorithm sim-
ply keeps track of the global expected counts C

k,w

and
C

k

0
,k

, subtracting the expected counts for z
t

(and z
t�1

or z
t+1 when needed). After updating q(z

t

), the mean
counts around z

t

are added back into the global counts.
Each update of q(z

t

) has the computational complex-
ity O(K2), which is same as EM and VB.

4.2 Algorithm 2

The strong independence assumption in Algorithm 1
has the potential to lead to inaccurate results. How-
ever in order to apply the mean field method one has
to partition the latent variables into disjoint and inde-
pendent groups.

Our investigation of CVB algorithms for HMMs is in-
spired by large scale applications in natural language
processing. A common feature of those problems is
that there are usually many short sequences (i.e. sen-
tences), where each sequence is drawn i.i.d. from the
same set of parameters. Therefore the collection of
HMM sequences can be considered as an i.i.d. model
with a shared set of parameters.

Let x

i

be the ith sequence of observations, and z

i

be
the ith sequence of hidden states. Denote the number
of sequences to be I. By using the derivation for i.i.d.
models it is reasonable to assume that each hidden
state sequence is independent of the others, since they
are only weakly dependent in the collapsed space.

q(z, ✓) =q(✓|z)q(z)

⇡q(✓|z)
IY

i=1

q(z
i

) (22)

As with any i.i.d. model,

q(z
i

) / exp(E
q(z¬i)[log p(z

i

|x, z¬i)])

/ exp(E
q(z¬i)[log p(x

i

, z
i

|x¬i, z¬i)]) (23)

The challenge is to compute the term p(x
i

, z
i

|x¬i, z¬i).
The exact computation includes expensive non-
Markov delta functions, as shown in Figure 4. We ap-
proximate by assuming that hidden variables within a
sequence only exhibit first order Markov dependencies
and output independence.

p(x
i

, z
i

|x¬i, z¬i)

⇡
T�1Y

t=0

p(z
i,t+1|z

i,t

,x¬i, z¬i)p(x
i,t+1|z

i,t+1,x
¬i, z¬i)

=
T�1Y

t=0

C¬i

zi,t,zi,t+1

+ ↵

C¬i

zi,t,· + K↵
·
C¬i

zi,t+1

,xi,t+1

+ �

C¬i

zi,t+1

,· + W�
(24)

This approximation ignores the contributions from
other parts of the ith sequence to the global counts.
Compared with contributions from all other sequences,
we assume the impact of these local counts is small.

Substituting (24) into (23), and with the first order
Taylor approximation,

q(z
i

) ⇡
T�1Y

t=0

ACVB
zi,t,zi,t+1

BCVB
zi,t+1

,xi,t+1

(25)

where we define,

ACVB
zi,t,zi,t+1

=
E

q(z¬i)[C¬i

zi,t,zi,t+1

] + ↵

E
q(z¬i)[C¬i

zi,t,·] + K↵

BCVB
zi,t+1

,xi,t+1

=
E

q(z¬i)[C¬i

zi,t+1

,xi,t+1

] + �

E
q(z¬i)[C¬i

zi,t+1

,·] + W�

The striking similarity between (6) and (25) suggests
that the dynamic programming approach used in the
EM and VB algorithms can be applied here. In the
E step, the EM algorithm uses the maximum likeli-
hood parameters A?, B? from the M step; the VB al-
gorithm uses the mean parameters Ã, B̃ from the M
step; while the second CVB algorithm uses the pa-
rameters ACVB, BCVB based on the expected counts
from all other sequences. The main di↵erence with EM
and VB is that the parameters in CVB are dynamic,

Algo 1 mean field update:

Bayesian Inference for HMMs
• Task: unsupervised POS tagging

• Data: 1 million words (i.e. unlabeled sentences) of WSJ text

• Dictionary: defines legal part-of-speech (POS) tags for each word type

• Models:

– EM: standard HMM

– VB: uncollapsed variational Bayesian HMM

– Algo 1 (CVB): collapsed variational Bayesian HMM (strong indep. assumption)

– Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)

– CGS: collapsed Gibbs Sampler for Bayesian HMM

Unsupervised POS Tagging
Bayesian Inference for HMMs
• Task: unsupervised POS tagging
• Data: 1 million words (i.e. unlabeled sentences) of WSJ text
• Dictionary: defines legal part-of-speech (POS) tags for each word type
• Models:

– EM: standard HMM
– VB: uncollapsed variational Bayesian HMM
– Algo 1 (CVB): collapsed variational Bayesian HMM (strong indep. assumption)
– Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
– CGS: collapsed Gibbs Sampler for Bayesian HMM

15
Figure from Wang & Blunsom (2013)

 605

Pengyu Wang, Phil Blunsom

EM VB Algorithm 1 Algorithm 2 CGS
Size Random µ � µ � µ � µ � µ �
1K 65.1 81.0 1.2 79.2 1.3 82.9 0.2 84.2 0.2 85.3 0.5
2K 65.2 81.1 0.9 80.5 1.1 83.1 0.3 85.5 0.3 85.0 0.3
3K 65.1 81.1 0.8 80.5 1.0 83.1 0.2 85.8 0.3 85.0 0.2
5K 64.9 81.0 1.5 80.4 1.5 83.0 0.2 85.6 0.1 85.2 0.2
10K 64.7 81.4 1.7 80.7 1.2 83.4 0.2 85.6 0.1 85.0 0.2
All 64.8 81.4 0.9 81.4 1.1 83.7 0.1 85.7 0.1 84.6 0.1

Table 1: Tagging accuracies and standard deviations of 10 random runs on various corpus sizes with a complete
tag dictionary. Viterbi tagging is used for EM and VB, whereas at each word position CGS chooses the tag with
the maximum posterior. For Algorithm 1, both tagging methods achieve exactly the same results because of the
independence assumption. For Algorithm 2, the maximum posterior tagging is slightly better (up to 0.1).

0 10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

Number of Iterations (Variational Algorithms)

Ac
cu

ra
cy

EM (28mins)
VB (35mins)
Algo 1 (15mins)
Algo 2 (50mins)
CGS (480mins)

0 4,000 8,000 12,000 16,000 20,000
Number of Iterations (CGS)

Figure 5: Accuracies averaged over 10 runs for the en-
tire treebank with a complete tag dictionary. The vari-
ational algorithms were implemented in Python and
run on an Intel Core i5 3.10GHZ computer with 4.0GB
RAM. The CGS algorithm was implemented in C++.

5.2 Varying dictionary knowledge

In practice, it is not always possible to build a complete
tag dictionary, especially for the infrequent words. We
investigate the e↵ects of reducing dictionary informa-
tion. Following Smith and Eisner (2005), we randomly
select 1K unlabelled sentences from the treebank for
the training data3. We define a word type to be fre-
quent if the word’s tokens appear at least d times in
the training corpus, otherwise it is infrequent. For fre-
quent word types the standard tag dictionary is avail-
able; whereas for infrequent word types, all the tags
are considered to be legal.

Table 2 presents the accuracies achieved by the al-
gorithms at various ambiguity levels. Because of the
small data set, the collapsed Gibbs sampler performs

3Small data sets significantly favor CGS. We hope that
CGS can converge such that we can measure the margins
between the results of the second CVB algorithm and CGS
(i.e. close to the true posterior) in this and especially the
next set of experiments.

10 20 30 40 50

800
900

1,000
1,100
1,200
1,300
1,400
1,500

Number of Iterations (Variational Algorithms)

Te
st

 P
er

pl
ex

ity

VB
Algo 1
Algo 2
CGS

400 4,000 8,000 12,000 16,000 20,000
Number of Iterations (CGS)

Figure 6: Perplexities averaged over 10 runs for the
1K data set without a tag dictionary.

best in most cases, although somewhat surprisingly
in some cases the second CVB algorithm outperforms
CGS even in this small corpus. We find that with
increasing ambiguity (approaching fully unsupervised
learning), the margins between the standard VB and
both of the CVB algorithms increase dramatically. In
particular, when d = 10 (the average tags per token is
10.8, and the percentage of ambiguous tokens is 66%),
the margin is as large as 13%.

5.3 Test perplexities

Without a tag dictionary the tag types are inter-
changeable and we have a label identifiability issue.
Thus the tagging results cannot be evaluated directly
against the reference tagged corpus. In this set of ex-
periments, we randomly withhold 10% of the sentences
from the data for testing, and use the remaining 90%
for training. The algorithms are evaluated by their
test perplexities (per token) on the withheld test set.
We use |x

i

| to denote the length of ith sequence.

perplexity(xtest) = 2
“
�

P
i log

2

p(xi)P
i |xi|

”

(26)

 605

Pengyu Wang, Phil Blunsom

EM VB Algorithm 1 Algorithm 2 CGS
Size Random µ � µ � µ � µ � µ �
1K 65.1 81.0 1.2 79.2 1.3 82.9 0.2 84.2 0.2 85.3 0.5
2K 65.2 81.1 0.9 80.5 1.1 83.1 0.3 85.5 0.3 85.0 0.3
3K 65.1 81.1 0.8 80.5 1.0 83.1 0.2 85.8 0.3 85.0 0.2
5K 64.9 81.0 1.5 80.4 1.5 83.0 0.2 85.6 0.1 85.2 0.2
10K 64.7 81.4 1.7 80.7 1.2 83.4 0.2 85.6 0.1 85.0 0.2
All 64.8 81.4 0.9 81.4 1.1 83.7 0.1 85.7 0.1 84.6 0.1

Table 1: Tagging accuracies and standard deviations of 10 random runs on various corpus sizes with a complete
tag dictionary. Viterbi tagging is used for EM and VB, whereas at each word position CGS chooses the tag with
the maximum posterior. For Algorithm 1, both tagging methods achieve exactly the same results because of the
independence assumption. For Algorithm 2, the maximum posterior tagging is slightly better (up to 0.1).

0 10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

Number of Iterations (Variational Algorithms)

Ac
cu

ra
cy

EM (28mins)
VB (35mins)
Algo 1 (15mins)
Algo 2 (50mins)
CGS (480mins)

0 4,000 8,000 12,000 16,000 20,000
Number of Iterations (CGS)

Figure 5: Accuracies averaged over 10 runs for the en-
tire treebank with a complete tag dictionary. The vari-
ational algorithms were implemented in Python and
run on an Intel Core i5 3.10GHZ computer with 4.0GB
RAM. The CGS algorithm was implemented in C++.

5.2 Varying dictionary knowledge

In practice, it is not always possible to build a complete
tag dictionary, especially for the infrequent words. We
investigate the e↵ects of reducing dictionary informa-
tion. Following Smith and Eisner (2005), we randomly
select 1K unlabelled sentences from the treebank for
the training data3. We define a word type to be fre-
quent if the word’s tokens appear at least d times in
the training corpus, otherwise it is infrequent. For fre-
quent word types the standard tag dictionary is avail-
able; whereas for infrequent word types, all the tags
are considered to be legal.

Table 2 presents the accuracies achieved by the al-
gorithms at various ambiguity levels. Because of the
small data set, the collapsed Gibbs sampler performs

3Small data sets significantly favor CGS. We hope that
CGS can converge such that we can measure the margins
between the results of the second CVB algorithm and CGS
(i.e. close to the true posterior) in this and especially the
next set of experiments.

Figure 6: Perplexities averaged over 10 runs for the
1K data set without a tag dictionary.

best in most cases, although somewhat surprisingly
in some cases the second CVB algorithm outperforms
CGS even in this small corpus. We find that with
increasing ambiguity (approaching fully unsupervised
learning), the margins between the standard VB and
both of the CVB algorithms increase dramatically. In
particular, when d = 10 (the average tags per token is
10.8, and the percentage of ambiguous tokens is 66%),
the margin is as large as 13%.

5.3 Test perplexities

Without a tag dictionary the tag types are inter-
changeable and we have a label identifiability issue.
Thus the tagging results cannot be evaluated directly
against the reference tagged corpus. In this set of ex-
periments, we randomly withhold 10% of the sentences
from the data for testing, and use the remaining 90%
for training. The algorithms are evaluated by their
test perplexities (per token) on the withheld test set.
We use |x

i

| to denote the length of ith sequence.

perplexity(xtest) = 2
“
�

P
i log

2

p(xi)P
i |xi|

”

(26)

Speed:

Unsupervised POS Tagging
Bayesian Inference for HMMs
• Task: unsupervised POS tagging
• Data: 1 million words (i.e. unlabeled sentences) of WSJ text
• Dictionary: defines legal part-of-speech (POS) tags for each word type
• Models:

– EM: standard HMM
– VB: uncollapsed variational Bayesian HMM
– Algo 1 (CVB): collapsed variational Bayesian HMM (strong indep. assumption)
– Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
– CGS: collapsed Gibbs Sampler for Bayesian HMM

16
Figure from Wang & Blunsom (2013)

 605

Pengyu Wang, Phil Blunsom

EM VB Algorithm 1 Algorithm 2 CGS
Size Random µ � µ � µ � µ � µ �
1K 65.1 81.0 1.2 79.2 1.3 82.9 0.2 84.2 0.2 85.3 0.5
2K 65.2 81.1 0.9 80.5 1.1 83.1 0.3 85.5 0.3 85.0 0.3
3K 65.1 81.1 0.8 80.5 1.0 83.1 0.2 85.8 0.3 85.0 0.2
5K 64.9 81.0 1.5 80.4 1.5 83.0 0.2 85.6 0.1 85.2 0.2
10K 64.7 81.4 1.7 80.7 1.2 83.4 0.2 85.6 0.1 85.0 0.2
All 64.8 81.4 0.9 81.4 1.1 83.7 0.1 85.7 0.1 84.6 0.1

Table 1: Tagging accuracies and standard deviations of 10 random runs on various corpus sizes with a complete
tag dictionary. Viterbi tagging is used for EM and VB, whereas at each word position CGS chooses the tag with
the maximum posterior. For Algorithm 1, both tagging methods achieve exactly the same results because of the
independence assumption. For Algorithm 2, the maximum posterior tagging is slightly better (up to 0.1).

0 10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

Number of Iterations (Variational Algorithms)

Ac
cu

ra
cy

EM (28mins)
VB (35mins)
Algo 1 (15mins)
Algo 2 (50mins)
CGS (480mins)

0 4,000 8,000 12,000 16,000 20,000
Number of Iterations (CGS)

Figure 5: Accuracies averaged over 10 runs for the en-
tire treebank with a complete tag dictionary. The vari-
ational algorithms were implemented in Python and
run on an Intel Core i5 3.10GHZ computer with 4.0GB
RAM. The CGS algorithm was implemented in C++.

5.2 Varying dictionary knowledge

In practice, it is not always possible to build a complete
tag dictionary, especially for the infrequent words. We
investigate the e↵ects of reducing dictionary informa-
tion. Following Smith and Eisner (2005), we randomly
select 1K unlabelled sentences from the treebank for
the training data3. We define a word type to be fre-
quent if the word’s tokens appear at least d times in
the training corpus, otherwise it is infrequent. For fre-
quent word types the standard tag dictionary is avail-
able; whereas for infrequent word types, all the tags
are considered to be legal.

Table 2 presents the accuracies achieved by the al-
gorithms at various ambiguity levels. Because of the
small data set, the collapsed Gibbs sampler performs

3Small data sets significantly favor CGS. We hope that
CGS can converge such that we can measure the margins
between the results of the second CVB algorithm and CGS
(i.e. close to the true posterior) in this and especially the
next set of experiments.

Figure 6: Perplexities averaged over 10 runs for the
1K data set without a tag dictionary.

best in most cases, although somewhat surprisingly
in some cases the second CVB algorithm outperforms
CGS even in this small corpus. We find that with
increasing ambiguity (approaching fully unsupervised
learning), the margins between the standard VB and
both of the CVB algorithms increase dramatically. In
particular, when d = 10 (the average tags per token is
10.8, and the percentage of ambiguous tokens is 66%),
the margin is as large as 13%.

5.3 Test perplexities

Without a tag dictionary the tag types are inter-
changeable and we have a label identifiability issue.
Thus the tagging results cannot be evaluated directly
against the reference tagged corpus. In this set of ex-
periments, we randomly withhold 10% of the sentences
from the data for testing, and use the remaining 90%
for training. The algorithms are evaluated by their
test perplexities (per token) on the withheld test set.
We use |x

i

| to denote the length of ith sequence.

perplexity(xtest) = 2
“
�

P
i log

2

p(xi)P
i |xi|

”

(26)

• EM is slow b/c of log-space computations
• VB is slow b/c of digamma computations
• Algo 1 (CVB) is the fastest!
• Algo 2 (CVB) is slow b/c it computes dynamic

parameters
• CGS: an order of magnitude slower than any

deterministic algorithm

Stochastic Variational Bayesian HMM
• Task: Human Chromatin

Segmentation
• Goal: unsupervised

segmentation of the genome
• Data: from ENCODE, “250

million observations consisting
of twelve assays carried out in
the chronic myeloid leukemia
cell line K562”

• Metric: “the false discovery
rate (FDR) of predicting active
promoter elements in the
sequence"

• Models:
– DBN HMM: dynamic Bayesian

HMM trained with standard EM
– SVIHMM: stochastic variational

inference for a Bayesian HMM
• Main Takeaway:

– the two models perform at
similar levels of FDR

– SVIHMM takes one hour
– DBNHMM takes days

17

Figure from Foti et al. (2014)

● ● ●

●

●

●

●

●
● ●

0.0

0.5

1.0

1.5

0.00

0.25

0.50

0.75

1.00

D
iag. D

om
.

R
ev. C

ycles

1 10 100
L/2 (log−scale)

||A
|| F

(a)

L/2 = 1 L/2 = 3 L/2 = 10

−4.5

−4.0

−3.5

−3.0

−6.6

−6.4

−6.2

−6.0

Diag. Dom
.

Rev. Cycles

0 20 40 60 0 20 40 60 0 20 40 60
Iteration

He
ld

 o
ut

 lo
g−

pr
ob

ab
ilit

y GrowBuffer
Off
On

κ

0.1
0.3
0.5
0.7

(b)

Figure 1: (a) Transition matrix error varying L with L ⇥ M fixed. (b) Effect of incorporating
GrowBuf. Batch results denoted by horizontal red line in both figures.

We were provided with 250 million observations consisting of twelve assays carried out in the
chronic myeloid leukemia cell line K562. We analyzed the data using SVIHMM on an HMM with
25 states and 12 dimensional Gaussian emissions. We compare our performance to the correspond-
ing segmentation learned by an expectation maximization (EM) algorithm applied to a more flexible
dynamic Bayesian network model (DBN) [27]. Due to the size of the dataset, the analysis of [27]
requires breaking the chain into several blocks, severing long range dependencies.

We assess performance by comparing the false discovery rate (FDR) of predicting active promoter
elements in the sequence. The lowest (best) FDR achieved with SVIHMM over 20 random restarts
trials was .999026 using bL/2c = 2000,M = 50, = .51, comparable and slightly lower than
the .999038 FDR obtained using DBN-EM on the severed data [27]. We emphasize that even when
restricted to a simpler HMM model, learning on the full data via SVIHMM attains similar results to
that of [27] with significant gains in efficiency. In particular, our SVIHMM runs require only under
an hour for a fixed 100 iterations, the maximum iteration limit specified in the DBN-EM approach.
In contrast, even with a parallelized implementation over the broken chain, the DBN-EM algorithm
can take days. In conclusion, SVIHMM enables scaling to the entire dataset, allowing for a more
principled approach by utilizing the data jointly.

5 Discussion

We have presented stochastic variational inference for HMMs, extending such algorithms from in-
dependent data settings to handle time dependence. We elucidated the complications that arise when
sub-sampling dependent observations and proposed a scheme to mitigate the error introduced from
breaking dependencies. Our approach provides an adaptive technique with provable guarantees for
convergence to a local mode. Further extensions of the algorithm in the HMM setting include adap-
tively selecting the length of meta-observations and parallelizing the local step when the number of
meta-observations is large. Importantly, these ideas generalize to other settings and can be applied to
Bayesian nonparametric time series models, general state space models, and other graph structures
with spatial dependencies.

Acknowledgements

This work was supported in part by the TerraSwarm Research Center sponsored by MARCO and DARPA,
DARPA Grant FA9550-12-1-0406 negotiated by AFOSR, and NSF CAREER Award IIS-1350133. JX was
supported by an NDSEG fellowship. We also appreciate the data, discussions, and guidance on the ENCODE
project provided by Max Libbrecht and William Noble.

1Other parameter settings were explored.

8

Figure from Mammana & Chung (2015)

Grammar Induction
Question: Can maximizing (unsupervised) marginal
likelihood produce useful results?

Answer: Let’s look at an example…
• Babies learn the syntax of their native language (e.g.

English) just by hearing many sentences
• Can a computer similarly learn syntax of a human

language just by looking at lots of example
sentences?
– This is the problem of Grammar Induction!
– It’s an unsupervised learning problem
– We try to recover the syntactic structure for each

sentence without any supervision

18

Grammar Induction

19

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

No semantic
interpretation

…

Grammar Induction

20

real likeflies soupSample 2:

time likeflies an arrowSample 1:

with youtime will seeSample 4:

flies withfly their wingsSample 3:

Training Data: Sentences only, without parses

x(1)

x(2)

x(3)

x(4)

Test Data: Sentences with parses, so we can evaluate accuracy

Grammar Induction

21

lti

-20.2 -20 -19.8 -19.6 -19.4 -19.2 -19
10

20

30

40

50

60

A
tt

ac
hm

en
t

A
cc

ur
ac

y
(%

)

Log-Likelihood (per sentence)
4

Pearson’s r = 0.63
(strong correlation)

Dependency Model with Valence (Klein & Manning, 2004)

Figure from Gimpel & Smith (NAACL 2012) - slides

Q: Does likelihood
correlate with
accuracy on a task
we care about?

A: Yes, but there is
still a wide range
of accuracies for a
particular
likelihood value

Grammar Induction

22

μk

∑k

ηk θk y xK
N

K

Figure 1: A graphical model for the logistic normal probabilistic grammar. y is the deriva-
tion, x is the observed string.

parameters, we hope to break independence assumptions typically made about the behavior
of di↵erent part-of-speech tags.

In this paper, we present a model, in the Bayesian setting, which extends CTM for proba-
bilistic grammars. We also derive an inference algorithm for that model, which is ultimately
used to provide a point estimate for the grammar, permitting us to perform fast and exact
inference. This is required if the learned grammar is to be used as a component in an
application.

The rest of the paper is organized as follows. §2 gives a general form for probabilistic
grammars built out of multinomial distributions. §3 describes our model and an e�cient
variational inference algorithm. §4 presents a probabilistic context-free dependency gram-
mar often used in unsupervised natural language learning. Experimental results showing
the competitiveness of our method for estimating that grammar are presented in §5.

2 Probabilistic Grammars

A probabilistic grammar defines a probability distribution over a certain kind of structured
object (a derivation of the underlying symbolic grammar) explained through step-by-step
stochastic process. HMMs, for example, can be understood as a random walk through
a probabilistic finite-state network, with an output symbol sampled at each state. PCFGs
generate phrase-structure trees by recursively rewriting nonterminal symbols as sequences of
“child” symbols (each itself either a nonterminal symbol or a terminal symbol analogous to
the emissions of an HMM). Each step or emission of an HMM and each rewriting operation
of a PCFG is conditionally independent of the others given a single structural element (one
HMM or PCFG state); this Markov property permits e�cient inference.

In general, a probabilistic grammar defines the joint probability of a string x and a gram-
matical derivation y:

p(x,y | ✓) =
KY

k=1

NkY

i=1

✓
fk,i(x,y)
k,i = exp

KX

k=1

NkX

i=1

fk,i(x,y) log ✓k,i (1)

where fk,i is a function that “counts” the number of times the kth distribution’s ith event
occurs in the derivation. The parameters ✓ are a collection of K multinomials h✓1, ...,✓Ki,
the kth of which includes Nk events. Note that there may be many derivations y for a given
string x—perhaps even infinitely many in some kinds of grammars. HMMs and vanilla
PCFGs are the best known probabilistic grammars, but there are others. For example, in
§5 we experiment with the “dependency model with valence,” a probabilistic grammar for
dependency parsing first proposed in [14].

3 Logistic Normal Prior on Probabilistic Grammars

A natural choice for a prior over the parameters of a probabilistic grammar is a Dirichlet
prior. The Dirichlet family is conjugate to the multinomial family, which makes the inference
more elegant and less computationally intensive. In addition, a Dirichlet prior can encourage
sparse solutions, a property which is important with probabilistic grammars [11].

Graphical Model for Logistic
Normal Probabilistic Grammar

y = syntactic parse
x = observed sentence

x = hNNP VBD JJ NNPi; y =

Figure 2: An example of a dependency tree (derivation y). NNP denotes a proper noun,
VBD a past-tense verb, and JJ an adjective, following the Penn Treebank conventions.

answering, and other natural language processing applications. Here, we are interested in
unsupervised dependency parsing using the “dependency model with valence” [14]. The
model is a probabilistic head automaton grammar [3] with a “split” form that renders in-
ference cubic in the length of the sentence [6].

Let x = hx1, x2, ..., xni be a sentence (here, as in prior work, represented as a sequence
of part-of-speech tags). x0 is a special “wall” symbol, $, on the left of every sentence. A
tree y is defined by a pair of functions yleft and yright (both {0, 1, 2, ..., n} ! 2{1,2,...,n})
that map each word to its sets of left and right dependents, respectively. Here, the graph
is constrained to be a projective tree rooted at x0 = $: each word except $ has a single
parent, and there are no cycles or crossing dependencies. yleft(0) is taken to be empty, and
yright(0) contains the sentence’s single head. Let y

(i) denote the subtree rooted at position
i. The probability P (y(i)

| xi,✓) of generating this subtree, given its head word xi, is defined
recursively:

P (y(i)
| xi,✓) =

Q
D2{left,right} ✓s(stop | xi,D , [yD(i) = ;]) (12)

⇥

Q
j2yD (i) ✓s(¬stop | xi,D ,first

y

(j))⇥ ✓c(xj | xi,D)⇥ P (y(j)
| xj ,✓)

where first
y

(j) is a predicate defined to be true i↵ xj is the closest child (on either side)
to its parent xi. The probability of the entire tree is given by p(x,y | ✓) = P (y(0)

| $,✓).
The parameters ✓ are the multinomial distributions ✓s(· | ·, ·, ·) and ✓c(· | ·, ·). To follow
the general setting of Eq. 1, we index these distributions as ✓1, ...,✓K . Figure 2 shows a
dependency tree and its probability under this model.

5 Experiments

Data Following the setting in [13], we experimented using part-of-speech sequences from
the Wall Street Journal Penn Treebank [17], stripped of words and punctuation. We follow
standard parsing conventions and train on sections 2–21,5 tune on section 22, and report
final results on section 23.

Evaluation After learning a point estimate ✓, we predict y for unseen test data (by parsing
with the probabilistic grammar) and report the fraction of words whose predicted parent
matches the gold standard corpus, known as attachment accuracy. Two parsing methods
were considered: the most probable “Viterbi” parse (argmax

y

p(y | x,✓)) and the minimum
Bayes risk (MBR) parse (argmin

y

Ep(y0|x,✓)[`(y;x,y0)]) with dependency attachment error
as the loss function.

Settings Our experiment compares four methods for estimating the probabilistic gram-
mar’s parameters:

EM Maximum likelihood estimate of ✓ using the EM algorithm to optimize p(x | ✓) [14].
EM-MAP Maximum a posteriori estimate of ✓ using the EM algorithm and a fixed sym-

metric Dirichlet prior with ↵ > 1 to optimize p(x,✓ | ↵). Tune ↵ to maximize the
likelihood of an unannotated development dataset, using grid search over [1.1, 30].

5Training in the unsupervised setting for this data set can be expensive, and requires running a
cubic-time dynamic programming algorithm iteratively, so we follow common practice in restricting
the training set (but not development or test sets) to sentences of length ten or fewer words. Short
sentences are also less structurally ambiguous and may therefore be easier to learn from.

VB-Dirichlet Use variational Bayes inference to estimate the posterior distribution p(✓ |

x,↵), which is a Dirichlet. Tune the symmetric Dirichlet prior’s parameter ↵ to
maximize the likelihood of an unannotated development dataset, using grid search
over [0.0001, 30]. Use the mean of the posterior Dirichlet as a point estimate for ✓.

VB-EM-Dirichlet Use variational Bayes EM to optimize p(x | ↵) with respect to ↵. Use
the mean of the learned Dirichlet as a point estimate for ✓ (similar to [5]).

VB-EM-Log-Normal Use variational Bayes EM to optimize p(x | µ,⌃) with respect to
µ and ⌃. Use the (exponentiated) mean of this Gaussian as a point estimate for ✓.

Initialization is known to be important for EM as well as for the other algorithms we
experiment with, since it involves non-convex optimization. We used the successful initializer
from [14], which estimates ✓ using soft counts on the training data where, in an n-length
sentence, (a) each word is counted as the sentence’s head 1

n times, and (b) each word xi

attaches to xj proportional to |i � j|, normalized to a single attachment per word. This
initializer is used with EM, EM-MAP, VB-Dirichlet, and VB-EM-Dirichlet. In the case of
VB-EM-Log-Normal, it is used as an initializer both for µ and inside the E-step. In all
experiments reported here, we run the iterative estimation algorithm until the likelihood of
a held-out, unannotated dataset stops increasing.

For learning with the logistic normal prior, we consider two initializations of the covariance
matrices ⌃k. The first is the Nk ⇥Nk identity matrix. We then tried to bias the solution
by injecting prior knowledge about the part-of-speech tags. Injecting a bias to parameter
estimation of the DMV model has proved to be useful [18]. To do that, we mapped the tag
set (34 tags) to twelve disjoint tag families.6 The covariance matrices for all dependency
distributions were initialized with 1 on the diagonal, 0.5 between tags which belong to
the same family, and 0 otherwise. These results are given in Table 1 with the annotation
“families.”

Results Table 1 shows experimental results. We report attachment accuracy on three
subsets of the corpus: sentences of length  10 (typically reported in prior work and most
similar to the training dataset), length  20, and the full corpus. The Bayesian methods all
outperform the common baseline (in which we attach each word to the word on its right),
but the logistic normal prior performs considerably better than the other two methods as
well.

The learned covariance matrices were very sparse when using the identity matrix to ini-
tialize. The diagonal values showed considerable variation, suggesting the importance of
variance alone. When using the “tag families” initialization for the covariance, there were
151 elements across the covariance matrices which were not identically 0 (out of more than
1,000), pointing to a learned relationship between parameters. In this case, most covariance
matrices for ✓c dependencies were diagonal, while many of the covariance matrices for the
stopping probabilities (✓s) had significant correlations.

6 Conclusion

We have considered a Bayesian model for probabilistic grammars, which is based on the
logistic normal prior. Experimentally, several di↵erent approaches for grammar induction
were compared based on di↵erent priors. We found that a logistic normal prior outperforms
earlier approaches, presumably because it can capitalize on similarity between part-of-speech
tags, as di↵erent tags tend to appear as arguments in similar syntactic contexts. We achieved
state-of-the-art unsupervised dependency parsing results.

6These are simply coarser tags: adjective, adverb, conjunction, foreign, interjection, noun, num-
ber, particle, preposition, pronoun, proper, verb. The coarse tags were chosen manually to fit seven
treebanks in di↵erent languages.

Settings:

attachment accuracy (%)
Viterbi decoding MBR decoding

|x|  10 |x|  20 all |x|  10 |x|  20 all
Attach-Right 38.4 33.4 31.7 38.4 33.4 31.7
EM 45.8 39.1 34.2 46.1 39.9 35.9
EM-MAP, ↵ = 1.1 45.9 39.5 34.9 46.2 40.6 36.7
VB-Dirichlet, ↵ = 0.25 46.9 40.0 35.7 47.1 41.1 37.6
VB-EM-Dirichlet 45.9 39.4 34.9 46.1 40.6 36.9
VB-EM-Log-Normal, ⌃

(0)
k = I 56.6 43.3 37.4 59.1 45.9 39.9

VB-EM-Log-Normal, families 59.3 45.1 39.0 59.4 45.9 40.5

Table 1: Attachment accuracy of di↵erent learning methods on unseen test data from the
Penn Treebank of varying levels of di�culty imposed through a length filter. Attach-Right
attaches each word to the word on its right and the last word to $. EM and EM-MAP with
a Dirichlet prior (↵ > 1) are reproductions of earlier results [14, 18].

Acknowledgments

The authors would like to thank the anonymous reviewers, John La↵erty, and Matthew
Harrison for their useful feedback and comments. This work was made possible by an IBM
faculty award, NSF grants IIS-0713265 and IIS-0836431 to the third author and computa-
tional resources provided by Yahoo.

References

[1] A. Ahmed and E. Xing. On tight approximate inference of the logistic normal topic
admixture model. In Proc. of AISTATS, 2007.

[2] J. Aitchison and S. M. Shen. Logistic-normal distributions: some properties and uses.
Biometrika, 67:261–272, 1980.

[3] H. Alshawi and A. L. Buchsbaum. Head automata and bilingual tiling: Translation
with minimal representations. In Proc. of ACL, 1996.

[4] D. Blei and J. D. La↵erty. Correlated topic models. In Proc. of NIPS, 2006.
[5] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of Machine Learning

Research, 3:993–1022, 2003.
[6] J. Eisner. Bilexical grammars and a cubic-time probabilistic parser. In Proc. of IWPT,

1997.
[7] J. Eisner. Transformational priors over grammars. In Proc. of EMNLP, 2002.
[8] J. R. Finkel, C. D. Manning, and A. Y. Ng. Solving the problem of cascading errors:

Approximate Bayesian inference for linguistic annotation pipelines. In Proc. of EMNLP,
2006.

[9] H. Gaifman. Dependency systems and phrase-structure systems. Information and
Control, 8, 1965.

[10] S. Goldwater and T. L. Gri�ths. A fully Bayesian approach to unsupervised part-of-
speech tagging. In Proc. of ACL, 2007.

[11] M. Johnson, T. L. Gri�ths, and S. Goldwater. Bayesian inference for PCFGs via
Markov chain Monte Carlo. In Proc. of NAACL, 2007.

[12] M. I. Jordan, Z. Ghahramani, T. S. Jaakola, and L. K. Saul. An introduction to
variational methods for graphical models. Machine Learning, 37(2):183–233, 1999.

[13] D. Klein and C. D. Manning. A generative constituent-context model for improved
grammar induction. In Proc. of ACL, 2002.

[14] D. Klein and C. D. Manning. Corpus-based induction of syntactic structure: Models
of dependency and constituency. In Proc. of ACL, 2004.

Results:

Figures from Cohen et al. (2009)

AUTOENCODERS

23

Idea #3: Unsupervised
Pre-training

1. Unsupervised Pre-training
– Use unlabeled data

– Work bottom-up
• Train hidden layer 1. Then fix its parameters.

• Train hidden layer 2. Then fix its parameters.

• …

• Train hidden layer n. Then fix its parameters.

2. Supervised Fine-tuning
– Use labeled data to train following “Idea #1”

– Refine the features by backpropagation so that they become
tuned to the end-task

24

� Idea: (Two Steps)
� Use supervised learning, but pick a better starting point
� Train each level of the model in a greedy way

The solution:
Unsupervised pre-training

25

…

…Input

Hidden Layer

Output

Unsupervised pre-
training of the first layer:
• What should it predict?
• What else do we

observe?
• The input!

This topology defines an
Auto-encoder.

The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:
• What should it predict?
• What else do we

observe?
• The input!

This topology defines an
Auto-encoder.

26

…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
– x’ is the reconstruction of x
– Loss = || x – DECODER(ENCODER(x)) ||2

– Train with the same backpropagation algorithm for 2-layer
Neural Networks with xm as both input and output.

27

…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

Slide adapted from Raman Arora

DECODER: x’ = h(W’z)

ENCODER: z = h(Wx)

The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1.

Then fix its parameters.
– Train hidden layer 2.

Then fix its parameters.
– …
– Train hidden layer n.

Then fix its parameters.

28

…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1.

Then fix its parameters.
– Train hidden layer 2.

Then fix its parameters.
– …
– Train hidden layer n.

Then fix its parameters.

29

…

…Input

Hidden Layer

…Hidden Layer

…’ ’ ’

The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1.

Then fix its parameters.
– Train hidden layer 2.

Then fix its parameters.
– …
– Train hidden layer n.

Then fix its parameters.

30

…

…Input

Hidden Layer

…Hidden Layer

…Hidden Layer

…’ ’ ’

The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1.

Then fix its parameters.
– Train hidden layer 2.

Then fix its parameters.
– …
– Train hidden layer n.

Then fix its parameters.
Supervised fine-tuning
Backprop and update all
parameters

31

…

…Input

Hidden Layer

…Hidden Layer

…Hidden Layer

Output

Deep Network Training

32

� Idea #3:
1. Unsupervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #2:
1. Supervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #1:
1. Supervised fine-tuning only

Comparison on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

33

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)

Comparison on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

34

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)

VARIATIONAL AUTOENCODERS

35

Variational Autoencoders

Whiteboard
– Variational Autoencoder = VAE
– VAE as a Probability Model
– Parameterizing the VAE with Neural Nets
– Variational EM for VAEs

36

Reparameterization Trick

37
Figure from Doersch (2016)

UNIFYING GANS AND VAES

Z Hu, Z YANG, R Salakhutdinov, E Xing,

“On Unifying Deep Generative Models”, arxiv 1706.00550

(Slides in this section from Eric Xing)

38

39

40

41

42

43

DEEP GENERATIVE MODELS

44

How does this relate to
Graphical Models?

The first “Deep Learning” papers in 2006 were
innovations in training a particular flavor of
Belief Network.

Those models happen to also be neural nets.

45

Question:

MNIST Digit Generation

• This section: Suppose you
want to build a
generative model
capable of explaining
handwritten digits

• Goal:
– To have a model p(x)

from which we can
sample digits that look
realistic

– Learn unsupervised
hidden representation of
an image

46

DBNs

A Fast Learning Algorithm for Deep Belief Nets 1545

Figure 8: Each row shows 10 samples from the generative model with a particu-
lar label clamped on. The top-level associative memory is run for 1000 iterations
of alternating Gibbs sampling between samples.

stochastic binary states. The second is to repeat the stochastic up-pass
20 times and average either the label probabilities or the label log prob-
abilities over the 20 repetitions before picking the best one. The two types
of average give almost identical results, and these results are also very sim-
ilar to using a single deterministic up-pass, which was the method used for
the reported results.

7 Looking into the Mind of a Neural Network

To generate samples from the model, we perform alternating Gibbs sam-
pling in the top-level associative memory until the Markov chain converges
to the equilibrium distribution. Then we use a sample from this distribution
as input to the layers below and generate an image by a single down-pass
through the generative connections. If we clamp the label units to a partic-
ular class during the Gibbs sampling, we can see images from the model’s
class-conditional distributions. Figure 8 shows a sequence of images for
each class that were generated by allowing 1000 iterations of Gibbs sam-
pling between samples.

We can also initialize the state of the top two layers by providing a
random binary image as input. Figure 9 shows how the class-conditional
state of the associative memory then evolves when it is allowed to run freely,
but with the label clamped. This internal state is “observed” by performing
a down-pass every 20 iterations to see what the associative memory has

Figure from (Hinton et al., 2006)

what would a really interesting generative model for (say)
images look like?

stochastic
lots of units
several layers
easy to sample from

sigmoid belief net
an interesting generative model

Marcus Frean (VUW) MLSS, ANU, 2010 9 / 75

Sigmoid Belief Networks

• Directed graphical model of
binary variables in fully
connected layers

• Only bottom layer is observed
• Specific parameterization of

the conditional probabilities:

47

DBNs

p(xi|parents(xi)) =

1

1 + exp(�
�

j wijxj)

Figure from Marcus Frean, MLSS Tutorial 2010

Note: this is a GM
diagram not a NN!

Contrastive Divergence
Training

48

DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

log likelihood of a dataset of v
log L = log P (D)

=

X

v2D
log P (v)

=

X

v2D
log

�
P

?

(v)/Z

�
 in terms of P

?

=

X

v2D

�
log P

?

(v) � log Z

�

/ 1

N

X

v2D
log P

?

(v)

| {z }
av. log likelihood per pattern

� log Z

The trick for finding the gradient of this: notice that
1 r

w

log P = (r
w

P)/P and conversely,
2 r

w

P = Pr
w

log P .

Each term uses this trick once, in each direction...
Marcus Frean (VUW) MLSS, ANU, 2010 16 / 75

Contrastive Divergence is a general tool for learning a
generative distribution, where the derivative of the log partition
function is intractable to compute.

gradient as a whole
@

@w

log L /

1

N

X

v2D| {z }
data

X

h

P (h | v)

| {z }
av. over posterior

@

@w

log P

?

(x) �
X

v,h

P (v,h)

| {z }
av. over joint

@

@w

log P

?

(x)

Both terms involve averaging over @

@w

log P

?

(x).

Another way to write it:
⌧

@

@w

log P

?

(x)

�

v2D, h⇠P (h|v)

�
⌧

@

@w

log P

?

(x)

�

x⇠P (x)

clamped / wake phase unclamped / sleep / free phase
""" conditioned hypotheses ### random fantasies

Marcus Frean (VUW) MLSS, ANU, 2010 19 / 75

Contrastive Divergence
Training

49

DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

Contrastive
Divergence estimates
the second term with
a Monte Carlo
estimate from 1-step
of a Gibbs sampler!

Contrastive Divergence
Training

50

DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

example: sigmoid belief nets
For a belief net the joint is automatically normalised: Z is a constant 1

2nd term is zero!

for the weight w

ij

from j into i, the gradient
@log L

@w

ij

= (x

i

� p

i

)x

j

stochastic gradient ascent:

�w

ij

/ (x

i

� p

i

)x

j| {z }
the ”delta rule”

So this is a stochastic version of the EM algorithm, that you may have
heard of. We iterate the following two steps:

E step: get samples from the posterior
M step: apply the learning rule that makes them more likely

Marcus Frean (VUW) MLSS, ANU, 2010 20 / 75

what would a really interesting generative model for (say)
images look like?

stochastic
lots of units
several layers
easy to sample from

sigmoid belief net
an interesting generative model

Marcus Frean (VUW) MLSS, ANU, 2010 9 / 75

Sigmoid Belief Networks

• In practice, applying CD to
a Deep Sigmoid Belief
Nets fails

• Sampling from the
posterior of many (deep)
hidden layers doesn’t
approach the equilibrium
distribution quickly
enough

51

DBNs

Figure from Marcus Frean, MLSS Tutorial 2010

Note: this is a GM
diagram not a NN!

Boltzman Machines

• Undirected graphical
model of binary
variables with
pairwise potentials

• Parameterization of
the potentials:

52

DBNs

�ij(xi, xj) =

exp(xiWijxj)

(In English: higher value of
parameter Wij leads to higher
correlation between Xi and Xj on
value 1)

Xi X1 X1

Xj

X1 X1

trick # 1: restrict the connections
Assume visible units are one layer, and hidden units are another.
Throw out all the connections within each layer.

h

j

?? h

k

| v

the posterior P (h | v) factors
c.f. in a belief net, the prior P (h) factors
no explaining away

Marcus Frean (VUW) MLSS, ANU, 2010 41 / 75

Restricted Boltzman
Machines

53

DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

Alternating Gibbs sampling

Since none of the units within a layer are interconnected, we can do Gibbs
sampling by updating the whole layer at a time.

(with time running from left �! right)

Marcus Frean (VUW) MLSS, ANU, 2010 42 / 75

Restricted Boltzman
Machines

54

DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

Restricted Boltzman
Machines

55

DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

learning in an RBM

Repeat for all data:
1 start with a training vector on the visible units
2 then alternate between updating all the hidden units in parallel and

updating all the visible units in parallel

�w

ij

= ⌘

⇥
hv

i

h

j

i0 � hv
i

h

j

i1
⇤

restricted connectivity is trick #1:
it saves waiting for equilibrium in the clamped phase.

Marcus Frean (VUW) MLSS, ANU, 2010 43 / 75

Restricted Boltzman
Machines

56

DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

trick # 2: curtail the Markov chain during learning

Repeat for all data:
1 start with a training vector on the visible units
2 update all the hidden units in parallel
3 update all the visible units in parallel to get a “reconstruction”
4 update the hidden units again

�w

ij

= ⌘

⇥
hv

i

h

j

i0 � hv
i

h

j

i1
⇤

This is not following the correct gradient, but works well in practice. Geoff
Hinton calls it learning by “contrastive divergence”.

Marcus Frean (VUW) MLSS, ANU, 2010 44 / 75

1: RBMs are infinitely deep belief nets

sampling from this is the same as sampling
from the network on the right.

Marcus Frean (VUW) MLSS, ANU, 2010 52 / 75

Deep Belief Networks
(DBNs)

57

DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

RBMs are equivalent to infinitely deep belief networks

Deep Belief Networks
(DBNs)

58

DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

RBMs are equivalent to infinitely deep belief networksin fact, all of these are the same animal...

So when we train an RBM, we’re really training an1ly deep sigmoid
belief net!
It’s just that the weights of all layers are tied.

Marcus Frean (VUW) MLSS, ANU, 2010 53 / 75

un-tie the weights from layer 2 to1

If we freeze the first RBM,
and then train another RBM
atop it, we are untying the
weights of layers 2+ in the1
net (which remain tied
together).

Marcus Frean (VUW) MLSS, ANU, 2010 54 / 75

Deep Belief Networks
(DBNs)

59

DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

Un-tie the weights from layers 2 to infinity

un-tie the weights from layer 3 to1

and ditto for the 3rd layer...

Marcus Frean (VUW) MLSS, ANU, 2010 55 / 75

Deep Belief Networks
(DBNs)

60

DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

Un-tie the weights from layers 3 to infinity

Deep Belief Networks
(DBNs)

61

DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

fine-tuning with the wake-sleep algorithm
So far, the up and down weights have been symmetric, as required by the
Boltzmann machine learning algorithm. And we didn’t change the lower
levels after “freezing” them.

wake: do a bottom-up pass, starting with a pattern from the training
set. Use the delta rule to make this more likely under the generative
model.
sleep: do a top-down pass, starting from an equilibrium sample from
the top RBM. Use the delta rule to make this more likely under the
recognition model.

[CD version: start top RBM at the sample from the wake phase, and don’t
wait for equilibrium before doing the top-down pass].

wake-sleep learning algorithm
unties the recognition weights from the generative ones

Marcus Frean (VUW) MLSS, ANU, 2010 66 / 75

Unsupervised Learning
of DBNs

62

DBNs

Figure from (Hinton & Salakhutinov, 2006)

Setting A: DBN Autoencoder
I. Pre-train a stack of RBMs in

greedy layerwise fashion
II. Unroll the RBMs to create

an autoencoder (i.e.
bottom-up and top-down
weights are untied)

III. Fine-tune the parameters
using backpropagation

Unsupervised Learning

of DBNs

63

DBNs

Figure from (Hinton & Salakhutinov, 2006)

Setting A: DBN Autoencoder

I. Pre-train a stack of RBMs in

greedy layerwise fashion

II. Unroll the RBMs to create

an autoencoder (i.e.

bottom-up and top-down

weights are untied)

III. Fine-tune the parameters

using backpropagation

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

Unsupervised Learning

of DBNs

64

DBNs

Figure from (Hinton & Salakhutinov, 2006)

Setting A: DBN Autoencoder

I. Pre-train a stack of RBMs in

greedy layerwise fashion

II. Unroll the RBMs to create

an autoencoder (i.e.

bottom-up and top-down

weights are untied)

III. Fine-tune the parameters

using backpropagation

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

Unsupervised Learning

of DBNs

65

DBNs

Figure from (Hinton & Salakhutinov, 2006)

Setting A: DBN Autoencoder

I. Pre-train a stack of RBMs in

greedy layerwise fashion

II. Unroll the RBMs to create

an autoencoder (i.e.

bottom-up and top-down

weights are untied)

III. Fine-tune the parameters

using backpropagation

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

Supervised Learning
of DBNs

66

DBNs

Figure from (Hinton & Salakhutinov, 2006)

Setting B: DBN classifier
I. Pre-train a stack of RBMs

in greedy layerwise
fashion (unsupervised)

II. Fine-tune the parameters
using backpropagation by
minimizing classification
error on the training data

MNIST Digit Generation

67

DBNs

• Comparison of deep autoencoder, logistic PCA, and PCA
• Each method projects the real data down to a vector of

30 real numbers
• Then reconstructs the data from the low-dimensional

projection

Figure from Hinton, NIPS Tutorial 2007

A comparison of methods for compressing

digit images to 30 real numbers.

real

data

30-D

deep auto

30-D logistic

PCA

30-D

PCA

Learning Deep Belief

Networks (DBNs)

68

DBNs

Figure from (Hinton & Salakhutinov, 2006)

Setting B: DBN Autoencoder

I. Pre-train a stack of RBMs in

greedy layerwise fashion

II. Unroll the RBMs to create

an autoencoder (i.e.

bottom-up and top-down

weights are untied)

III. Fine-tune the parameters

using backpropagation

MNIST Digit Generation

• This section: Suppose you
want to build a
generative model
capable of explaining
handwritten digits

• Goal:
– To have a model p(x)

from which we can
sample digits that look
realistic

– Learn unsupervised
hidden representation of
an image

69

DBNs

A Fast Learning Algorithm for Deep Belief Nets 1545

Figure 8: Each row shows 10 samples from the generative model with a particu-
lar label clamped on. The top-level associative memory is run for 1000 iterations
of alternating Gibbs sampling between samples.

stochastic binary states. The second is to repeat the stochastic up-pass
20 times and average either the label probabilities or the label log prob-
abilities over the 20 repetitions before picking the best one. The two types
of average give almost identical results, and these results are also very sim-
ilar to using a single deterministic up-pass, which was the method used for
the reported results.

7 Looking into the Mind of a Neural Network

To generate samples from the model, we perform alternating Gibbs sam-
pling in the top-level associative memory until the Markov chain converges
to the equilibrium distribution. Then we use a sample from this distribution
as input to the layers below and generate an image by a single down-pass
through the generative connections. If we clamp the label units to a partic-
ular class during the Gibbs sampling, we can see images from the model’s
class-conditional distributions. Figure 8 shows a sequence of images for
each class that were generated by allowing 1000 iterations of Gibbs sam-
pling between samples.

We can also initialize the state of the top two layers by providing a
random binary image as input. Figure 9 shows how the class-conditional
state of the associative memory then evolves when it is allowed to run freely,
but with the label clamped. This internal state is “observed” by performing
a down-pass every 20 iterations to see what the associative memory has

Figure from (Hinton et al., 2006)

Samples from a DBN trained on MNIST

A Fast Learning Algorithm for Deep Belief Nets 1545

Figure 8: Each row shows 10 samples from the generative model with a particu-
lar label clamped on. The top-level associative memory is run for 1000 iterations
of alternating Gibbs sampling between samples.

stochastic binary states. The second is to repeat the stochastic up-pass
20 times and average either the label probabilities or the label log prob-
abilities over the 20 repetitions before picking the best one. The two types
of average give almost identical results, and these results are also very sim-
ilar to using a single deterministic up-pass, which was the method used for
the reported results.

7 Looking into the Mind of a Neural Network

To generate samples from the model, we perform alternating Gibbs sam-
pling in the top-level associative memory until the Markov chain converges
to the equilibrium distribution. Then we use a sample from this distribution
as input to the layers below and generate an image by a single down-pass
through the generative connections. If we clamp the label units to a partic-
ular class during the Gibbs sampling, we can see images from the model’s
class-conditional distributions. Figure 8 shows a sequence of images for
each class that were generated by allowing 1000 iterations of Gibbs sam-
pling between samples.

We can also initialize the state of the top two layers by providing a
random binary image as input. Figure 9 shows how the class-conditional
state of the associative memory then evolves when it is allowed to run freely,
but with the label clamped. This internal state is “observed” by performing
a down-pass every 20 iterations to see what the associative memory has

MNIST Digit Recognition

70

DBNs

Slide from Hinton, NIPS Tutorial 2007

Examples of correctly recognized handwritten digits

that the neural network had never seen before

Its very

good

Experimental
evaluation of
DBN with
greedy layer-
wise pre-
training and
fine-tuning
via the wake-
sleep
algorithm

MNIST Digit Recognition

71

DBNs

Slide from Hinton, NIPS Tutorial 2007

How well does it discriminate on MNIST test set with

no extra information about geometric distortions?

• Generative model based on RBM’s 1.25%

• Support Vector Machine (Decoste et. al.) 1.4%

• Backprop with 1000 hiddens (Platt) ~1.6%

• Backprop with 500 -->300 hiddens ~1.6%

• K-Nearest Neighbor ~ 3.3%

• See Le Cun et. al. 1998 for more results

• Its better than backprop and much more neurally plausible

because the neurons only need to send one kind of signal,

and the teacher can be another sensory input.

Experimental
evaluation of
DBN with
greedy layer-
wise pre-
training and
fine-tuning
via the wake-
sleep
algorithm

Document Clustering
and Retrieval

72

DBNs

Slide from Hinton, NIPS Tutorial 2007

How to compress the count vector

• We train the neural

network to reproduce its

input vector as its output

• This forces it to

compress as much

information as possible

into the 10 numbers in

the central bottleneck.

• These 10 numbers are

then a good way to

compare documents.

 2000 reconstructed counts

500 neurons

 2000 word counts

500 neurons

250 neurons

250 neurons

10

input

vector

output

vector

Document Clustering
and Retrieval

73

DBNs

Slide from Hinton, NIPS Tutorial 2007

Performance of the autoencoder at

document retrieval

• Train on bags of 2000 words for 400,000 training cases
of business documents.

– First train a stack of RBM’s. Then fine-tune with
backprop.

• Test on a separate 400,000 documents.

– Pick one test document as a query. Rank order all the
other test documents by using the cosine of the angle
between codes.

– Repeat this using each of the 400,000 test documents
as the query (requires 0.16 trillion comparisons).

• Plot the number of retrieved documents against the
proportion that are in the same hand-labeled class as the
query document.

Document Clustering
and Retrieval

Retrieval Results
• Goal: given a

query
document,
retrieve the
relevant test
documents

• Figure shows
accuracy for
varying
numbers of
retrieved test
docs

74

DBNs

 1 3 7 15 31 63 127 255 511 1023 2047 4095 7531
0

0.05

0.1

0.15

0.2

0.25

20 Newsgroup Dataset

Number of Retrieved Documents

Ac
cu

ra
cy

Autoencoder 2D

LLE 2D

LSA 2D

 1 3 7 15 31 63 127 255 511 1023 2047 4095 7531
0

0.1

0.2

0.3

0.4

0.5

0.6

20 Newsgroup Dataset

Number of Retrieved Documents

Ac
cu

ra
cy

Autoencoder 10D

LLE 10D

LSA 10D

Fig. S5: Accuracy curves when a query document from the test set is used to retrieve other test set
documents, averaged over all 7,531 possible queries.

References and Notes
1. For the conjugate gradient fine-tuning, we used Carl Rasmussen’s “minimize” code avail-
able at http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/.

2. G. Hinton, V. Nair, Advances in Neural Information Processing Systems (MIT Press, Cam-
bridge, MA, 2006).

3. Matlab code for generating the images of curves is available at
http://www.cs.toronto.edu/ hinton.

4. G. E. Hinton, Neural Computation 14, 1711 (2002).

5. S. T. Roweis, L. K. Saul, Science 290, 2323 (2000).

6. The 20 newsgroups dataset (called 20news-bydate.tar.gz) is available at
http://people.csail.mit.edu/jrennie/20Newsgroups.

7. L. K. Saul, S. T. Roweis, Journal of Machine Learning Research 4, 119 (2003).

8. Matlab code for LLE is available at http://www.cs.toronto.edu/ roweis/lle/index.html.

9. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Proceedings of the IEEE 86, 2278 (1998).

10. D. V. Decoste, B. V. Schoelkopf, Machine Learning 46, 161 (2002).

11. P. Y. Simard, D. Steinkraus, J. C. Platt, Proceedings of Seventh International Conference
on Document Analysis and Recognition (2003), pp. 958–963.

9

Figure from (Hinton and Salakhutdinov, 2006)

Outline

• Motivation
• Deep Neural Networks (DNNs)

– Background: Decision functions
– Background: Neural Networks
– Three ideas for training a DNN
– Experiments: MNIST digit classification

• Deep Belief Networks (DBNs)
– Sigmoid Belief Network
– Contrastive Divergence learning
– Restricted Boltzman Machines (RBMs)
– RBMs as infinitely deep Sigmoid Belief Nets
– Learning DBNs

• Deep Boltzman Machines (DBMs)
– Boltzman Machines
– Learning Boltzman Machines
– Learning DBMs

75

Deep Boltzman
Machines

• DBNs are a
hybrid
directed/undi
rected
graphical
model

• DBMs are a
purely
undirected
graphical
model

76

DBMs
Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Deep Boltzman
Machines

Can we use the same
techniques to train a DBM?

77

DBMs
Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Learning Standard
Boltzman Machines

• Undirected graphical
model of binary
variables with
pairwise potentials

• Parameterization of
the potentials:

78

DBMs

�ij(xi, xj) =

exp(xiWijxj)

(In English: higher value of
parameter Wij leads to higher
correlation between Xi and Xj on
value 1)

Xi X1 X1

Xj

X1 X1

Learning Standard
Boltzman Machines

79

DBMs

X1 X1

X1 X1

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
⊤
Lv −

1

2
h
⊤
Jh− v

⊤
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
⊤
Lv −

1

2
h
⊤
Jh− v

⊤
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
⊤
Lv −

1

2
h
⊤
Jh− v

⊤
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Visible units:

Hidden units:

Likelihood:

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
⊤
Lv −

1

2
h
⊤
Jh− v

⊤
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Learning Standard
Boltzman Machines

80

DBMs

X1 X1

X1 X1

Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Full conditionals for Gibbs sampler:

Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Delta updates to each of model parameters:

(Old) idea from Hinton & Sejnowski (1983): For each
iteration of optimization, run a separate MCMC chain
for each of the data and model expectations to
approximate the parameter updates.

Learning Standard
Boltzman Machines

81

DBMs

X1 X1

X1 X1

Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Full conditionals for Gibbs sampler:

Delta updates to each of model parameters:

(Old) idea from Hinton & Sejnowski (1983): For each
iteration of optimization, run a separate MCMC chain
for each of the data and model expectations to
approximate the parameter updates.

But it doesn’t work
very well!

The MCMC chains
take too long to mix
– especially for the
data distribution.

�W = �
��

vhT
�
v�D,h�p(h|v)

�
�
vhT

�
v,h�p(h,v)

�

�L = �
��

vvT
�
v�D,h�p(h|v)

�
�
vvT

�
v,h�p(h,v)

�

�J = �
��

hhT
�
v�D,h�p(h|v)

�
�
hhT

�
v,h�p(h,v)

�

Learning Standard
Boltzman Machines

82

DBMs

X1 X1

X1 X1

Delta updates to each of model parameters:

�W = �
��

vhT
�
v�D,h�p(h|v)

�
�
vhT

�
v,h�p(h,v)

�

�L = �
��

vvT
�
v�D,h�p(h|v)

�
�
vvT

�
v,h�p(h,v)

�

�J = �
��

hhT
�
v�D,h�p(h|v)

�
�
hhT

�
v,h�p(h,v)

�

(New) idea from Salakhutinov & Hinton (2009):
• Step 1) Approximate the data distribution by

variational inference.
• Step 2) Approximate the model distribution

with a “persistent” Markov chain (from
iteration to iteration)

83

X1 X1

X1 X1

�W = �
��

vhT
�
v�D,h�p(h|v)

�
�
vhT

�
v,h�p(h,v)

�

�L = �
��

vvT
�
v�D,h�p(h|v)

�
�
vvT

�
v,h�p(h,v)

�

�J = �
��

hhT
�
v�D,h�p(h|v)

�
�
hhT

�
v,h�p(h,v)

�Step 1) Approximate the data distribution…

R. Salakhutdinov and G. Hinton

chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variables p(h|v; θ) for each training vector v, is replaced
by an approximate posterior q(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) + H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

where H(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi where P is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)⊤ −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)⊤

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.

R. Salakhutdinov and G. Hinton

chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variables p(h|v; θ) for each training vector v, is replaced
by an approximate posterior q(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) + H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

where H(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi where P is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)⊤ −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)⊤

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.

R. Salakhutdinov and G. Hinton

chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variables p(h|v; θ) for each training vector v, is replaced
by an approximate posterior q(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) + H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

where H(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi where P is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)⊤ −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)⊤

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.

R. Salakhutdinov and G. Hinton

chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variables p(h|v; θ) for each training vector v, is replaced
by an approximate posterior q(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) + H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

where H(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi where P is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)⊤ −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)⊤

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.

Mean-field approximation: Variational lower-bound of log-likelihood:

Fixed-point equations for variational params:

Learning Standard
Boltzman Machines

DBMs

Delta updates to each of model parameters:

(New) idea from Salakhutinov & Hinton (2009):
• Step 1) Approximate the data distribution by

variational inference.
• Step 2) Approximate the model distribution

with a “persistent” Markov chain (from
iteration to iteration)

84

X1 X1

X1 X1

�W = �
��

vhT
�
v�D,h�p(h|v)

�
�
vhT

�
v,h�p(h,v)

�

�L = �
��

vvT
�
v�D,h�p(h|v)

�
�
vvT

�
v,h�p(h,v)

�

�J = �
��

hhT
�
v�D,h�p(h|v)

�
�
hhT

�
v,h�p(h,v)

�Step 2) Approximate the model distribution…

Why not use variational inference for the model expectation as well?

Learning Standard

Boltzman Machines
DBMs

Delta updates to each of model parameters:

(New) idea from Salakhutinov & Hinton (2009):

• Step 1) Approximate the data distribution by

variational inference.

• Step 2) Approximate the model distribution

with a “persistent” Markov chain (from

iteration to iteration)

Difference of the two mean-field approximated expectations above

would cause learning algorithm to maximize divergence between true

and mean-field distributions.

Persistent CD adds correlations between successive iterations, but not an issue.

Deep Boltzman
Machines

• DBNs are a
hybrid
directed/undi
rected
graphical
model

• DBMs are a
purely
undirected
graphical
model

85

DBMs
Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Learning Deep
Boltzman Machines

Can we use the same
techniques to train a DBM?
I. Pre-train a stack of RBMs in

greedy layerwise fashion
(requires some caution to
avoid double counting)

II. Use those parameters to
initialize two step mean-
field approach to learning
full Boltzman machine (i.e.
the full DBM)

86

DBMs
Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Document Clustering
and Retrieval

Clustering Results
• Goal: cluster related documents
• Figures show projection to 2 dimensions
• Color shows true categories

87

DBMs

Figure from (Salakhutdinov and Hinton, 2009)

First compress all documents to 2 numbers using a type of PCA

Then use different colors for different document categories

 First compress all documents to 2 numbers.

Then use different colors for different document categories

PCA DBN

Course Level Objectives
You should be able to…
1. Formalize new tasks as structured prediction problems.
2. Develop new models by incorporating domain

knowledge about constraints on or interactions
between the outputs

3. Combine deep neural networks and graphical models
4. Identify appropriate inference methods, either exact or

approximate, for a probabilistic graphical model
5. Employ learning algorithms that make the best use of

available data
6. Implement from scratch state-of-the-art approaches to

learning and inference for structured prediction models

88

Q&A

89

