10-418 [10-618 Machine Learning for Structured Data

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Variational Autoencoders
+

Deep Generative Models

Matt Gormley
Lecture 27
Dec. 4, 2019

Reminders

* Final Exam
— Evening Exam
— Thu, Dec. 5 at 6:30pm - 9:00pm

* 618 Final Poster:
— Submission: Tue, Dec. 10 at 11:59pm

— Presentation: Wed, Dec. 11
(time will be announced on Piazza)

FINAL EXAM LOGISTICS

Final Exam

 Time/Location
— Time: Evening Exam
Thu, Dec. 5 at 6:30pm - 9:00pm
— Room: Doherty Hall A302
— Seats: There will be assigned seats. Please arrive early to find yours.
— Please watch Piazza carefully for announcements
* Logistics
— Covered material: Lecture 1 - Lecture 26
(not the new material in Lecture 27)

— Format of questions:
* Multiple choice
* True / False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper

— No electronic devices
— You are allowed to bring one 8% x 11 sheet of notes (front and back)

Final Exam

* Advice (for during the exam)

— Solve the easy problems first
(e.g. multiple choice before derivations)

* if a problem seems extremely complicated you’re likely
missing something
— Don’t leave any answer blank!
— If you make an assumption, write it down

— If you look at a question and don’t know the
danswer:
* we probably haven’t told you the answer
* but we’ve told you enough to work it out
* imagine arguing for some answer and see if you like it

Final Exam

e Exam Contents

— ~30% of material comes from topics covered
before Midterm Exam

— ~70% of material comes from topics covered
after Midterm Exam

Topics from before Midterm Exam

e Search-Based Structured
Prediction

Reductions to Binary
Classification

Learning to Search
RNN-LMs
seq2seq models

* Graphical Model
Representation

Directed GMs vs.
Undirected GMs vs.
Factor Graphs

Bayesian Networks vs.
Markov Random Fields vs.
Conditional Random Fields

* Graphical Model Learning

Fully observed Bayesian
Network learning

Fully observed MRF learning
Fully observed CRF learning
Parameterization of a GM
Neural potential functions

e Exact Inference

Three inference problems:
(1) marginals
Ezg partition function
3) most probably assignment

— Variable Elimination

Belief Propagation (sum-
product and max-product)

MAP Inference via MILP

10

Topics from after Midterm Exam

Learning for Structure
Prediction

— Structured Perceptron

— Structured SVM

— Neural network potentials

Approximate MAP Inference
— MAP Inference via MILP
— MAP Inference via LP
relaxation
Approximate Inference by
Sampling
— Monte Carlo Methods
— Gibbs Sampling
— Metropolis-Hastings
— Markov Chains and MCMC

* Approximate Inference by
Optimization
— Variational Inference

— Mean Field Variational
Inference

— Coordinate Ascent V.I. (CAVI)
— Variational EM
— Variational Bayes
* Bayesian Nonparametrics
— Dirichlet Process
— DP Mixture Model

+Deep-Generative Meodels
\ariational A |

11

VARIATIONAL EM

Variational EM

Whiteboard
— Example: Unsupervised POS Tagging
— Variational Bayes
— Variational EM

Unsupervised POS Tagging

Bayesian Inference for HMMs
* Task: unsupervised POS tagging
« Data: 1 million words (i.e. unlabeled sentences) of WSJ text
* Dictionary: defines legal part-of-speech (POS) tags for each word type
* Models:
— EM: standard HMM
— VB: uncollapsed variational Bayesian HMM
— Algo 1(CVB): collapsed variational Bayesian HMM (strong indep. assumption)

— Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
— CGS: collapsed Gibbs Sampler for Bayesian HMM

. Ega)Cral T8 Ba@o[C W+ o BoelCpl,]+ a+Eeeold(zi1 =k = 241)]
. 2= k) o 4q W . t—1, . 241
Algo 1 mean field update: ¢z =% Eyu)[Cil] T WB Eyuo)lCol, |+ Ko Eypo)[Cil] + Ko+ Eygo[0(zet = k)]

C;ﬁl)"‘ﬁ ct k+()é .Cﬁt +O¢+(5(zt_1:k:zt+1)

k,z¢41

11 o _ —t D)
CGS full conditional: p(z =kix,27,0,8) CWE O TR T Rat i =0

Figure from Wang & Blunsom (2013)

Unsupervised POS Tagging

Bayesian Inference for HMMs
* Task: unsupervised POS tagging
« Data: 1 million words (i.e. unlabeled sentences) of WSJ text
* Dictionary: defines legal part-of-speech (POS) tags for each word type
* Models:
— EM: standard HMM
— VB: uncollapsed variational Bayesian HMM
— Algo 1(CVB): collapsed variational Bayesian HMM (strong indep. assumption)

— Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
— CGS: collapsed Gibbs Sampler for Bayesian HMM

Number of lterations gICGS) Number of Iterations (CGS)
400 4,000 8,000 12,000 16,000 20,000 0 4,000 8,000 12,000 16,000 20,000
1,500¢
1,400
=
'£><, 1,300¢ -
$ 1,200\ & &
a 5 |
g 1,1007 g | -o-EM (28mins)
¥ 1,000¢ 0.7 -4-VB (35mins)
900" -*-Algo 1 (15mins
0.65¢} Algo 2 (50mins) -
800y 1 = CGS (480mins)
10 2 30 40 50 0 10 20 30 40 50
Number of lterations (Variational Algorithms) Number of Iterations (Variational Algorithms)

Figure from Wang & Blunsom (2013)

Unsupervised POS Tagging

Bayesian Inference for HMMs
* Task: unsupervised POS tagging
« Data: 1 million words (i.e. unlabeled sentences) of WSJ text
* Dictionary: defines legal part-of-speech (POS) tags for each word type
* Models:
— EM: standard HMM
— VB: uncollapsed variational Bayesian HMM
— Algo 1(CVB): collapsed variational Bayesian HMM (strong indep. assumption)

— Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
— CGS: collapsed Gibbs Sampler for Bayesian HMM

Speed:

* EM s slow b/c of log-space computations
* VB is slow b/c of digamma computations

-©-EM (28mins)

“VB (35mins). * Algo 1(CVB)is the fastest!
—“Algo 1 (15mins) . Algo 2 (CVB) is slow b/c it computes dynamic
Algo 2 (50mins) parameters

= CGS (480mins)| * CGS:an order of magnitude slower than any
\ \ deterministic algorithm

Figure from Wang & Blunsom (2013)

Stochastic Variational Bayesian HMM

Task: Human Chromatin
Segmentation

Goal: unsupervised —
segmentation of the genome —
Data: from ENCODE, “250 -
million observations consisting =~

of twelve assays carried out in
the chronic myeloid leukemia
cell line K562”

Metric: “the false discovery
rate (FDR) of predicting active
promoter elements in the

T

)

Hattas G

[RPRRTRPTT I * TP S TR VU TR~ RO TR W ¥ TP

Al A
-

.

MA_.MJ_.“ML_A.J._¢ TR -]
.L.AAALL.._.L_A_.J‘L-. .A__ALA,LALL“MA‘A-“L
PSR) PP | WP SORVRpTY RO "SR VIV T T N | Y W

.:._l... J.-.l_.-AJ‘..Al. ...u—a.uu.hl -~ .L_.ﬂ-l-.l LJ ...4....1...4.:.&...“

- - H—H—t -
™CO? DwSTEM coasa

,;-L‘....L -

L

Figure from Foti et al. (2014)

sequence" . i o —
Models: 1.0- g z f:g’ T)v(v)?fuffer
— DBN HMM: dynamic Bayesian 057 / 3 § g on
HMM trained with standard EM = %57 2;_4_5_ ____ | <
- : i iati 075+ D S-60- [= =g
nference for aBayesn M. i\ B Enl | HE:
Main Takeaway: Zzz \KN‘ I::/ | | g o7

the two models perform at
similar levels of FDR

SVIHMM takes one hour
DBNHMM takes days

T T T T
0 20 40 60
Iteration

! | T T T T T T T
10 100 0 20 40 60 0 20 40 60
L/2 (log-scale)

1

Figure from Mammana & Chung (2015)

17

Grammar Induction

Question: Can maximizing (unsupervised) marginal
likelihood produce useful results?

Answer: Let’s look at an example...

 Babies learn the syntax of their native language (e.g.
English) just by hearing many sentences

* Can a computer similarly learn syntax of a human
language just by looking at lots of example
sentences?

— This is the problem of Grammar Induction!

— It’s an unsupervised learning problem

— We try to recover the syntactic structure for each
sentence without any supervision

Grammar Induction

T

time flies like an arrow

V)ACW

time flies like an arrow

LA~ TN

time flies like an arrow

No semantic
interpretation

time flies like an arrow

Grammar Induction

Training Data: Sentences only, without parses

@ ® 6
e @

} o

| x®
| ox®
| ox®

® © &

Test Data: Sentences with parses, so we can evaluate accuracy

Grammar Induction

Q: Does likelihood

i Dependency Model with Valence (Kiein & Manning, 2004)
correlate with

accuracy on a task l
we care about? . +
o2 50; Pearson’s r = 0.63 .
> (strong correlation) P
° 1] + . +
A: Yes, but there is S o
stilla widerange ¢ e Lt
of accuracies fora ¢ T e
particular £V o, W
likelihood value 9 i 5 "
20 - '
10 ‘ ‘ ‘ ‘ ‘ ‘ ‘
-20.2 -20 -19.8 -19.6 -194 -19.2 -19

Log-Likelihood (per sentence)

Figure from Gimpel & Smith (NAACL 2012) - slides

Figures from Cohen et al. (2009)

Grammar Induction

Graphical Model for Logistic Settings:
Normal PrObabiliStic Grammar EM Maximum likelihood estimate of @ using the EM algorithm to optimize p(x | 8) [14].

O\ EM-MAP Maximum a posteriori estimate of 8 using the EM algorithm and a fixed sym-
Y metric Dirichlet prior with o > 1 to optimize p(x,60 | o). Tune « to maximize the
% :O—>© —>©—>© likelihood of an unannotated development dataset, using grid search over [1.1, 30].
O/ i b x Y x N VB-Dirichlet Use variational Bayes inference to estimate the posterior distribution p(6 |

#y K x,a), which is a Dirichlet. Tune the symmetric Dirichlet prior’s parameter « to

maximize the likelihood of an unannotated development dataset, using grid search
over [0.0001, 30]. Use the mean of the posterior Dirichlet as a point estimate for 6.

y = syntactic parse
VB-EM-Dirichlet Use variational Bayes EM to optimize p(x | a) with respect to a.. Use
X = Observed sentence the mean of the learned Dirichlet as a point estimate for € (similar to [5]).

VB-EM-Log-Normal Use variational Bayes EM to optimize p(x | p,X) with respect to
p and X. Use the (exponentiated) mean of this Gaussian as a point estimate for 6.

attachment accuracy (%)
Results: Viterbi decoding MBR decoding
x| <10 [|x] <20 all |x/<10 |x[<20 all
Attach-Right 38.4 33.4 | 31.7 38.4 33.4 | 31.7
EM 45.8 39.1 | 34.2 46.1 39.9 | 359
EM-MAP, a = 1.1 45.9 39.5 | 349 46.2 40.6 | 36.7
VB-Dirichlet, a = 0.25 46.9 40.0 | 35.7 47.1 41.1 | 37.6
VB-EM-Dirichlet 45.9 39.4 | 349 46.1 40.6 | 36.9
VB-EM-Log-Normal, 3\ = 1 56.6 433 | 374 59.1 45.9 | 39.9
VB-EM-Log-Normal, families 59.3 45.1 | 39.0 59.4 45.9 | 40.5

Table 1: Attachment accuracy of different learning methods on unseen test data from the
Penn Treebank of varying levels of difficulty imposed through a length filter. Attach-Right
attaches each word to the word on its right and the last word to $. EM and EM-MAP with

a Dirichlet prior (a > 1) are reproductions of earlier results [14, 18]. 22

AUTOENCODERS

1.

2.

ldea #3: Unsupervised
Pre-training

Idea: (Two Steps)
® Use supervised learning, but pick a better starting point

® Train each level of the model in a greedy way

Unsupervised Pre-training
— Useunlabeled data

— Work bottom-up
Train hidden layer 1. Then fix its parameters.
Train hidden layer 2. Then fix its parameters.

. Train hidden layer n. Then fix its parameters.
Supervised Fine-tuning
— Use labeled data to train following “Idea #1”

— Refine the features by backpropagation so that they become
tuned to the end-task

24

The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

* \What else do we
observe?

* The input!

Output

The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

e \What else do we
observe?

* The input!

This topology defines an
Auto-encoder.

Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
— X’ is the reconstruction of x

— Loss = || x - DECODER(ENCODER(x)) ||?

— Train with the same backpropagation algorithm for 2-layer
Neural Networks with x., as both input and output.

DECODER: x’ = h(W’z)

ENCODER: z = h(Wx)

Slide adapted from Raman Arora 7

The solution:
Unsupervised pre-training

Unsupervised pre-
training
* Work bottom-up

Train hidden layer 1.
Then fix its parameters.

Train hidden layer 2.
Then fix its parameters.

Train hidden layer n.
Then fix its parameters.

The solution:
Unsupervised pre-training

Unsupervised pre-
training

* Work bottom-up

Train hidden layer 1.
Then fix its parameters.

Train hidden layer 2. e
Then fix its parameters.

Hidden Layer

Train hidden layer n.
Then fix its parameters.

The solution:
Unsupervised pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hidden layer 2. e
Then fix its parameters.

Hidden Layer

— Train hidden layer n.
Then fix its parameters.

The solution:
Unsupervised pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hiddenlayer2. e iayer
Then fix its parameters.

Hidden Layer

— Train hidden layern. rideniayer
Then fix its parameters.

Supervised fine-tuning
Backprop and update all "
parameters

Deep Network Training

Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
¥ 15 -
1.0 - | T | |
Shallow Net Idea #1 Idea #2 ldea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) 33

Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
- I
1.0 - : , I L
Shallow Net Idea #1 Idea #2 ldea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) 34

VARIATIONAL AUTOENCODERS

Variational Autoencoders

Whiteboard
— Variational Autoencoder = VAE
— VAE as a Probability Model
— Parameterizing the VAE with Neural Nets
— Variational EM for VAEs

Reparameterization Trick

IX = f(2)IF

KLIN(p(X), 2(XDIIN(0, 1]

Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied

Encoder
(®)

1

X

i\
f(z)
i\

Decoder
()

x

only to the right network.

Figure from Doersch (2016)

[S»ample 2 from .\i';n :\'), ©(.

I1X - f()°

KLIN (p(X), B(X))|INV(0, 1]

Encoder

()

1

X

i
J(z)
p

Decoder
("

[Sample ¢ from N(0, [...

37

Z Hu, Z YANG, R Salakhutdinov, E Xing,
“On Unifying Deep Generative Models”, arxiv 1706.00550

(Slides in this section from Eric Xing)

UNIFYING GANS AND VAES

? Generative Adversarial Nets (GANSs):

a Implicit distribution over x ~ pg(x|y)

Pge(T) y =10 (distribution of generated images)
po(@ly) = § 4 ; :
Pdata(®) y = 1. (distribution of real images)

a X~ pg,(x) = x=0Gy(2), z~ p(zly =0)
Zgen Lyer
G
Q X ~ Pgata(X) | 4 p.1 ¢
a the code space of z is degenerated y
a sample directly from data T date

code data/gen

s

39

7 A new formulation

o Rewrite GAN objectives in the "variational-EM" format
a Recap: conventional formulation:

maxg L, = E.ru(-‘.(:).lwp(l?ga(l) [log(1 - D¢(3))] . Ea-vpa.:.(a) [log D¢(z)]
maxg Ly = E.n:&(:)-hﬁziv:ﬂ) [log D¢(::)] : E-"\f}'am(l') "08(1 - D¢(3))]
= Bp=Ca(z). 2~ 2lg=0) llog Dgy(x))
o Rewrite in the new form
a Implicit distribution over x ~ pg(x]y)
x=0Gg(2), z~ plzly) @
a Discriminator distribution gg(y|x)

qs(¥Ix) = go(1 — ylx) (reverse)

maxg Lo = Epz)y)py) [108 90 (y|x)]
maxg Lo = Ep, (x|y)p(y) [log q;(ylm)]

)(Jlm

(mly)

P by g . ..

40

* Interpret x as latent variables
* Interpret generation of x as

7 GANSs vs. Variational EM performing inference over latent

In EVM, we minimize the folliowing:
F(O.¢:x) = ~hog p(x) + KL (qg(z1x) || palzix))

Variational EM GAN b KL (inference modet | posterior)
a2 Objectives o Objectives
WOLQ,O = Eq.(:lx)"(’g palx|z)] + KL (q,(zlx)llp(z)) maXe C¢ = Ep.(alv)p(ﬂ [logqn[.'/'a’)]
maxgLyg = Eg o0 |10 po(x]2)] + KL (qo(zlx)llp(z)) maXe Lo = Ep, elyip(y [Jog o5 (u2)]
o Single objective for both # and ¢ o Two objectives
a Extra pricr regularization by p(z) a Have global optimal state in the game
a The reconstruction term: maximize the theoretic view
conditional log-likelihood of x with the a The objectives: maximize the conditional
generative distribution pg(x|2z) log-likelihood of y {or 1 — y) with the
conditioning on the |alent code 2z inferred distribution g4 (y|x) conditioning on
by 94 (zlx) = data/generation x inferred by pe(x|y)

o pe(x|2) is the generative model a Interpret g4(y|x) as the generative model
3 ga(zlx) is the inference model a Interpret pe(x|y) as the inference-mode -

41

V GANs vs VAEs side by side

pelz, ylx) « paixiz, y)plzlyiply)

GANSs (InfoGAN) VAEs
Generative o [palx®) y=0 - {m(zlz) y="0
distribution m(mly) ; {pdala(z) y= 1. Po(|z.y) = Pdata(X) ¥y =L
Dc"?:t't‘i';“""“z‘:‘ G (¥1%) q.(y|x), perfect, degenerated
el q,(z|x,y) of InfoGAN I (zlx.y)
s ming KL (pg(x1y) || 4" (x|2.¥)) | mingKL (g, (zlx. y)q! (v1x) || pg (2. y1x)]
minimize
~mingKL(Pg || Q) ~mingKL(Q || Pg)

P by g . .

42

7 GANs vs VAEs side by side

GANSs (InfoGAN) VAEs
KLD to ming KL (pg(x|y) || ¢"(x12,y)) |mingKL(g,(zlx,y)q7 (¥|x) || pe(z. ¥|x))
minimize ~mingKL(Pg || Q) ~mingKL(Q || Pg)

« Asymmetry of KLDs inspires combination of GANs and VAEs
» GANs: mingKL(Py||Q) tends to missing mode
« VAES: mingKL(Q]|Pg) tends 1o cover regions with small values of pyata

b by g e ——— -

[Figure courtesy: PRML)

DEEP GENERATIVE MODELS

Question:

How does this relate to
Graphical Models?

The first “Deep Learning” papers in 2006 were
innovations in training a particular flavor of
Belief Network.

Those models happen to also be neural nets.

DBNs MNIST Digit Generation

* This section: Suppose you
want to build a

. o 0 ¢ OO0 0 0 0 9
generative model AR A
capable of explaining 272 72 9% 37 9L 222
handwritten digits 274y 21333 %2

e Goal: YU 4 ¢ v 4 a8 4 4 4 |

— To have a model p(x) ¢ E & RS L FXF

. G & &6 4§ 6§ b £t o 6 §

from which we can 2797779771
sample digits that look

realistic F &8 8 © 8 3 ¥ § & €

¥ 92 2 5 97T ¢ 9 % 1

— Learn unsupervised
hidden representation of
an image

Figure from (Hinton et al., 2006)

Sigmoid Belief Networks

DBNSs

the conditional probabilities:

binary variables in fully
p(x;|parents(x;)) =

connected layers
* Only bottom layer is observed

* Directed graphical model of
* Specific parameterization of

47

Figure from Marcus Frean, MLSS Tutorial 2010

Contrastive Divergence

DBNs N
Training

Contrastive Divergence is a general tool for learning a
generative distribution, where the derivative of the log partition
function is intractable to compute.

log L = log P(D)
= Z log P(v)

veD

=Y log (P*(v)/Z)

veD

= Z (log P*(v) — logZ)

veD

1
x N;log})*(v) — logZ

Slide from Marcus Frean, MLSS Tutorial 2010

Contrastive Divergence
Training

—ZZPh\V logP*() — ZP(Vah) ai}]ogp*()

VED h v,h
data av. over postenor av. over joint Contrastive

Divergence estimates

the second term with
Both terms involve averaging over -2 log P*(x). a Monte Carlo

estimate from 1-step

Another way to write it: of a Gibbs sampler!

<a% log P*(X)> — <8% log P*(X)>
veD, h~P(h|v) x~P(x)
clamped / wake phase unclamped / sleep / free phase
777 conditioned hypotheses 1]] random fantasies

Slide from Marcus Frean, MLSS Tutorial 2010

Contrastive Divergence

DBNs N
Training

For a belief net the joint is automatically normalised: 7 is a constant 1

@ 2nd term is zero!

: L ., Olog L
@ for the weight w;; from 7 into 7, the gradient Sl

8w¢j (%‘ — pz‘)%’

@ stochastic gradient ascent:

sz‘j 0.6 Exz—pz)xﬁ

-~

the "delta rule”

So this is a stochastic version of the EM algorithm, that you may have
heard of. We iterate the following two steps:

get samples from the posterior

M step: apply the learning rule that makes them more likely

Slide from Marcus Frean, MLSS Tutorial 2010

DBNs Sigmoid Belief Networks

* In practice, applying CD to

a Deep Sigmoid Belief _
Nets fails

* Sampling from the
posterior of many (deep)
hidden layers doesn’t weights
approach the equilibrium
distribution quickly
enough el

biases

51

Figure from Marcus Frean, MLSS Tutorial 2010

DBNSs Boltzman Machines

* Undirected graphical
model of binary
variables with
pairwise potentials

e Parameterization of
the potentials:

Vij(zi,) =
exp(xiWijxj)

(In English: higher value of
parameter W; leads to higher
correlation between X; and X; on
value 1)

Restricted Boltzman

DBNs .
Machines

@ Assume visible units are one layer, and hidden units are another.
@ Throw out all the connections within each layer.

. A 4B 4B A 4 A A B
hidden € O YO) Ci)
\ | | J | J \ ,I { J |‘) | y) l /

.__ . | '41_ ‘\.‘ '/_') ~ o '.‘-5-,_7 S ""‘_ i

\ *'\"‘*" 'o'Id Welght Wi

o \ \,N),;\/\f,u factor: ox])(Ui Wi /l.j)
visible | 1 VO) (i)
N = &y O &Y

OthLhk|V

@ the posterior P(h | v) factors
c.f. in a belief net, the prior P(h) factors

@ no explaining away

53
Slide from Marcus Frean, MLSS Tutorial 2010

Restricted Boltzman

DBNs .
Machines

Alternating Gibbs sampling

Since none of the units within a layer are interconnected, we can do Gibbs
sampling by updating the whole layer at a time.

hidden l:-) :’ ‘-' ..:' ':., \ ':y j ::'/ .')) ':‘,.4 "')
7 X s qe e e
® o0
o/ / _\\;.. o ¢\ B &— «..;'.,Iv = / L
) () visible @5 ()

(with time running from left — right)

Slide from Marcus Frean, MLSS Tutorial 2010 o

Restricted Boltzman

DBNs .
Machines

learning in an RBM

Repeat for all data:
@ start with a training vector on the visible units

@ then alternate between updating all the hidden units in parallel and
updating all the visible units in parallel

Awig = n [(i hy)’ — (v; hy)™]

restricted connectivity is trick #1:

it saves waiting for equilibrium in the clamped phase.

Slide from Marcus Frean, MLSS Tutorial 2010

55

Restricted Boltzman

DBNs .
Machines

trick # 2: curtail the Markov chain during learning

Repeat for all data:
@ start with a training vector on the visible units
@ update all the hidden units in parallel
© update all the visible units in parallel to get a “reconstruction”
@ update the hidden units again

Awij =7 [<'Uz' hj>0 - <vi hj>1 }

This is not following the correct gradient, but works well in practice. Geoff

Hinton calls it learning by “contrastive divergence”.

6
Slide from Marcus Frean, MLSS Tutorial 2010 ’

Deep Belief Networks
(DBNs)

RBMs are equivalent to infinitely deep belief networks
to generate: and so on...

DBNSs

o
Yo
w
Q)
visible layer Yo
Y
sampling from this is the same as sampling Y
from the network on the right.
Y
visible layer

57
Slide from Marcus Frean, MLSS Tutorial 2010

Deep Belief Networks
(DBNs)

RBMs are equivalent to infinitely deep belief networks

DBNSs

and so on...

)
-

:91e48uab 0]

<
“
=
\ WA
s~ A\ 'a
-

MRBM to generate:
visible layer visible layer

@ So when we train an RBM, we’re really training an oo’ deep sigmoid
belief net!
@ It's just that the weights of all layers are tied.

58
Slide from Marcus Frean, MLSS Tutorial 2010

Deep Belief Networks
(DBNs)

Un-tie the weights from layers 2 to infinity

DBNSs

If we freeze the first RBM, and so on
and then train another RBM

atop it, we are untying the w2

weights of layers 2+ in the oo
net (which remain tied
together). W aw

¥ |
L L u L A P XY

UK N
w2 Ne%%
W Yy
i TN //j’ ant
(Z) |//)) |)

visible layer

"untied"
weights

W is
frozen

9
Slide from Marcus Frean, MLSS Tutorial 2010 ’

Deep Belief Networks
(DBNs)

Un-tie the weights from layers 3 to infinity

DBNSs

and ditto for the 3rd layer... and so on..

Slide from Marcus Frean, MLSS Tutorial 2010

60

Deep Belief Networks
(DBNs)

fine-tuning with the wake-sleep algorithm

DBNSs

So far, the up and down weights have been symmetric, as required by the
Boltzmann machine learning algorithm. And we didn’t change the lower
levels after “freezing” them.

@ wake: do a bottom-up pass, starting with a pattern from the training

set. Use the delta rule to make this more likely under the generative
model.

@ sleep: do a top-down pass, starting from an equilibrium sample from
the top RBM. Use the delta rule to make this more likely under the
recognition model.

[CD version: start top RBM at the sample from the wake phase, and don’t
wait for equilibrium before doing the top-down pass].

wake-sleep learning algorithm
unties the recognition weights from the generative ones

Slide from Marcus Frean, MLSS Tutorial 2010

61

Unsupervised Learning
of DBNs

Setting A: DBN Autoencoder

. Pre-train a stack of RBMs in
greedy layerwise fashion

II. Unroll the RBMs to create
an autoencoder (i.e.
bottom-up and top-down
weights are untied)

lll. Fine-tune the parameters
using backpropagation

DBNSs

Figure from (Hinton & Salakhutinov, 2006)

DBNSs

Unsupervised Learning

of DBNs

Setting A: DBN Autoencoder

greedy layerwise fashion

.
an autoencoder (i.e.
bottom-up and top-down
weights are untied)

Fine-tune the parameters
using backpropagation

Figure from (Hinton & Salakhutinov, 2006)

. Pre-train a stack of RBMs in

Unroll the RBMs to create

Pretraining

63

DBNSs

Unsupervised Learning

of DBNs

Setting A: DBN Autoencoder

. Pre-train a stack of RBMs in

greedy layerwise fashion

II. Unroll the RBMs to create
an autoencoder (i.e.
bottom-up and top-down
weights are untied)

lll. Fine-tune the parameters
using backpropagation

Figure from (Hinton & Salakhutinov, 2006)

Unrolling

64

Unsupervised Learning
of DBNs

Setting A: DBN Autoencoder

. Pre-train a stack of RBMs in
greedy layerwise fashion

II. Unroll the RBMs to create
an autoencoder (i.e.
bottom-up and top-down
weights are untied)

lll. Fine-tune the parameters |
using backpropagation

DBNSs

Fine-tuning

Figure from (Hinton & Salakhutinov, 2006)

65

Supervised Learning

DBN
y of DBN

Setting B: DBN classifier

l. Pre-train a stack of RBMs
in greedy layerwise
fashion (unsupervised)

ll. Fine-tune the parameters
using backpropagation by
minimizing classification
error on the training data

Figure from (Hinton & Salakhutinov, 2006)

real
data

30-D
deep auto

30-D logistic
PCA

30-D
PCA

* Comparison of deep autoencoder, logistic PCA, and PCA
* Each method projects the real data down to a vector of
30 real numbers

e Then reconstructs the data from the low-dimensional
projection

Learning Deep Belief
Networks (DBNs)

Setting B: DBN Autoencoder

. Pre-train a stack of RBMs in
greedy layerwise fashion

II. Unroll the RBMs to create
an autoencoder (i.e.
bottom-up and top-down
weights are untied)

lll. Fine-tune the parameters
using backpropagation

DBNSs

Figure from (Hinton & Salakhutinov, 2006)

DBNs MNIST Digit Generation

* This section: Suppose you
want to build a

. o o ¢ 000 0 6 0 92
generative model AR A
capable of explaining 272 72 9% 37 9L 222
handwritten digits 274y 21333 %2

e Goal: YU 4 ¢ v 4 a8 4 4 4 |

— To have a model p(x) ’2 ; f j' 2’- Z Z J ‘Z 5;

from which we can B G5 G _‘7’ = &
sample digits that look

realistic F &8 8 © 8 3 ¥ § & €

¥ 92 2 5 97T ¢ 9 % 1

— Learn unsupervised
h i d d e n r e p r e S e n t a t i O n Of Figure 8: Each row shows 10 samples from the generative model with a particu-

lar label clamped on. The top-level associative memory is run for 1000 iterations

a n i m a g e of alternating Gibbs sampling between samples.
Samples from a DBN trained on MNIST

Figure from (Hinton et al., 2006)

DBNs MNIST Digit Recognition

Examples of correctly recognized handwritten digits

that the neural network had never seen before
Experimental

evaluation of) 0 <, 1 k (A & l‘ 2

DBN with
greedy layer-

N D232 A25>7

training and
fine-tuning

oo < 346 494494046559
e £ 772\ 7T 14379

algorithm
Its very

D8 T3 4U94gd7T g

Slide from Hinton, NIPS Tutorial 2007

70

DBNs MNIST Digit Recognition

How well does it discriminate on MNIST test set with

no extra information about geometric distortions?
Experimental

evaluat.ion of - Generative model based on RBM'’s 1.25%
[g)ili(;’;ﬁ:yer_ » Support Vector Machine (Decoste et. al.) 1.4%
wise pre- « Backprop with 1000 hiddens (Platt) ~1.6%
training and » Backprop with 500 -->300 hiddens ~1.6%
fine-tuning « K-Nearest Neighbor ~ 3.3%
via the wake- « See Le Cun et. al. 1998 for more results

sleep

algorithm

* Its better than backprop and much more neurally plausible
because the neurons only need to send one kind of signal,
and the teacher can be another sensory input.

71
Slide from Hinton, NIPS Tutorial 2007

Document Clustering

DBNSs :
and Retrieval
output
2000 reconstructed counts | yector
| .
500 NEUrons « We ftrain the neural |
= network to reproduce its

iInput vector as its output

250 neurons _ _
« This forces it to

] compress as much
10 information as possible
T Into the 10 numbers in

the central bottleneck.
e These 10 numbers are

250 neurons

| then a good way to
500 neurons compare documents.
t input
2000 word counts e

Slide from Hinton, NIPS Tutorial 2007

Document Clustering

DBNs .
and Retrieval

Performance of the autoencoder at
document retrieval

« Train on bags of 2000 words for 400,000 training cases
of business documents.

— First train a stack of RBM’s. Then fine-tune with
backprop.
« Test on a separate 400,000 documents.
— Pick one test document as a query. Rank order all the

other test documents by using the cosine of the angle
between codes.

— Repeat this using each of the 400,000 test documents
as the query (requires 0.16 trillion comparisons).

* Plot the number of retrieved documents against the
proportion that are in the same hand-labeled class as the
query document.

73
Slide from Hinton, NIPS Tutorial 2007

Document Clustering

DBNs .
and Retrieval

20 Newsgroup Dataset

067 o AutoencodertoD
os5f
04 LLE10D
3| o
é G 8*
203 *@f-* e NG
LSA10D \zo.,*
@~
0.2F o
o1
0

| | | | | | | | | | | | |
1 3 7 15 31 63 127 255 511 1023 2047 4095 7531
Number of Retrieved Documents

74

Figure from (Hinton and Salakhutdinov, 2006)

Outline

* Deep Boltzman Machines (DBMs)
— Boltzman Machines
— Learning Boltzman Machines
— Learning DBMs

Deep Boltzman

DBMs .
Machines

* DBNsarea
hybrid Deep Belief Deep Boltzmann

directed/undi Network Machine

rected
graphical
model
 DBMs are a
purely
undirected
graphical
model

Deep Boltzman

DBMs .
Machines

Deep Boltzmann
Machine

Can we use the same
techniques to train a DBM?

Learning Standard

DBMs .
Boltzman Machines

* Undirected graphical
model of binary
variables with
pairwise potentials

e Parameterization of
the potentials:

Vij(zi,) =
exp(xiWijxj)

(In English: higher value of
parameter W; leads to higher
correlation between X; and X; on
value 1)

Learning Standard

Boltzman Machines

DBMs
Visibleunits: v ¢ {0,1}P
Hiddenunits: h € {0,1}F
Likelihood:
E(v,h;0) = —%VTLV— 5hTJh v Wh,
DRV
p(v;6) = Z(Zexp E(v,b;0)),

zzexp

O

Learning Standard
Boltzman Machines
(Old) idea from Hinton & Sejnowski (1983): For each
iteration of optimization, run a separate MCMC chain O

for each of the data and model expectations to
approximate the parameter updates.

DBMs

Delta updates to each of model parameters:

AW — o (Epdata Vh—l_] EP model [hT]) ?
AL — o (Epdata VV] o EPrnodel [VVT]))
AJ - (Epdata hh—l—] o EPmodel [hh—r]) ?

Full conditionals for Gibbs sampler:

D P
plhy =1v,h) =a (> Wyvi+ > Jimhj),

i=1 m—l\j

p(v; =1h,v_;) = ZWZ]h + Z Lkvj

k=1\1

Learning Standard

DBMs .
Boltzman Machines

(Old) idea from Hinton & Sejnowski (1983): For each ——
iteration of optimization, run a separate MCMC chain CEU’C it doesn’t work
for each of the data and model expectations to very well!

approximate the parameter updates.
The MCMC chains

take too long to mix

T T _ .
Q (<vh >v€D,th(h|V) — <vh >V,h~p(h,v)> especially for the

data distribution.
_ T T
AL = « (<VV >v6D,h~p(h|v) —(vv >v,h~p(h,v))

\ |
AJ = o ((hh")

Delta updates to each of model parameters:

AW

veD,h~p(h|v) <hhT>v,th(h,v))

Full conditionals for Gibbs sampler:

D
plhy = 1k = o (3 Wonit Y Ty

=1 ml\J

p(v; =1h,v_;) = Zth + Z szvj
k=1\1

Learning Standard
Boltzman Machines

(New) idea from Salakhutinov & Hinton (2009): O

DBMs

* Step 1) Approximate the data distribution by
variational inference.

Approximate the model distribution
with a “persistent” Markov chain (from
iteration to iteration)

Delta updates to each of model parameters:

AW =« (<VhT>veD,h~p(h|V) B <VhT>V>hNP(h"’>)
AL =« (<VVT>v€D,h~p(h|V) B <VVT>"’th(h’V))
AJ =« (<hhT>v€D,hNP(h|V) B <hhT>V’th(h’V))

DBMs

Learning Standard

Boltzman Machines

(New) idea from Salakhutinov & Hinton (2009):
* Step 1) Approximate the data distribution by
variational inference.

Approximate the model distribution
with a “persistent” Markov chain (from
iteration to iteration)

Delta updates to each of model parameters:

AW = a (<VhT>veD,h~p(h|V) a <VhT>V’th(h’v)>

/ . . = \

Step 1) Approximate the data distribution...

O

Mean-field approximation: Variational lower-bound of log-likelihood:

g(h;p) = [T, q(hs) mp(vit) > Y q(hlvi) np(v.h:) + H(g

q(hi — 1) = U Fixed-point equations for variational params:

My < J(Z Wijvi + Z ij:um)

m\j

Learning Standard
Boltzman Machines

(New) idea from Salakhutinov & Hinton (2009):
* Step 1) Approximate the data distribution by Q
variational inference.
Approximate the model distribution
with a “persistent” Markov chain (from

iteration to iteration)
Delta updates to each of model parameters:

AW =a (<VhT>v€D,h~p(h|v) N <VhT>v,th(h,v)>

/ . _ — \

Step 2) Approximate the model distribution...

DBMs

Why not use variational inference for the model expectation as well?
Difference of the two mean-field approximated expectations above
would cause learning algorithm to maximize divergence between true

and mean-field distributions.

Persistent CD adds correlations between successive iterations, but not an issue.

Deep Boltzman

DBMs .
Machines

* DBNsarea
hybrid Deep Belief Deep Boltzmann

directed/undi Network Machine

rected
graphical
model
 DBMs are a
purely
undirected
graphical
model

Learning Deep

DBMs :
Boltzman Machines

Can we use the same

techniques to train a DBM? Deep Boltzmann
Machine

l. Pre-train a stack of RBMs in
reedy layerwise fashion
requires some caution to

avoid double counting)

Il. Use those parameters to
initialize two step mean-
field approach to learning
full Boltzman machine (i.e.
the full DBM)

Document Clustering

DBMs .
and Retrieval

Clustering Results

* Goal: cluster related documents

* Figures show projection to 2 dimensions
* Color shows true categories

PCA DBN

' ! European Communi ty
it 44 * Interbank Markets Monetary/Economic
\- “n e - N eI
- A AR
Sl B
1By :
.:.v" B nd
o et
o 0§
T LT
) ekt
i T .S
e ot ’?;w
.o
PP
Governmen t
A t Borrowing

Figure from (Salakhutdinov and Hinton, 2009)

87

Course Level Objectives

You should be able to...

1.
2.

W

Formalize new tasks as structured prediction problems.

Develop new models by incorporating domain
knowledge about constraints on or interactions
between the outputs

Combine deep neural networks and graphical models

|dentify appropriate inference methods, either exact or
approximate, for a probabilistic graphical model

Employ learning algorithms that make the best use of
available data

Implement from scratch state-of-the-art approaches to
learning and inference for structured prediction models

Q&A

