10-418 / 10-618 Machine Learning for Structured Data

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Bayesian Nonparametrics

$$
\stackrel{+}{\text { DP / DPMM }}
$$

Matt Gormley

EXAMPLE: K-MEANS \& GMM

Example: K-Means

Example: GMM

Example: GMM

Clustering with GMM ($k=3$, init=random, cov=spherical, iter=10)

Example: GMM

Clustering with GMM ($k=3$, init=random, cov=spherical, iter=11)

Example: GMM

Clustering with GMM ($k=3$, init=random, cov=spherical, iter=12)

Example: GMM

Clustering with GMM ($\mathrm{k}=3$, init=random, cov=spherical, iter=13)

Example: GMM

Clustering with GMM ($k=3$, init=random, cov=spherical, iter=14)

Example: GMM

Clustering with GMM ($\mathrm{k}=3$, init=random, cov=spherical, iter=15)

Example: GMM

Clustering with GMM ($k=3$, init=random, cov=spherical, iter=16)

Example: GMM

Clustering with GMM ($\mathrm{k}=3$, init=random, cov=spherical, iter=17)

Example: GMM

Clustering with GMM ($k=3$, init=random, cov=spherical, iter=18)

Example: GMM

Clustering with GMM ($\mathrm{k}=3$, init=random, cov=spherical, iter=19)

LATENT DIRICHLET ALLOCATION (LDA)

LDA for Topic Modeling

- The generative story begins with only a Dirichlet prior over the topics.
- Each topic is defined as a Multinomial distribution over the vocabulary, parameterized by $\boldsymbol{\phi}_{\mathrm{k}}$

LDA for Topic Modeling

- The generative story begins with only a Dirichlet prior over the topics.
- Each topic is defined as a Multinomial distribution over the vocabulary, parameterized by $\boldsymbol{\phi}_{\mathrm{k}}$

LDA for Topic Modeling

- A topic is visualized as its high probability words.

LDA for Topic Modeling

- A topic is visualized as its high probability words.
- A pedagogical label is used to identify the topic.

LDA for Topic Modeling

- A topic is visualized as its high probability words.
- A pedagogical label is used to identify the topic.

LDA for Topic Modeling

LDA for Topic Modeling

Inference and learning start with only the data

Latent Dirichlet Allocation

- Plate Diagram

Familiar models for unsupervised learning:

1. K-Means
2. Gaussian Mixture Model (GMM)
3. Latent Dirichlet Allocation (LDA)

But without labeled data, how do we know the right number of clusters / topics?

Outline

- Motivation / Applications
- Background
- de Finetti Theorem
- Exchangeability
- Aglommerative and decimative properties of Dirichlet distribution
\square ERP and CRP Mixture Model
- Chinese Restaurant Process (CRP) definition
- Gibbs sampling for CRP-MM
- Expected number of clusters

DP and DP Mixture Model

- Ferguson definition of Dirichlet process (DP)
- Stick breaking construction of DP
_ Uncollapsed blocked Gibbs sampler for DP-MM
- Truncated variational inference for DP-MM
- DP Properties
- Related Models
- Hierarchical Dirichlet process Mixture Models (HDP-MM)
- Infinite HMM
- Infinite PCFG

BAYESIAN NONPARAMETRICS

Parametric vs. Nonparametric

- Parametric models:
- Finite and fixed number of parameters
- Number of parameters is independent of the dataset
- Nonparametric models:
- Have parameters ("infinite dimensional" would be a better name)
- Can be understood as having an infinite number of parameters
- Can be understood as having a random number of parameters
- Number of parameters can grow with the dataset
- Semiparametric models:
- Have a parametric component and a nonparametric component

Parametric vs. Nonparametric

Parametric vs. Nonparametric

Application	Parametric	Nonparametric
function approximation	polynomial regression	Gaussian processes
classification	logistic regression	Gaussian process classifiers
clustering	mixture model, k- means	Dirichlet process mixture model
time series	hidden Markov model	infinite HMM
feature discovery	factor analysis, pPCA, PMF	infinite latent factor models

Parametric vs. Nonparametric

- Def: a model is a collection of distributions

$$
\left\{p_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \widehat{\Theta}\right\}
$$

- parametric model: the parameter vector is finite dimensional

$$
\underline{\Theta} \subset \mathcal{R}^{k}
$$

- nonparametric model: the parameters are from a possibly infinite dimensional space, \mathcal{F}

$$
\Theta \subset \mathcal{F}
$$

Motivation \#1

Model Selection

- For clustering:

How many clusters in a mixture model?

- For topic modeling: How many topics in LDA?
- For grammar induction:

How many nonterminals in a PCFG?

- For visual scene analysis:

How many objects, parts, features?

Motivation \#1

Model Selection

- For clustering:

How many clusters in a mixture model?

- For topic modeling: How many topics in LDA?
- For grammar induction: How many nonterminals in a PCFG?
- For visual scene analysis:

How many objects, parts, features?

Motivation \#1

Model Selection

- For clustering:

How many clusters in a mixture model?

- For topic modeling: How many topics in LDA?
- For grammar induction: How many nonterminals in a PCFG?
- For visual scene analysis: How many objects, parts, features?

1. Parametric approaches: cross-validation, bootstrap, AIC, BIC, DIC, MDL, Laplace, bridge sampling, etc.
2. Nonparametric approach: average of an infinite set of models

Motivation \#2

Density Estimation

- Given data, estimate a probability density function that best explains it
- A nonparametric prior can be placed over an infinite set of distributions

Prior:

Red: mean density. Blue: median density. Grey: 5-95 quantile. Others: draws.

Motivation \#2

Density Estimation

- Given data, estimate a probability density function that best explains it
- A nonparametric prior can be placed over an infinite set of distributions

Posterior:

Red: mean density. Blue: median density. Grey: 5-95 quantile. Black: data. Others: draws.

EXCHANGEABILITY AND DE FINETTI'S THEOREM

Background

Suppose we have a random variable X drawn from some distribution $P_{\theta}(X)$ and X ranges over a set \mathcal{S}.

- Discrete distribution: \mathcal{S} is a countable set.
- Continuous distribution: $P_{\theta}(X=x)=0$ for all $x \in \mathcal{S}$

- Mixed distribution:
\mathcal{S} can be partitioned into two disjoint sets \mathcal{D} and \mathcal{C} s.t.

1. is countable and $0<P_{\theta}(X \in D)<1$
2. $P_{\theta}(X=x)=0$ for all $x \in \mathcal{C}$

Exchangability and de Finetti's Theorem

Exchangeability:

- Def \#1: a joint probability distribution is exchangeable if it is invariant to permutation
- Def \#2: The possibly infinite sequence of random variables ($X_{l}, X_{2}, X_{3}, \ldots$) is exchangeable if for any finite permutation s of the indices $(1,2, \ldots n)$:

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=P\left(X_{s(1)}, X_{s(2)}, \ldots, X_{s(n)}\right)
$$

Notes:

- i.i.d. and exchangeable are not the same!
- the latter says that if our data are reordered it doesn't matter

Exchangability and de Finetti's Theorem

Slide from Jordan

Theorem (De Finetti, 1935). If $\left(x_{1}, x_{2}, \ldots\right)$ are infinitely exchangeable, then the joint probability $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ has a representation as a mixture:

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\int\left(\prod_{i=1}^{N} p\left(x_{i} \mid \theta\right)\right) d P(\theta)
$$

for some random variable θ.

- The theorem wouldn't be true if we limited ourselves to parameters θ ranging over Euclidean vector spaces
- In particular, we need to allow θ to range over measures, in which case $P(\theta)$ is a measure on measures
- the Dirichlet process is an example of a measure on measures...

Actually, this is the Hewitt-Savage generalization of the de Finetti theorem. The original version was given for the Bernoulli distribution

Exchangability and de Finetti's Theorem

Slide from Jordan

- A plate is a "macro" that allows subgraphs to be replicated:

- Note that this is a graphical representation of the De Finetti theorem

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\int p(\theta)\left(\prod_{i=1}^{N} p\left(x_{i} \mid \theta\right)\right) d \theta
$$

Parametric vs. Nonparametric

Type of Model	Parametric Example	Nonparametric Example	
		Construction \#1	Construction \#2
distribution over counts	Dirichlet- Multinomial Model	Dirichlet Process (DP)	
		Chinese Restaurant Process (CRP)	Stick-breaking construction
mixture	Gaussian Mixture Model (GMM)	Dirichlet Process Mixture Model (DPMM)	
		CRP Mixture Model	Stick-breaking construction
admixture	Latent Dirichlet Allocation (LDA)	Hierarchical Dirichlet Process Mixture Model (HDPMM)	
		Chinese Restaurant Franchise	Stick-breaking construction

Chinese Restaurant Process \& Stick-breaking Constructions

DIRICHLET PROCESS

Dirichlet Process

- Parameters of a DP:

1. Base distribution, H, is a probability distribution over Θ
2. Strength parameter, $\alpha \in \mathcal{R}$

- We say $G \sim \operatorname{DP}(\alpha, \bar{H}), \alpha \in \mathcal{R}$ is a distinbotron
if for any partition $\underline{A_{1}} \cup A_{2} \cup \ldots \cup A_{K}=\Theta$
we have:

$$
\frac{\left(G\left(A_{1}\right)\right.}{\pi_{1}}, \ldots, \frac{G\left(A_{K}\right)}{\pi_{2}} \cdots \frac{\text { Dirichlet }}{2}\left(\alpha, \alpha H\left(A_{1}\right), \ldots, \alpha H\left(A_{K}\right)\right)
$$

In English: the DP is a distribution over probability measures s.t. marginals on finite partitions are Dirichlet distributed

A partition of the space Θ

Chinese Restaurant Process

- Imagine a Chinese restaurant with an infinite number of tables
- Each customer enters and sits down at a table
- The first customer sits at the first unoccupied table
- Each subsequent customer chooses a table according to the following probability distribution:
$p\left(k t h\right.$ occupied table) $\propto n_{k}$ p (next unoccupied table) $\alpha \alpha$
there n_{k} is the number of people sitting at the table k
continous
aist.for

mixed

Chinese Restaurant Process

Properties:

1. CRP defines a distribution over clusterings (i.e. partitions) of the indices $1, \ldots . \pi=\#$ af customers

- customer = index
- table = cluster

2. We write $z_{1}, z_{2}, \ldots, z_{n} \sim C R P(\alpha)$ to denote a sequence of cluster indices drawn from a Chinese Restaurant Process
3. The CRP is an exchangeable process
4. Expected number of clusters given n customers (i.e. observations) is $O(\alpha \log (n))$

- rich-get-richer effect on clusters: popular tables tend to get more crowded

5. Behavior of CRP with α :

- As α goes to 0 , the number of clusters goes to 1
- As α goes to $+\infty$, the number of clusters goes to n

Whiteboard

- Stick-breaking construction of the DP

CRP vs. DP

Dirichlet Process: For both the CRP and stickbreaking constructions, if we marginalize out G, we have the following predictive distribution:
$G \sim D P(x, t)$
$\sigma_{0}, \phi_{2}, \ldots \phi_{n} \sim \mathcal{G}^{\theta_{n+1} \mid \theta_{1}, \ldots, \theta_{n} \sim \frac{1}{\alpha+n}\left(\alpha H+\sum_{i=1}^{n} \delta_{\theta_{i}}\right)}$
(Blackwell-MacQueen Urn Scheme)
The Chinese Restaurant Process is just a different construction of the Dirichlet Process where we have marginalized out G

Properties of the DP

1. Base distribution is the "mean" of the DP:

$$
\mathbb{E}[G(A)]=H(A) \text { for any } A \subset \Theta
$$

2. Strength parameter is like "inverse variance"

$$
V[G(A)]=H(A)(1-H(A)) /(\alpha+1)
$$

3. Samples from a DP are discrete distributions (stick-breaking construction of $G \sim \mathrm{DP}(\alpha, H)$ makes this clear)
4. Posterior distribution of $G \sim \mathrm{DP}(\alpha, H)$ given samples $\theta_{l}, \ldots, \theta_{n}$ from G is a DP

$$
G \mid \theta_{1}, \ldots, \theta_{n} \sim \mathrm{DP}\left(\alpha+n, \frac{\alpha}{\alpha+n} H+\frac{n}{\alpha+n} \frac{\sum_{i=1}^{n} \delta_{\theta_{i}}}{n}\right)
$$

DIRICHLET PROCESS MIXTURE MODEL

CRP Mixture Model

- Draw n cluster indices from a CRP:

$$
z_{1}, z_{2}, \ldots, z_{n} \sim \operatorname{CRP}(\alpha)
$$

- For each of the resulting K clusters:

$\theta_{k}{ }^{*} \sim H$

$\Rightarrow \vec{\theta}_{k}^{*}$ sumsto 1

where H is a base đistribution

- Draw n observations:

Customer i orders a dish x_{i}
$x_{i} \sim p\left(x_{i} \mid \theta_{z_{i}}^{*}\right) \quad{ }_{\text {specific }}^{\text {(observait) from a table- }}$ specific distribution over dishes $\theta_{k}{ }^{*}$ (cluster parameters)

CRP Mixture Model

- Draw n cluster indices from a CRP:

$$
z_{1}, z_{2}, \ldots, z_{n} \sim C R P(\alpha)
$$

- For each of the resulting K clusters:
$\theta_{k}{ }^{*} \sim H$
where H is a base distribution
- Draw n observations:

$$
x_{i} \sim p\left(x_{i} \mid \theta_{z_{i}}^{*}\right)
$$

- The Gibbs sampler is easy thanks to exchangeability
- For each observation, we remove the customer / dish from the restaurant and resample as if they were the last to enter
- If we collapse out the parameters, the Gibbs sampler draws from the conditionals:

```
\mp@subsup{z}{i}{}~p(\mp@subsup{z}{i}{}|\mp@subsup{\boldsymbol{z}}{-i}{},\boldsymbol{x})
```


CRP Mixture Model

Overview of 3 Gibbs Samplers for Conjugate Priors

- Alg. 1: (uncollapsed)
- Markov chain state: per-customer parameters $\theta_{1}, \ldots, \theta_{n}$
- For $i=1, \ldots, n$: Draw $\theta_{i} \sim p\left(\theta_{i} \mid \boldsymbol{\theta}_{-i}, \boldsymbol{x}\right)$
- Alg. 2: (uncollapsed)
- Markov chain state: per-customer cluster All the thetas except θ_{i} per-cluster parameters $\theta_{1}^{*}, \ldots, \theta_{k}^{*}$
- For $i=1, \ldots, n$: $\operatorname{Draw} z_{i} \sim p\left(z_{i} \mid \boldsymbol{z}_{-i}, \boldsymbol{x}, \boldsymbol{\theta}^{*}\right)$

$$
z_{1}, \ldots, z_{n}
$$

- Set $K=$ number of clusters in z
- For $k=1, \ldots, K$: Draw $\theta_{k}{ }^{*} \sim p\left(\theta_{k}{ }^{*} \mid \underline{\left\{x_{i}: z_{i}=k\right\}}\right)$
- Alg. 3: (collapsed)
- Markov chain state: per-customer cluster indices z_{1}, \ldots, z_{n}
- For $i=1, \ldots, n$: Draw $z_{i} \sim p\left(z_{i} \mid \boldsymbol{z}_{-i}, \boldsymbol{x}\right)$

CRP Mixture Model

- Q: How can the Alg. 2 Gibbs samplers permit an infinite set of clusters in finite space?
- A: Easy!
- We are only representing a finite number of clusters at a time - those to which the data have been assigned
- We can always bring back the parameters for the "next unoccupied table" if we need them

Whiteboard

- Dirichlet Process Mixture Model (stick-breaking version)

CRP-MM vs. DP-MM

Dirichlet Process: For both the CRP and stickbreaking constructions, if we marginalize out G, we have the following predictive distribution:

$$
\theta_{n+1} \mid \theta_{1}, \ldots, \theta_{n} \sim \frac{1}{\alpha+n}\left(\alpha H+\sum_{i=1}^{n} \delta_{\theta_{i}}\right)
$$

(Blackwell-MacQueen Urn Scheme)
The Chinese Restaurant Process Mixture Model is just a different construction of the Dirichlet Process Mixture Model where we have marginalized out G

Graphical Models for DPMMs

The Pólya urn construction
The Stick-breaking construction

Example: DP Gaussian Mixture Model

Figure 2: The approximate predictive distribution given by variational inference at different stages of the algorithm. The data are 100 points generated by a Gaussian DP mixture model with fixed diagonal covariance.

Example: DP Gaussian Mixture Model

Figure 3: Mean convergence time and standard error across ten data sets per dimension for variational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.

Summary of DP and DP-MM

- DP has many different representations:
- Chinese Restaurant Process
- Stick-breaking construction
- Blackwell-MacQueen Urn Scheme
- Limit of finite mixtures
- etc.
- These representations give rise to a variety of inference techniques for the DP-MM and related models
- Gibbs sampler (CRP)
- Gibbs sampler (stick-breaking)
- Variational inference (stick-breaking)
- etc.

GMM VS. DPMM EXAMPLE

Example: Dataset

Example: GMM

Clustering with $G M M(k=6$, init=random, cov=full, iter=0)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=5)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=10)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=15)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=20)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=25)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=30)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=35)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=39)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=0)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=1)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=2)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=3)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=4)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=5)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=6)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=7)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=8)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=9)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=10)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=11)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=12)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=13)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=14)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=15)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=16)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=17)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=18)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=19)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=20)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=21)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=22)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=23)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=24)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=25)

HIERARCHICAL DIRICHLET PROCESS (HDP)

Related Models

- Hierarchical Dirichlet Process Mixture Model (HDP-MM)
- Infinite HMM
- Infinite PCFG

HDP-MM

- In LDA, we have M independent samples from a Dirichlet' distribution.
- The weights are different, but the topics are fixed to be the same.
- If we replace the Dirichlet distributions with Dirichlet processes, each atom of each Dirichlet process will pick a topic independently of the other topics.
- Because the base measure is continuous, we have zero probability of picking the same topic twice.
- If we want to pick the same topic twice, we need to use a discrete base measure.
- For example, if we chose the base measure to be
$H=\sum_{k=1}^{K} \alpha_{k} \delta_{\beta_{k}}$ then we would have LDA again.
- We want there to be an infinite number of topics, so we want an infinite, discrete base measure.
- We want the location of the topics to be random, so we want an infinite, discrete, random base measure.

HDP-MM

Hierarchical Dirichlet process:

HDP-MM

Figure 6: (Left) Comparison of latent Dirichlet allocation and the hierarchical Dirichlet process mixture. Results are averaged over 10 runs; the error bars are one standard error. (Right) Histogram of the number of topics for the hierarchical Dirichlet process mixture over 100 posterior samples.

HDP-HMM (Infinite HMM)

Number of

 hidden states in Infinite HMM is countably infinite

Figure 9: A hierarchical Bayesian model for the infinite hidden Markov model.

Figure 10: Comparing the infinite hidden Markov model (solid horizontal line) with ML, MAP and VB trained hidden Markov models. The error bars represent one standard error (those for the HDP-HMM are too small to see).

HDP-PCFG (Infinite PCFG)

HDP-PCFG

$\boldsymbol{\beta} \sim \operatorname{GEM}(\alpha) \quad$ [draw top-level symbol weights]
For each grammar symbol $z \in\{1,2, \ldots\}$:

$$
\begin{aligned}
\phi_{z}^{T} & \sim \operatorname{Dirichlet}\left(\alpha^{T}\right) \\
\phi_{z}^{E} & \sim \operatorname{Dirichlet}\left(\alpha^{E}\right) \\
\phi_{z}^{B} & \sim \operatorname{DP}\left(\alpha^{B}, \boldsymbol{\beta} \boldsymbol{\beta}^{T}\right)
\end{aligned}
$$

[draw rule type parameters] [draw emission parameters] [draw binary production parameters]
For each node i in the parse tree:
$t_{i} \sim \operatorname{Multinomial}\left(\phi_{z_{i}}^{T}\right)$
If $t_{i}=$ Emission:
$x_{i} \sim \operatorname{Multinomial}\left(\phi_{z_{i}}^{E}\right)$
[choose rule type]
If $t_{i}=$ BinARY-PRODUCTION:
$\left(z_{L(i)}, z_{R(i)}\right) \sim \operatorname{Multinomial}\left(\phi_{z_{i}}^{B}\right) \quad$ [generate children symbols]
$\beta \sim \operatorname{GEM}(\alpha) \xrightarrow[\text { state }]{|\quad| \quad|\quad| \quad, \quad}$
$\boldsymbol{\beta}^{T} \underbrace{\text { left child state }}_{\text {light child state }}$

Parametric vs. Nonparametric

Type of Model	Parametric Example	Nonparametric Example	
		Construction \#1	Construction \#2
distribution over counts	Dirichlet- Multinomial Model	Diricilet Process (DP)	
		Chinese Restaurant Process (CRP)	Stick-breaking construction
mixture	Gaussian Mixture Model (GMM)	Dirichlet Process M x xture Model (DPMM)	
		CRP Mixture Model	Stick-breaking construction
admixture	Latent Dirichlet Allocation (LDA)	Hierarchical Dirichlet Process Mixture Model (HDPMM)	
		Chinese Restaurant Franchise	Stick-breaking construction

Summary of DP and DP-MM

- DP has many different representations:
- Chinese Restaurant Process
- Stick-breaking construction
- Blackwell-MacQueen Urn Scheme
- Limit of finite mixtures
- etc.
- These representations give rise to a variety of inference techniques for the DP-MM and related models
- Gibbs sampler (CRP)
- Gibbs sampler (stick-breaking)
- Variational inference (stick-breaking)
- etc.

