
Learning Partially Observed
Graphical Models

+
Variational EM

1

10-418 / 10-618 Machine Learning for Structured Data

Matt Gormley
Lecture 25

Nov. 20, 2019

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 4: Topic Modeling
– Out: Wed, Nov. 6
– Due: Mon, Nov. 18 at 11:59pm

• Homework 5: Variational Inference
– Out: Wed, Nov. 20
– Due: Mon, Dec. 2 at 11:59pm

• 618 Midway Poster:
– Submission: Thu, Nov. 21 at 11:59pm
– Presentation: Fri, Nov. 22 or Mon, Nov. 25

3

VARIATIONAL INFERENCE
RESULTS

4

Collapsed Variational Bayesian LDA

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

M

Nm K

xmn

zmn

⇤m

�

⌅k ⇥

Figure 1: The graphical model for the SCTM.

2 SCTM

A Product of Experts (PoE) [1] model p(x|⌅1, . . . ,⌅C) =
QC

c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⌅1, . . . ,⌅C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the

2

Dirichlet

Document-specific
topic distribution

Topic assignment

Observed word

Topic Dirichlet

Approximate with q

• Explicit Variational Inference

Collapsed Variational Bayesian LDA

• Collapsed Variational Inference
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

M

Nm K

xmn

zmn

⇤m

�

⌅k ⇥

Figure 1: The graphical model for the SCTM.

2 SCTM

A Product of Experts (PoE) [1] model p(x|⌅1, . . . ,⌅C) =
QC

c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⌅1, . . . ,⌅C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the

2

Dirichlet

Document-specific
topic distribution

Topic assignment

Observed word

Topic Dirichlet
Integrated out

Approximate with q

Collapsed Variational Bayesian LDA

• First row: test
set per word log
probabilities as
functions of
numbers of
iterations for VB,
CVB and Gibbs.

• Second row:
histograms of
final test set per
word log
probabilities
across 50
random
initializations.

7

0 20 40 60 80 100−9

−8.5

−8

−7.5

Collapsed VB
Standard VB

0 20 40 60 80 100−9

−8.8

−8.6

−8.4

−8.2

−8

−7.8

−7.6

−7.4

Collapsed VB
Standard VB

−7.8 −7.675 −7.550

5

10

15

20
Collapsed VB
Standard VB

−7.65 −7.6 −7.55 −7.5 −7.45 −7.40

5

10

15

20

25

30

35

40
Collapsed VB
Standard VB

0 20 40 60 80 100−7.9

−7.8

−7.7

−7.6

−7.5

−7.4

Collapsed Gibbs
Collapsed VB
Standard VB

0 20 40 60 80 100−7.9

−7.8

−7.7

−7.6

−7.5

−7.4

−7.3

−7.2

Collapsed Gibbs
Collapsed VB
Standard VB

−7.7 −7.65 −7.6 −7.55 −7.5 −7.45 −7.40

5

10

15

20
Collapsed Gibbs
Collapsed VB
Standard VB

−7.5 −7.45 −7.4 −7.35 −7.3 −7.25 −7.20

5

10

15

20

25

30 Collapsed Gibbs
Collapsed VB
Standard VB

Figure 1: Left: results for KOS. Right: results for NIPS. First row: per word variational bounds as functions
of numbers of iterations of VB and CVB. Second row: histograms of converged per word variational bounds
across random initializations for VB and CVB. Third row: test set per word log probabilities as functions
of numbers of iterations for VB, CVB and Gibbs. Fourth row: histograms of final test set per word log
probabilities across 50 random initializations.

Slide from Teh et al (2007)

Data from
dailykos.com

Data from NeurIPS
proceedings

Online Variational Bayes for LDA

8

4096

systems

health

communication

service

billion

language

care

road

8192

service

systems

health

companies

market

communication

company

billion

12288

service

systems

companies

business

company

billion

health

industry

16384

service

companies

systems

business

company

industry

market

billion

32768

business

service

companies

industry

company

management

systems

services

49152

business

service

companies

industry

services

company

management

public

2048

systems

road

made

service

announced

national

west

language

65536

business

industry

service

companies

services

company

management

public

Documents

analyzed

Top eight

words

Documents seen (log scale)

P
e
rp
le
x
it
y

600

650

700

750

800

850

900

10
3.5

10
4

10
4.5

10
5

10
5.5

10
6

10
6.5

Batch 98K

Online 98K

Online 3.3M

Figure 1: Top: Perplexity on held-out Wikipedia documents as a function of number of documents
analyzed, i.e., the number of E steps. Online VB run on 3.3 million unique Wikipedia articles is
compared with online VB run on 98,000 Wikipedia articles and with the batch algorithm run on the
same 98,000 articles. The online algorithms converge much faster than the batch algorithm does.
Bottom: Evolution of a topic about business as online LDA sees more and more documents.

to summarize the latent structure of massive document collections that cannot be annotated by hand.
A central research problem for topic modeling is to efficiently fit models to larger corpora [4, 5].

To this end, we develop an online variational Bayes algorithm for latent Dirichlet allocation (LDA),
one of the simplest topic models and one on which many others are based. Our algorithm is based on
online stochastic optimization, which has been shown to produce good parameter estimates dramat-
ically faster than batch algorithms on large datasets [6]. Online LDA handily analyzes massive col-
lections of documents and, moreover, online LDA need not locally store or collect the documents—
each can arrive in a stream and be discarded after one look.

In the subsequent sections, we derive online LDA and show that it converges to a stationary point
of the variational objective function. We study the performance of online LDA in several ways,
including by fitting a topic model to 3.3M articles from Wikipedia without looking at the same
article twice. We show that online LDA finds topic models as good as or better than those found
with batch VB, and in a fraction of the time (see figure 1). Online variational Bayes is a practical
new method for estimating the posterior of complex hierarchical Bayesian models.

2 Online variational Bayes for latent Dirichlet allocation

Latent Dirichlet Allocation (LDA) [7] is a Bayesian probabilistic model of text documents. It as-
sumes a collection of K “topics.” Each topic defines a multinomial distribution over the vocabulary
and is assumed to have been drawn from a Dirichlet, �k ⇠ Dirichlet(⌘). Given the topics, LDA
assumes the following generative process for each document d. First, draw a distribution over topics
✓d ⇠ Dirichlet(↵). Then, for each word i in the document, draw a topic index zdi 2 {1, . . . ,K}
from the topic weights zdi ⇠ ✓d and draw the observed word wdi from the selected topic, wdi ⇠ �zdi .
For simplicity, we assume symmetric priors on ✓ and �, but this assumption is easy to relax [8].

Note that if we sum over the topic assignments z, then we get p(wdi|✓d,�) =

P

k ✓dk�kw. This
leads to the “multinomial PCA” interpretation of LDA; we can think of LDA as a probabilistic
factorization of the matrix of word counts n (where ndw is the number of times word w appears in
document d) into a matrix of topic weights ✓ and a dictionary of topics � [9]. Our work can thus

2

Figures from Hoffman et al. (2010)

Online Variational Bayes for LDA

9

Algorithm 1 Batch variational Bayes for LDA
Initialize � randomly.
while relative improvement in L(w,�,�,�) > 0.00001 do

E step:
for d = 1 to D do

Initialize �dk = 1. (The constant 1 is arbitrary.)
repeat

Set �dwk / exp{Eq[log ✓dk] + Eq[log �kw]}
Set �dk = ↵+

P

w �dwkndw

until 1

K

P

k |change in�dk| < 0.00001
end for
M step:
Set �kw = ⌘ +

P

d ndw�dwk

end while

2.2 Online variational inference for LDA

Algorithm 1 has constant memory requirements and empirically converges faster than batch col-
lapsed Gibbs sampling [3]. However, it still requires a full pass through the entire corpus each
iteration. It can therefore be slow to apply to very large datasets, and is not naturally suited to set-
tings where new data is constantly arriving. We propose an online variational inference algorithm
for fitting �, the parameters to the variational posterior over the topic distributions �. Our algorithm
is nearly as simple as the batch VB algorithm, but converges much faster for large datasets.

A good setting of the topics � is one for which the ELBO L is as high as possible after fitting the
per-document variational parameters � and � with the E step defined in algorithm 1. Let �(nd,�)
and �(nd,�) be the values of �d and �d produced by the E step. Our goal is to set � to maximize

L(n,�) , P

d `(nd, �(nd,�),�(nd,�),�), (7)

where `(nd, �d,�d,�) is the dth document’s contribution to the variational bound in equation 4.
This is analogous to the goal of least-squares matrix factorization, although the ELBO for LDA is
less convenient to work with than a simple squared loss function such as the one in [10].

Online VB for LDA (“online LDA”) is described in algorithm 2. As the tth vector of word counts
nt is observed, we perform an E step to find locally optimal values of �t and �t, holding � fixed.
We then compute ˜�, the setting of � that would be optimal (given �t) if our entire corpus consisted
of the single document nt repeated D times. D is the number of unique documents available to the
algorithm, e.g. the size of a corpus. (In the true online case D ! 1, corresponding to empirical
Bayes estimation of �.) We then update � using a weighted average of its previous value and ˜�.
The weight given to ˜� is given by ⇢t , (⌧

0

+ t)�, where  2 (0.5, 1] controls the rate at which
old values of ˜� are forgotten and ⌧

0

� 0 slows down the early iterations of the algorithm. The
condition that  2 (0.5, 1] is needed to guarantee convergence. We show in section 2.3 that online
LDA corresponds to a stochastic natural gradient algorithm on the variational objective L [15, 16].

This algorithm closely resembles one proposed in [16] for online VB on models with hidden data—
the most important difference is that we use an approximate E step to optimize �t and �t, since we
cannot compute the conditional distribution p(zt, ✓t|�, nt,↵) exactly.

Mini-batches. A common technique in stochastic learning is to consider multiple observations per
update to reduce noise [6, 17]. In online LDA, this means computing ˜� using S > 1 observations:

˜�kw = ⌘ +

D
S

P

s ntsk�tskw, (8)

where nts is the sth document in mini-batch t. The variational parameters �ts and �ts for this
document are fit with a normal E step. Note that we recover batch VB when S = D and  = 0.

Hyperparameter estimation. In batch variational LDA, point estimates of the hyperparameters
↵ and ⌘ can be fit given � and � using a linear-time Newton-Raphson method [7]. We can likewise

4

Algorithm 2 Online variational Bayes for LDA
Define ⇢t , (⌧

0

+ t)�

Initialize � randomly.
for t = 0 to1 do

E step:
Initialize �tk = 1. (The constant 1 is arbitrary.)
repeat

Set �twk / exp{Eq[log ✓tk] + Eq[log �kw]}
Set �tk = ↵+

P

w �twkntw

until 1

K

P

k |change in�tk| < 0.00001
M step:
Compute ˜�kw = ⌘ +Dntw�twk

Set � = (1� ⇢t)�+ ⇢t˜�.
end for

incorporate updates for ↵ and ⌘ into online LDA:

↵ ↵� ⇢t↵̃(�t); ⌘ ⌘ � ⇢t⌘̃(�), (9)

where ↵̃(�t) is the inverse of the Hessian times the gradient r↵`(nt, �t,�t,�), ⌘̃(�) is the inverse
of the Hessian times the gradientr⌘L, and ⇢t , (⌧

0

+ t)� as elsewhere.

2.3 Analysis of convergence

In this section we show that algorithm 2 converges to a stationary point of the objective defined in
equation 7. Since variational inference replaces sampling with optimization, we can use results from
stochastic optimization to analyze online LDA. Stochastic optimization algorithms optimize an ob-
jective using noisy estimates of its gradient [18]. Although there is no explicit gradient computation,
algorithm 2 can be interpreted as a stochastic natural gradient algorithm [16, 15].

We begin by deriving a related first-order stochastic gradient algorithm for LDA. Let g(n) denote
the population distribution over documents n from which we will repeatedly sample documents:

g(n) , 1

D

PD
d=1

I[n = nd]. (10)

I[n = nd] is 1 if n = nd and 0 otherwise. If this population consists of the D documents in the
corpus, then we can rewrite equation 7 as

L(g,�) , DEg[`(n, �(n,�),�(n,�),�)|�]. (11)

where ` is defined as in equation 3. We can optimize equation 11 over � by repeatedly drawing an
observation nt ⇠ g, computing �t , �(nt,�) and �t , �(nt,�), and applying the update

� �+ ⇢tDr�`(nt, �t,�t,�) (12)

where ⇢t , (⌧
0

+ t)� as in algorithm 2. If we condition on the current value of � and
treat �t and �t as random variables drawn at the same time as each observed document nt, then
Eg[Dr�`(nt, �t,�t,�)|�] = r�

P

d `(nd, �d,�d,�). Thus, since
P1

t=0

⇢t = 1 and
P1

t=0

⇢2t <
1, the analysis in [19] shows both that � converges and that the gradient r�

P

d `(nd, �d,�d,�)
converges to 0, and thus that � converges to a stationary point.1

The update in equation 12 only makes use of first-order gradient information. Stochastic gradient
algorithms can be sped up by multiplying the gradient by the inverse of an appropriate positive
definite matrix H [19]. One choice for H is the Hessian of the objective function. In variational
inference, an alternative is to use the Fisher information matrix of the variational distribution q (i.e.,
the Hessian of the log of the variational probability density function), which corresponds to using

1Although we use a deterministic procedure to compute � and � given n and �, this analysis can also be
applied if � and � are optimized using a randomized algorithm. We address this case in the supplement.

5

Figures from Hoffman et al. (2010)

Table 1: Best settings of  and ⌧
0

for various mini-batch sizes S, with resulting perplexities on
Nature and Wikipedia corpora.

Best parameter settings for Nature corpus
S 1 4 16 64 256 1024 4096 16384
 0.9 0.8 0.8 0.7 0.6 0.5 0.5 0.5
⌧
0

1024 1024 1024 1024 1024 256 64 1
Perplexity 1132 1087 1052 1053 1042 1031 1030 1046

Best parameter settings for Wikipedia corpus
S 1 4 16 64 256 1024 4096 16384
 0.9 0.9 0.8 0.7 0.6 0.5 0.5 0.5
⌧
0

1024 1024 1024 1024 1024 1024 64 1
Perplexity 675 640 611 595 588 584 580 584

Time in seconds (log scale)

P
e
rp
le
x
it
y

1500

2000

2500

10
1

10
2

10
3

10
4

Batch size

00001

00016

00256

01024

04096

16384

batch10K

batch98K

Time in seconds (log scale)

P
e
rp
le
x
it
y

600

700

800

900

1000

10
1

10
2

10
3

10
4

Batch size

00001

00016

00256

01024

04096

16384

batch10K

batch98K

Figure 2: Held-out perplexity obtained on the Nature (left) and Wikipedia (right) corpora as a func-
tion of CPU time. For moderately large mini-batch sizes, online LDA finds solutions as good as
those that the batch LDA finds, but with much less computation. When fit to a 10,000-document
subset of the training corpus batch LDA’s speed improves, but its performance suffers.

We use perplexity on held-out data as a measure of model fit. Perplexity is defined as the geometric
mean of the inverse marginal probability of each word in the held-out set of documents:

perplexity(ntest,�,↵) , exp

n

�(

P

i log p(n
test
i |↵,�))/(

P

i,w ntest
iw)

o

(15)

where ni
test denotes the vector of word counts for the ith document. Since we cannot directly

compute log p(ntest
i |↵,�), we use a lower bound on perplexity as a proxy:

perplexity(ntest,�,↵)  exp

n

�(

P

i Eq[log p(n
test
i , ✓i, zi|↵,�)]� Eq[log q(✓i, zi)])(

P

i,w ntest
iw)

o

.

(16)
The per-document parameters �i and �i for the variational distributions q(✓i) and q(zi) are fit using
the E step in algorithm 2. The topics � are fit to a training set of documents and then held fixed. In
all experiments ↵ and ⌘ are fixed at 0.01 and the number of topics K = 100.

There is some question as to the meaningfulness of perplexity as a metric for comparing different
topic models [25]. Held-out likelihood metrics are nonetheless well suited to measuring how well
an inference algorithm accomplishes the specific optimization task defined by a model.

Evaluating learning parameters. Online LDA introduces several learning parameters:  2
(0.5, 1], which controls how quickly old information is forgotten; ⌧

0

� 0, which downweights early
iterations; and the mini-batch size S, which controls how many documents are used each iteration.
Although online LDA converges to a stationary point for any valid , ⌧

0

, and S, the quality of this
stationary point and the speed of convergence may depend on how the learning parameters are set.

We evaluated a range of settings of the learning parameters , ⌧
0

, and S on two corpora: 352,549
documents from the journal Nature 3 and 100,000 documents downloaded from the English ver-

3For the Nature articles, we removed all words not in a pruned vocabulary of 4,253 words.

7

Fully–Connected CRF

10

(a) Image (b) Unary classifiers (c) Robust Pn CRF (d) Fully connected CRF,
MCMC inference, 36 hrs

sky

tree

grass

bench

tree

road grass
(e) Fully connected CRF,
our approach, 0.2 seconds

Figure 1: Pixel-level classification with a fully connected CRF. (a) Input image from the MSRC-21 dataset. (b)
The response of unary classifiers used by our models. (c) Classification produced by the Robust Pn CRF [9].
(d) Classification produced by MCMC inference [17] in a fully connected pixel-level CRF model; the algorithm
was run for 36 hours and only partially converged for the bottom image. (e) Classification produced by our
inference algorithm in the fully connected model in 0.2 seconds.

pairs of individual pixels in the image, enabling greatly refined segmentation and labeling. The
main challenge is the size of the model, which has tens of thousands of nodes and billions of edges
even on low-resolution images.

Our main contribution is a highly efficient inference algorithm for fully connected CRF models in
which the pairwise edge potentials are defined by a linear combination of Gaussian kernels in an ar-
bitrary feature space. The algorithm is based on a mean field approximation to the CRF distribution.
This approximation is iteratively optimized through a series of message passing steps, each of which
updates a single variable by aggregating information from all other variables. We show that a mean
field update of all variables in a fully connected CRF can be performed using Gaussian filtering
in feature space. This allows us to reduce the computational complexity of message passing from
quadratic to linear in the number of variables by employing efficient approximate high-dimensional
filtering [16, 2, 1]. The resulting approximate inference algorithm is sublinear in the number of
edges in the model.

Figure 1 demonstrates the benefits of the presented algorithm on two images from the MSRC-21
dataset for multi-class image segmentation and labeling. Figure 1(d) shows the results of approxi-
mate MCMC inference in fully connected CRFs on these images [17]. The MCMC procedure was
run for 36 hours and only partially converged for the bottom image. We have also experimented with
graph cut inference in the fully connected models [11], but it did not converge within 72 hours. In
contrast, a single-threaded implementation of our algorithm produces a detailed pixel-level labeling
in 0.2 seconds, as shown in Figure 1(e). A quantitative evaluation on the MSRC-21 and the PAS-
CAL VOC 2010 datasets is provided in Section 6. To the best of our knowledge, we are the first to
demonstrate efficient inference in fully connected CRF models at the pixel level.

2 The Fully Connected CRF Model

Consider a random field X defined over a set of variables {X1, . . . , XN}. The domain of each
variable is a set of labels L = {l1, l2, . . . , lk}. Consider also a random field I defined over variables
{I1, . . . , IN}. In our setting, I ranges over possible input images of size N and X ranges over
possible pixel-level image labelings. Ij is the color vector of pixel j and Xj is the label assigned to
pixel j.

A conditional random field (I,X) is characterized by a Gibbs distribution
P (X|I) = 1

Z(I) exp(�
P

c2CG
�c(Xc|I)), where G = (V, E) is a graph on X and each clique c

2

Figures from Krähenbühl & Koltun (2011)

ˆk =

1
N

P
i,j k(fi, fj) can correct for constant error. A pixelwise normalization by ˆki =

P
j k(fi, fj)

handles regional errors as well, but violates the CRF symmetry assumption p(xi, xj) = p(xj , xi).
We found the pixelwise normalization to work better in practice.

6 Evaluation

We evaluate the presented algorithm on two standard benchmarks for multi-class image segmen-
tation and labeling. The first is the MSRC-21 dataset, which consists of 591 color images of size
320 ⇥ 213 with corresponding ground truth labelings of 21 object classes [19]. The second is the
PASCAL VOC 2010 dataset, which contains 1928 color images of size approximately 500 ⇥ 400,
with a total of 20 object classes and one background class [3]. The presented approach was evalu-
ated alongside the adjacency (grid) CRF of Shotton et al. [19] and the Robust Pn CRF of Kohli et
al. [9], using publicly available reference implementations. To ensure a fair comparison, all models
used the unary potentials described in Section 5. All experiments were conducted on an Intel i7-930
processor clocked at 2.80GHz. Eight CPU cores were used for training; all other experiments were
performed on a single core. The inference algorithm was implemented in a single CPU thread.

Convergence. We first evaluate the convergence of the mean field approximation by analyzing
the KL-divergence between Q and P . Figure 2 shows the KL-divergence between Q and P over
successive iterations of the inference algorithm. The KL-divergence was estimated up to a constant
as described in supplementary material. Results are shown for different standard deviations ✓↵ and
✓� of the kernels. The graphs were aligned at 20 iterations for visual comparison. The number of
iterations was set to 10 in all subsequent experiments.

MSRC-21 dataset. We use the standard split of the dataset into 45% training, 10% validation and
45% test images [19]. The unary potentials were learned on the training set, while the parameters of
all CRF models were learned using holdout validation. The total CRF training time was 40 minutes.
The learned label compatibility function performed on par with the Potts model on this dataset.
Figure 3 provides qualitative and quantitative results on the dataset. We report the standard measures
of multi-class segmentation accuracy: “global” denotes the overall percentage of correctly classified
image pixels and “average” is the unweighted average of per-category classification accuracy [19, 9].
The presented inference algorithm on the fully connected CRF significantly outperforms the other
models, evaluated against the standard ground truth data provided with the dataset.

The ground truth labelings provided with the MSRC-21 dataset are quite imprecise. In particular,
regions around object boundaries are often left unlabeled. This makes it difficult to quantitatively
evaluate the performance of algorithms that strive for pixel-level accuracy. Following Kohli et al. [9],
we manually produced accurate segmentations and labelings for a set of images from the MSRC-21
dataset. Each image was fully annotated at the pixel level, with careful labeling around complex
boundaries. This labeling was performed by hand for 94 representative images from the MSRC-
21 dataset. Labeling a single image took 30 minutes on average. A number of images from this
“accurate ground truth” set are shown in Figure 3. Figure 3 reports segmentation accuracy against
this ground truth data alongside the evaluation against the standard ground truth. The results were
obtained using 5-fold cross validation, where 4

5 of the 94 images were used to train the CRF pa-

 0 5 10 15 20

K
L-

di
ve

rg
en

ce

Number of iterations

 θα=θβ=10
 θα=θβ=30
 θα=θβ=50
 θα=θβ=70
 θα=θβ=90

(a) KL-divergence

Image

Q(sky)

Q(bird)

0 iterations 1 iteration 2 iterations 10 iterations

(b) Distributions Q(Xi=“bird”) (top) and Q(Xi=“sky”) (bottom)

Figure 2: Convergence analysis. (a) KL-divergence of the mean field approximation during successive itera-
tions of the inference algorithm, averaged across 94 images from the MSRC-21 dataset. (b) Visualization of
convergence on distributions for two class labels over an image from the dataset.

6

in a set of cliques CG in G induces a potential �c [15]. The Gibbs energy of a labeling x 2 LN

is E(x|I) =
P

c2CG
�c(xc|I). The maximum a posteriori (MAP) labeling of the random field is

x

⇤
= argmax

x2LN P (x|I). For notational convenience we will omit the conditioning in the rest of
the paper and use c(xc) to denote �c(xc|I).
In the fully connected pairwise CRF model, G is the complete graph on X and CG is the set of all
unary and pairwise cliques. The corresponding Gibbs energy is

E(x) =

X

i

 u(xi) +

X

i<j

 p(xi, xj), (1)

where i and j range from 1 to N . The unary potential u(xi) is computed independently for each
pixel by a classifier that produces a distribution over the label assignment xi given image features.
The unary potential used in our implementation incorporates shape, texture, location, and color
descriptors and is described in Section 5. Since the output of the unary classifier for each pixel
is produced independently from the outputs of the classifiers for other pixels, the MAP labeling
produced by the unary classifiers alone is generally noisy and inconsistent, as shown in Figure 1(b).

The pairwise potentials in our model have the form
 p(xi, xj) = µ(xi, xj)

PK
m=1 w

(m)k(m)
(fi, fj)| {z }

k(fi,fj)

, (2)

where each k(m) is a Gaussian kernel k(m)
(fi, fj) = exp(� 1

2 (fi � fj)
T
⇤

(m)
(fi � fj)), the vectors fi

and fj are feature vectors for pixels i and j in an arbitrary feature space, w(m) are linear combination
weights, and µ is a label compatibility function. Each kernel k(m) is characterized by a symmetric,
positive-definite precision matrix ⇤

(m), which defines its shape.

For multi-class image segmentation and labeling we use contrast-sensitive two-kernel potentials,
defined in terms of the color vectors Ii and Ij and positions pi and pj :

k(fi, fj) = w(1)
exp

� |pi � pj |2

2✓2↵
� |Ii � Ij |2

2✓2�

!

| {z }
appearance kernel

+w(2)
exp

✓
� |pi � pj |2

2✓2�

◆

| {z }
smoothness kernel

. (3)

The appearance kernel is inspired by the observation that nearby pixels with similar color are likely
to be in the same class. The degrees of nearness and similarity are controlled by parameters ✓↵ and
✓� . The smoothness kernel removes small isolated regions [19]. The parameters are learned from
data, as described in Section 4.

A simple label compatibility function µ is given by the Potts model, µ(xi, xj) = [xi 6= xj]. It
introduces a penalty for nearby similar pixels that are assigned different labels. While this simple
model works well in practice, it is insensitive to compatibility between labels. For example, it
penalizes a pair of nearby pixels labeled “sky” and “bird” to the same extent as pixels labeled “sky”
and “cat”. We can instead learn a general symmetric compatibility function µ(xi, xj) that takes
interactions between labels into account, as described in Section 4.

3 Efficient Inference in Fully Connected CRFs

Our algorithm is based on a mean field approximation to the CRF distribution. This approxima-
tion yields an iterative message passing algorithm for approximate inference. Our key observation
is that message passing in the presented model can be performed using Gaussian filtering in fea-
ture space. This enables us to utilize highly efficient approximations for high-dimensional filtering,
which reduce the complexity of message passing from quadratic to linear, resulting in an approxi-
mate inference algorithm for fully connected CRFs that is linear in the number of variables N and
sublinear in the number of edges in the model.

3.1 Mean Field Approximation

Instead of computing the exact distribution P (X), the mean field approximation computes a dis-
tribution Q(X) that minimizes the KL-divergence D(QkP) among all distributions Q that can be
expressed as a product of independent marginals, Q(X) =

Q
i Qi(Xi) [10].

3

Model Results

This is a fully
connected

graph!
Inference
• Can do MCMC, but

slow
• Instead use Variational

Inference
• Then filter some

variables for speed up

Fully–Connected CRF

11
Figures from Krähenbühl & Koltun (2011)

in a set of cliques CG in G induces a potential �c [15]. The Gibbs energy of a labeling x 2 LN

is E(x|I) =
P

c2CG
�c(xc|I). The maximum a posteriori (MAP) labeling of the random field is

x

⇤
= argmax

x2LN P (x|I). For notational convenience we will omit the conditioning in the rest of
the paper and use c(xc) to denote �c(xc|I).
In the fully connected pairwise CRF model, G is the complete graph on X and CG is the set of all
unary and pairwise cliques. The corresponding Gibbs energy is

E(x) =

X

i

 u(xi) +

X

i<j

 p(xi, xj), (1)

where i and j range from 1 to N . The unary potential u(xi) is computed independently for each
pixel by a classifier that produces a distribution over the label assignment xi given image features.
The unary potential used in our implementation incorporates shape, texture, location, and color
descriptors and is described in Section 5. Since the output of the unary classifier for each pixel
is produced independently from the outputs of the classifiers for other pixels, the MAP labeling
produced by the unary classifiers alone is generally noisy and inconsistent, as shown in Figure 1(b).

The pairwise potentials in our model have the form
 p(xi, xj) = µ(xi, xj)

PK
m=1 w

(m)k(m)
(fi, fj)| {z }

k(fi,fj)

, (2)

where each k(m) is a Gaussian kernel k(m)
(fi, fj) = exp(� 1

2 (fi � fj)
T
⇤

(m)
(fi � fj)), the vectors fi

and fj are feature vectors for pixels i and j in an arbitrary feature space, w(m) are linear combination
weights, and µ is a label compatibility function. Each kernel k(m) is characterized by a symmetric,
positive-definite precision matrix ⇤

(m), which defines its shape.

For multi-class image segmentation and labeling we use contrast-sensitive two-kernel potentials,
defined in terms of the color vectors Ii and Ij and positions pi and pj :

k(fi, fj) = w(1)
exp

� |pi � pj |2

2✓2↵
� |Ii � Ij |2

2✓2�

!

| {z }
appearance kernel

+w(2)
exp

✓
� |pi � pj |2

2✓2�

◆

| {z }
smoothness kernel

. (3)

The appearance kernel is inspired by the observation that nearby pixels with similar color are likely
to be in the same class. The degrees of nearness and similarity are controlled by parameters ✓↵ and
✓� . The smoothness kernel removes small isolated regions [19]. The parameters are learned from
data, as described in Section 4.

A simple label compatibility function µ is given by the Potts model, µ(xi, xj) = [xi 6= xj]. It
introduces a penalty for nearby similar pixels that are assigned different labels. While this simple
model works well in practice, it is insensitive to compatibility between labels. For example, it
penalizes a pair of nearby pixels labeled “sky” and “bird” to the same extent as pixels labeled “sky”
and “cat”. We can instead learn a general symmetric compatibility function µ(xi, xj) that takes
interactions between labels into account, as described in Section 4.

3 Efficient Inference in Fully Connected CRFs

Our algorithm is based on a mean field approximation to the CRF distribution. This approxima-
tion yields an iterative message passing algorithm for approximate inference. Our key observation
is that message passing in the presented model can be performed using Gaussian filtering in fea-
ture space. This enables us to utilize highly efficient approximations for high-dimensional filtering,
which reduce the complexity of message passing from quadratic to linear, resulting in an approxi-
mate inference algorithm for fully connected CRFs that is linear in the number of variables N and
sublinear in the number of edges in the model.

3.1 Mean Field Approximation

Instead of computing the exact distribution P (X), the mean field approximation computes a dis-
tribution Q(X) that minimizes the KL-divergence D(QkP) among all distributions Q that can be
expressed as a product of independent marginals, Q(X) =

Q
i Qi(Xi) [10].

3

Model Follow-up Work (combine with CNN)

This is a fully
connected

graph!
Inference
• Can do MCMC, but

slow
• Instead use Variational

Inference
• Then filter some

variables for speed up

Published as a conference paper at ICLR 2015

SEMANTIC IMAGE SEGMENTATION WITH DEEP CON-
VOLUTIONAL NETS AND FULLY CONNECTED CRFS

Liang-Chieh Chen
Univ. of California, Los Angeles
lcchen@cs.ucla.edu

George Papandreou ⇤

Google Inc.
gpapan@google.com

Iasonas Kokkinos
CentraleSupélec and INRIA
iasonas.kokkinos@ecp.fr

Kevin Murphy
Google Inc.
kpmurphy@google.com

Alan L. Yuille
Univ. of California, Los Angeles
yuille@stat.ucla.edu

ABSTRACT

Deep Convolutional Neural Networks (DCNNs) have recently shown state of the
art performance in high level vision tasks, such as image classification and ob-
ject detection. This work brings together methods from DCNNs and probabilistic
graphical models for addressing the task of pixel-level classification (also called
”semantic image segmentation”). We show that responses at the final layer of
DCNNs are not sufficiently localized for accurate object segmentation. This is
due to the very invariance properties that make DCNNs good for high level tasks.
We overcome this poor localization property of deep networks by combining the
responses at the final DCNN layer with a fully connected Conditional Random
Field (CRF). Qualitatively, our “DeepLab” system is able to localize segment
boundaries at a level of accuracy which is beyond previous methods. Quantita-
tively, our method sets the new state-of-art at the PASCAL VOC-2012 semantic
image segmentation task, reaching 71.6% IOU accuracy in the test set. We show
how these results can be obtained efficiently: Careful network re-purposing and a
novel application of the ’hole’ algorithm from the wavelet community allow dense
computation of neural net responses at 8 frames per second on a modern GPU.

1 INTRODUCTION

Deep Convolutional Neural Networks (DCNNs) had been the method of choice for document recog-
nition since LeCun et al. (1998), but have only recently become the mainstream of high-level vision
research. Over the past two years DCNNs have pushed the performance of computer vision sys-
tems to soaring heights on a broad array of high-level problems, including image classification
(Krizhevsky et al., 2013; Sermanet et al., 2013; Simonyan & Zisserman, 2014; Szegedy et al., 2014;

⇤Work initiated when G.P. was with the Toyota Technological Institute at Chicago. The first two authors
contributed equally to this work.

1

ar
X

iv
:1

41
2.

70
62

v3
 [

cs
.C

V
]

9
A

pr
 2

01
5

Joint Parsing and Alignment with
Weakly Synchronized Grammars

12
Figures from Burkett et al. (2010)

NP

NP

IN

PP

NPIN

PPVBN

VPVBD

VPNP

S

JJ NNS

... were established in such places as Quanzhou Zhangzhou etc.

在
泉州
漳州
等
地
!立
了
...

NP

P

NN

NP

PP

VP

VV

AS

NP

VP

b8

b7

b4

Sample Synchronization Features

� � , b8, � �

� � , b7

���() = CoarseSourceTarget� � � � asa�, � � � asa�� � 1
FineSourceTarget� � � , � � � � 1

��() = CoarseSourceAlign� � � s� � 1
FineSourceAlign� � � � � 1

Figure 2: An example of a Chinese-English sentence pair with parses, word alignments, and a subset of the full optimal
ITG derivation, including one totally unsynchronized bispan (b4), one partially synchronized bispan (b7), and and fully
synchronized bispan (b8). The inset provides some examples of active synchronization features (see Section 4.3) on
these bispans. On this example, the monolingual English parser erroneously attached the lower PP to the VP headed by
established, and the non-syntactic ITG word aligner misalignedI to such instead of to etc. Our joint model corrected
both of these mistakes because it was rewarded for the synchronization of the two NPs joined by b8.

We cannot efficiently compute the model expecta-
tions in this equation exactly. Therefore we turn next
to an approximate inference method.

6 Mean Field Inference

Instead of computing the model expectations from
(4), we compute the expectations for each sentence
pair with respect to a simpler, fully factored distri-
bution Q(t, a, t�) = q(t)q(a)q(t�). Rewriting Q in
log-linear form, we have:

Q(t, a, t�) � exp

�

�
�

n�t

�n +
�

b�a

�b +
�

n��t�

�n�

�

�

Here, the �n, �b and �n� are variational parameters
which we set to best approximate our weakly syn-
chronized model from (3):

�� = argmin
�

KL
�

Q�||P�(t, a, t�|s, s�)
�

Once we have found Q, we compute an approximate
gradient by replacing the model expectations with

expectations under Q:

EQ(a|wi)

�
�(ti, a, t�i, si, s

�
i)

�

� EQ(t,a,t�|si,s�
i)

�
�(t, a, t�, si, s

�
i)

�

Now, we will briefly describe how we compute Q.
First, note that the parameters � of Q factor along
individual source nodes, target nodes, and bispans.
The combination of the KL objective and our par-
ticular factored form of Q make our inference pro-
cedure a structured mean field algorithm (Saul and
Jordan, 1996). Structured mean field techniques are
well-studied in graphical models, and our adaptation
in this section to multiple grammars follows stan-
dard techniques (see e.g. Wainwright and Jordan,
2008).

Rather than derive the mean field updates for �,
we describe the algorithm (shown in Figure 3) pro-
cedurally. Similar to block Gibbs sampling, we it-
eratively optimize each component (source parse,
target parse, and alignment) of the model in turn,
conditioned on the others. Where block Gibbs sam-
pling conditions on fixed trees or ITG derivations,
our mean field algorithm maintains uncertainty in

131

Joint Parsing and Alignment with
Weakly Synchronized Grammars

13
Figures from Burkett et al. (2010)

Test Results
Ch F1 Eng F1 Tot F1

Monolingual 83.6 81.2 82.5
Reranker 86.0 83.8 84.9
Joint 85.7 84.5 85.1

Table 1: Parsing results. Our joint model has the highest
reported F1 for English-Chinese bilingual parsing.

Test Results
Precision Recall AER F1

HMM 86.0 58.4 30.0 69.5
ITG 86.8 73.4 20.2 79.5
Joint 85.5 84.6 14.9 85.0

Table 2: Word alignment results. Our joint model has the
highest reported F1 for English-Chinese word alignment.

the baseline unsupervised HMM word aligner and
to the English-Chinese ITG-based word aligner
of Haghighi et al. (2009). The results are in Table 2.

As can be seen, our model makes substantial im-
provements over the independent models. For pars-
ing, we improve absolute F1 over the monolingual
parsers by 2.1 in Chinese, and by 3.3 in English.
For word alignment, we improve absolute F1 by 5.5
over the non-syntactic ITG word aligner. In addi-
tion, our English parsing results are better than those
of the Burkett and Klein (2008) bilingual reranker,
the current top-performing English-Chinese bilin-
gual parser, despite ours using a much simpler set
of synchronization features.

8.3 Machine Translation

We further tested our alignments by using them to
train the Joshua machine translation system (Li and
Khudanpur, 2008). Table 3 describes the results of
our experiments. For all of the systems, we tuned

Rules Tune Test
HMM 1.1M 29.0 29.4
ITG 1.5M 29.9 30.4†

Joint 1.5M 29.6 30.6

Table 3: Tune and test BLEU results for machine transla-
tion systems built with different alignment tools. † indi-
cates a statistically significant difference between a sys-
tem’s test performance and the one above it.

on 1000 sentences of the NIST 2004 and 2005 ma-
chine translation evaluations, and tested on 400 sen-
tences of the NIST 2006 MT evaluation. Our train-
ing set consisted of 250k sentences of newswire dis-
tributed with the GALE project, all of which were
sub-sampled to have high Ngram overlap with the
tune and test sets. All of our sentences were of
length at most 40 words. When building the trans-
lation grammars, we used Joshua’s default “tight”
phrase extraction option. We ran MERT for 4 itera-
tions, optimizing 20 weight vectors per iteration on
a 200-best list.

Table 3 gives the results. On the test set, we also
ran the approximate randomization test suggested by
Riezler and Maxwell (2005). We found that our joint
parsing and alignment system significantly outper-
formed the HMM aligner, but the improvement over
the ITG aligner was not statistically significant.

9 Conclusion

The quality of statistical machine translation mod-
els depends crucially on the quality of word align-
ments and syntactic parses for the bilingual training
corpus. Our work presented the first joint model
for parsing and alignment, demonstrating that we
can improve results on both of these tasks, as well
as on downstream machine translation, by allowing
parsers and word aligners to simultaneously inform
one another. Crucial to this improved performance
is a notion of weak synchronization, which allows
our model to learn when pieces of a grammar are
synchronized and when they are not. Although ex-
act inference in the weakly synchronized model is
intractable, we developed a mean field approximate
inference scheme based on monolingual and bitext
parsing, allowing for efficient inference.

Acknowledgements

We thank Adam Pauls and John DeNero for their
help in running machine translation experiments.
We also thank the three anonymous reviewers for
their helpful comments on an earlier draft of this
paper. This project is funded in part by NSF
grants 0915265 and 0643742, an NSF graduate re-
search fellowship, the CIA under grant HM1582-09-
1-0021, and BBN under DARPA contract HR0011-
06-C-0022.

134

Joint Parsing and Alignment

High
levels

of

product
and

project

Output: Trees contain
Nodes

Joint Parsing and Alignment

High
levels

of

product
and

project

Output: Alignments

Joint Parsing and Alignment

High
levels

of

product
and

project

Output: Alignments
contain Bispans

Joint Parsing and Alignment

High
levels

of

product
and

project

Output:

Joint Parsing and Alignment

High
levels

of

product
and

project

Variables

Joint Parsing and Alignment

High
levels

of

product
and

project

Variables

Figures from Burkett & Klein (ACL 2013 tutorial)

This uses
Structured

Mean Field V.I.

HIDDEN STATE CRFS

14

Case Study: Object Recognition

Data consists of images x and labels y.

15

pigeon

leopard llama

rhinoceros

Case Study: Object Recognition

Data consists of images x and labels y.

16

• Preprocess data into
“patches”

• Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

leopard

• Define graphical
model with these
latent variables in
mind

• z is not observed at
train or test time

Case Study: Object Recognition

Data consists of images x and labels y.

17

• Preprocess data into
“patches”

• Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

leopard

• Define graphical
model with these
latent variables in
mind

• z is not observed at
train or test time

X1

Z1

X2

Z2

X3

Z3

X4

Z4
X5

Z5
X7

Z7

X 6

Z 6

Y

Case Study: Object Recognition

Data consists of images x and labels y.

18

• Preprocess data into
“patches”

• Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

leopard

• Define graphical
model with these
latent variables in
mind

• z is not observed at
train or test time

ψ2 ψ4

X1

Z1
ψ1

X2

Z2

ψ3

X3

Z3

ψ5
X4

Z4

ψ7
X5

Z5

ψ9
X7

Z7

ψ1

X 6

Z 6
ψ 1

ψ4

ψ4

Y

Hidden-state CRFs

19

Joint model:

Marginalized model:

leopard

ψ2 ψ4

X1

Z1
ψ1

X2

Z2

ψ3

X3

Z3

ψ5
X4

Z4

ψ7
X5

Z5

ψ9
X7

Z7

ψ1

X 6

Z 6
ψ 1

ψ4

ψ4

Y

p✓(y | x) =
X

z

p✓(y, z | x)

p✓(y, z | x) = 1

Z(x,✓)

Y

↵

 ↵(y↵, z↵,x)

D = {x(n),y(n)}Nn=1Data:

Hidden-state CRFs

20

Joint model:

Marginalized model: p✓(y | x) =
X

z

p✓(y, z | x)

p✓(y, z | x) = 1

Z(x,✓)

Y

↵

 ↵(y↵, z↵,x)

We can train using gradient based methods:
(the values x are omitted below for clarity)

d`(✓|D)

d✓
=

NX

n=1

⇣
Ez⇠p✓(·|y(n))[fj(y

(n), z)]� Ey,z⇠p✓(·,·)[fj(y, z)]
⌘

=
NX

n=1

X

↵

X

z↵

p✓(z↵ | y(n))f↵,j(y
(n)
↵ , z↵)�

X

y↵,z↵

p✓(y↵, z↵)f↵,j(y↵, z↵)

!

Inference on
full
factor graph

Inference on
clamped
factor graph

D = {x(n),y(n)}Nn=1Data:

GAUSSIAN MIXTURE MODEL
(GMM)

21

Gaussian Mixture-Model

25

Data:

Assumewe are given data, D, consisting ofN fully unsupervised ex-
amples in M dimensions:

D = { (i)}N
i=1 where (i) � RM

Model: Joint:

Marginal:

(Marginal) Log-likelihood:

Generative Story: z � Categorical(�)

� Gaussian(µz,�z)

p(; �, µ,�) =
K�

z=1

p(|z; µ,�)p(z; �)

p(, z; �, µ,�) = p(|z; µ,�)p(z; �)

�(�, µ,�) =
N�

i=1

p((i); �, µ,�)

=
N�

i=1

K�

z=1

p((i)|z; µ,�)p(z; �)

Mixture-Model

26

Data:

Assumewe are given data, D, consisting ofN fully unsupervised ex-
amples in M dimensions:

D = { (i)}N
i=1 where (i) � RM

Model: p�,�(, z) = p�(|z)p�(z)

p�,�() =
K�

z=1

p�(|z)p�(z)

Joint:

Marginal:

(Marginal) Log-likelihood:
�(�) =

N�

i=1

p�,�((i))

=
N�

i=1

K�

z=1

p�((i)|z)p�(z)

Generative Story: z � Multinomial(�)

� p�(·|z)

z � Categorical(�)

� Gaussian(µz,�z)

Mixture-Model

27

Data:

Assumewe are given data, D, consisting ofN fully unsupervised ex-
amples in M dimensions:

D = { (i)}N
i=1 where (i) � RM

Model: p�,�(, z) = p�(|z)p�(z)

p�,�() =
K�

z=1

p�(|z)p�(z)

Joint:

Marginal:

(Marginal) Log-likelihood:
�(�) =

N�

i=1

p�,�((i))

=
N�

i=1

K�

z=1

p�((i)|z)p�(z)

Generative Story: z � Multinomial(�)

� p�(·|z)

z � Categorical(�)

� Gaussian(µz,�z)This could be any
arbitrary distribution
parameterized by θ.

Today we’re thinking
about the case where it
is a Multivariate
Gaussian.

Unsupervised Learning: Parameters
are coupled by marginalization.

Supervised Learning: The
parameters decouple!

Learning a Mixture Model

28

X1 XMX2

Z

…

��, �� =
�,�

N�

i=1

p�((i)|z(i))p�(z(i))

�� =
�

N�

i=1

p�((i)|z(i))

�� =
�

N�

i=1

p�(z(i))

X1 XMX2

Z

…

D = { (i)}N
i=1

��, �� =
�,�

N�

i=1

K�

z=1

p�((i)|z)p�(z)

D = {((i), (i))}N
i=1

Unsupervised Learning: Parameters
are coupled by marginalization.

Supervised Learning: The
parameters decouple!

Learning a Mixture Model

29

X1 XMX2

Z

…

��, �� =
�,�

N�

i=1

p�((i)|z(i))p�(z(i))

�� =
�

N�

i=1

p�((i)|z(i))

�� =
�

N�

i=1

p�(z(i))

X1 XMX2

Z

…

D = { (i)}N
i=1

��, �� =
�,�

N�

i=1

K�

z=1

p�((i)|z)p�(z)

Training certainly isn’t as simple
as the supervised case.

In many cases, we could still use
some black-box optimization
method (e.g. Newton-Raphson)
to solve this coupled
optimization problem.

This lecture is about a more
problem-specific method: EM.

D = {((i), (i))}N
i=1

EXPECTATION MAXIMIZATION

30

Hard Expectation-Maximization

• Initialize parameters randomly
• while not converged

1. E-Step:
Set the latent variables to the the
values that maximizes likelihood,
treating parameters as observed

2. M-Step:
Set the parameters to the values
that maximizes likelihood, treating
latent variables as observed

32

Estimate
unobserved

variables

MLE given the
estimated values

of unobserved
variables

(Soft) Expectation-Maximization
• Initialize parameters randomly
• while not converged

1. E-Step:
Create one training example for
each possible value of the latent
variables
Weight each example according
to model’s confidence
Treat parameters as observed

2. M-Step:
Set the parameters to the values
that maximizes likelihood
Treat pseudo-counts from above as observed

33

Estimate
unobserved

variables

MLE given the
estimated values

of unobserved
variables

Hard EM vs. Soft EM

34

Algorithm 1 Soft EM for GMMs

1: procedure SĔċęEM(D = { (i)}N
i=1)

2: Randomly initialize parameters, �, µ,�
3: while not converged do
4: E-Step:

c(i)
k � p(z(i) = k| (i); �, µ,�)

5: M-Step:

�k � 1

N

N�

i=1

c(i)
k , �k

µk �
�N

i=1 c(i)
k

(i)

�N
i=1 c(i)

k

, �k

�k �
�N

i=1 c(i)
k ((i) � µk)((i) � µk)T

�N
i=1 c(i)

k

, �k

6: return (�, µ,�)

Algorithm 1 Hard EM for GMMs

1: procedure HĆėĉEM(D = { (i)}N
i=1)

2: Randomly initialize parameters, �, µ,�
3: while not converged do
4: E-Step:

z(i) �
z

p((i)|z; µ,�) + p(z; �)

5: M-Step:

�k � 1

N

N�

i=1

I(z(i) = k), �k

µk �
�N

i=1 I(z(i) = k) (i)

�N
i=1 I(z(i) = k)

, �k

�k �
�N

i=1 I(z(i) = k)((i) � µk)((i) � µk)T

�N
i=1 I(z(i) = k)

, �k

6: return (�, µ,�)

Posterior Inference
for Mixture Model

35

We obtain the posterior p(z(i) = k|x(i); �, µ,�) as follows:

p(z(i) = k| (i); �, µ,�) =
p((i)|z(i) = k; µ,�)p(z(i) = k; �)

�K
j=1 p((i)|z(i) = j; µ,�)p(z(i) = j; �)

(1)

EXAMPLE: K-MEANS VS GMM

38

Example: K-Means

39

Example: K-Means

40

Example: K-Means

41

Example: K-Means

42

Example: K-Means

43

Example: K-Means

44

Example: K-Means

45

Example: K-Means

46

Example: GMM

47

Example: GMM

48

Example: GMM

49

Example: GMM

50

Example: GMM

51

Example: GMM

52

Example: GMM

53

Example: GMM

54

Example: GMM

55

Example: GMM

56

Example: GMM

57

Example: GMM

58

Example: GMM

59

Example: GMM

60

Example: GMM

61

Example: GMM

62

Example: GMM

63

Example: GMM

64

Example: GMM

65

Example: GMM

66

Example: GMM

67

Example: GMM

68

K-Means vs. GMM
Convergence:
K-Means tends to converge much faster than a GMM

Speed:
Each iteration of K-Means is computationally less intensive than
each iteration of a GMM

Initialization:
To initialize a GMM, we typically first run K-Means and use the
resulting cluster centers as the means of the Gaussian components

Output:
A GMM yields a probability distribution over the cluster assignment
for each point; whereas K-Means gives a single hard assignment

69

PROPERTIES OF EM

72

Properties of (Variational) EM
• EM is trying to optimize a

nonconvex function
• But EM is a local

optimization algorithm
• Typical solution: Random

Restarts
– Just like K-Means, we run the

algorithm many times
– Each time initialize

parameters randomly
– Pick the parameters that give

highest likelihood

73

Variants of EM
• Generalized EM: Replace the M-Step by a single

gradient-step that improves the likelihood
• Monte Carlo EM: Approximate the E-Step by

sampling
• Sparse EM: Keep an “active list” of points

(updated occasionally) from which we estimate
the expected counts in the E-Step

• Incremental EM / Stepwise EM: If standard EM
is described as a batch algorithm, these are the
online equivalent

• etc.
75

Eric Xing

A Report Card for EM
• Some good things about EM:
– no learning rate (step-size) parameter
– automatically enforces parameter constraints
– very fast for low dimensions
– each iteration guaranteed to improve likelihood

• Some bad things about EM:
– can get stuck in local minima
– can be slower than conjugate gradient (especially

near convergence)
– requires expensive inference step
– is a maximum likelihood/MAP method

76© Eric Xing @ CMU, 2006-2011

VARIATIONAL EM

77

Variational EM

Whiteboard
– Example: Unsupervised POS Tagging
– Variational Bayes
– Variational EM

78

Unsupervised POS Tagging

79
Figure from Wang & Blunsom (2013)

CGS full conditional:

Algo 1 mean field update:

Bayesian Inference for HMMs
• Task: unsupervised POS tagging
• Data: 1 million words (i.e. unlabeled sentences) of WSJ text
• Dictionary: defines legal part-of-speech (POS) tags for each word type
• Models:

– EM: standard HMM
– VB: uncollapsed variational Bayesian HMM
– Algo 1 (CVB): collapsed variational Bayesian HMM (strong indep. assumption)
– Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
– CGS: collapsed Gibbs Sampler for Bayesian HMM

Unsupervised POS Tagging
Bayesian Inference for HMMs
• Task: unsupervised POS tagging
• Data: 1 million words (i.e. unlabeled sentences) of WSJ text
• Dictionary: defines legal part-of-speech (POS) tags for each word type
• Models:

– EM: standard HMM
– VB: uncollapsed variational Bayesian HMM
– Algo 1 (CVB): collapsed variational Bayesian HMM (strong indep. assumption)
– Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
– CGS: collapsed Gibbs Sampler for Bayesian HMM

80
Figure from Wang & Blunsom (2013)

Speed:

Unsupervised POS Tagging
Bayesian Inference for HMMs
• Task: unsupervised POS tagging
• Data: 1 million words (i.e. unlabeled sentences) of WSJ text
• Dictionary: defines legal part-of-speech (POS) tags for each word type
• Models:

– EM: standard HMM
– VB: uncollapsed variational Bayesian HMM
– Algo 1 (CVB): collapsed variational Bayesian HMM (strong indep. assumption)
– Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
– CGS: collapsed Gibbs Sampler for Bayesian HMM

81
Figure from Wang & Blunsom (2013)

• EM is slow b/c of log-space computations
• VB is slow b/c of digamma computations
• Algo 1 (CVB) is the fastest!
• Algo 2 (CVB) is slow b/c it computes dynamic

parameters
• CGS: an order of magnitude slower than any

deterministic algorithm

Stochastic Variational Bayesian HMM
• Task: Human Chromatin

Segmentation
• Goal: unsupervised

segmentation of the genome
• Data: from ENCODE, “250

million observations consisting
of twelve assays carried out in
the chronic myeloid leukemia
cell line K562”

• Metric: “the false discovery
rate (FDR) of predicting active
promoter elements in the
sequence"

• Models:
– DBN HMM: dynamic Bayesian

HMM trained with standard EM
– SVIHMM: stochastic variational

inference for a Bayesian HMM
• Main Takeaway:

– the two models perform at
similar levels of FDR

– SVIHMM takes one hour
– DBNHMM takes days

82

Figure from Foti et al. (2014)

Figure from Mammana & Chung (2015)

Grammar Induction
Question: Can maximizing (unsupervised) marginal
likelihood produce useful results?

Answer: Let’s look at an example…
• Babies learn the syntax of their native language (e.g.

English) just by hearing many sentences
• Can a computer similarly learn syntax of a human

language just by looking at lots of example
sentences?
– This is the problem of Grammar Induction!
– It’s an unsupervised learning problem
– We try to recover the syntactic structure for each

sentence without any supervision

83

Grammar Induction

84

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

No semantic
interpretation

…

Grammar Induction

85

real likeflies soupSample 2:

time likeflies an arrowSample 1:

with youtime will seeSample 4:

flies withfly their wingsSample 3:

Training Data: Sentences only, without parses

x(1)

x(2)

x(3)

x(4)

Test Data: Sentences with parses, so we can evaluate accuracy

Grammar Induction

86

lti

-20.2 -20 -19.8 -19.6 -19.4 -19.2 -19
10

20

30

40

50

60

A
tt

ac
hm

en
t

A
cc

ur
ac

y
(%

)

Log-Likelihood (per sentence)
4

Pearson’s r = 0.63
(strong correlation)

Dependency Model with Valence (Klein & Manning, 2004)

Figure from Gimpel & Smith (NAACL 2012) - slides

Q: Does likelihood
correlate with
accuracy on a task
we care about?

A: Yes, but there is
still a wide range
of accuracies for a
particular
likelihood value

Grammar Induction

87

Graphical Model for Logistic
Normal Probabilistic Grammar

y = syntactic parse
x = observed sentence

Settings:

Results:

Figures from Cohen et al. (2009)

