

10-418 / 10-618 Machine Learning for Structured Data

MACHINE LEARNING DEPARTMENT

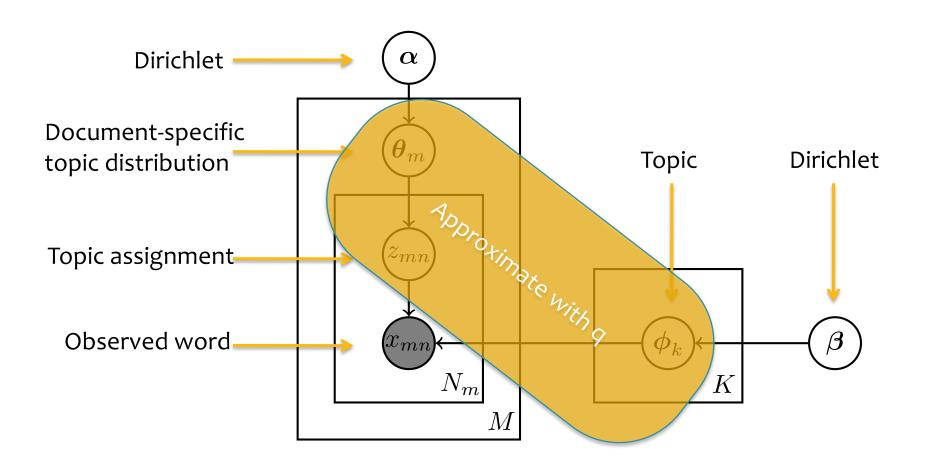
Machine Learning Department School of Computer Science Carnegie Mellon University

Learning Partially Observed Graphical Models

+

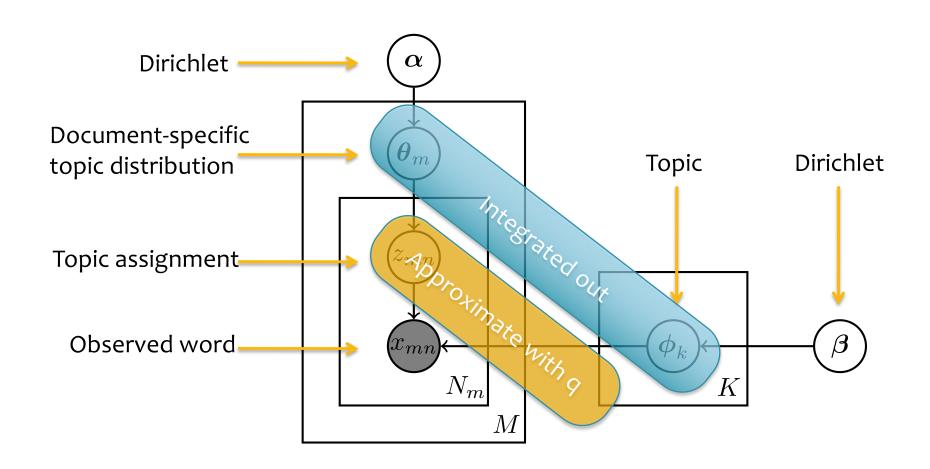
Variational EM

Matt Gormley Lecture 25 Nov. 20, 2019


Reminders

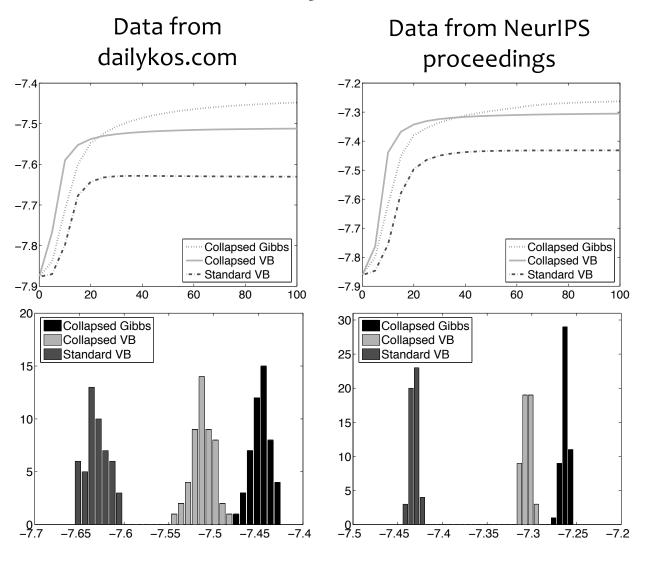
- Homework 4: Topic Modeling
 - Out: Wed, Nov. 6
 - Due: Mon, Nov. 18 at 11:59pm
- Homework 5: Variational Inference
 - Out: Wed, Nov. 20
 - Due: Mon, Dec. 2 at 11:59pm
- 618 Midway Poster:
 - Submission: Thu, Nov. 21 at 11:59pm
 - Presentation: Fri, Nov. 22 or Mon, Nov. 25

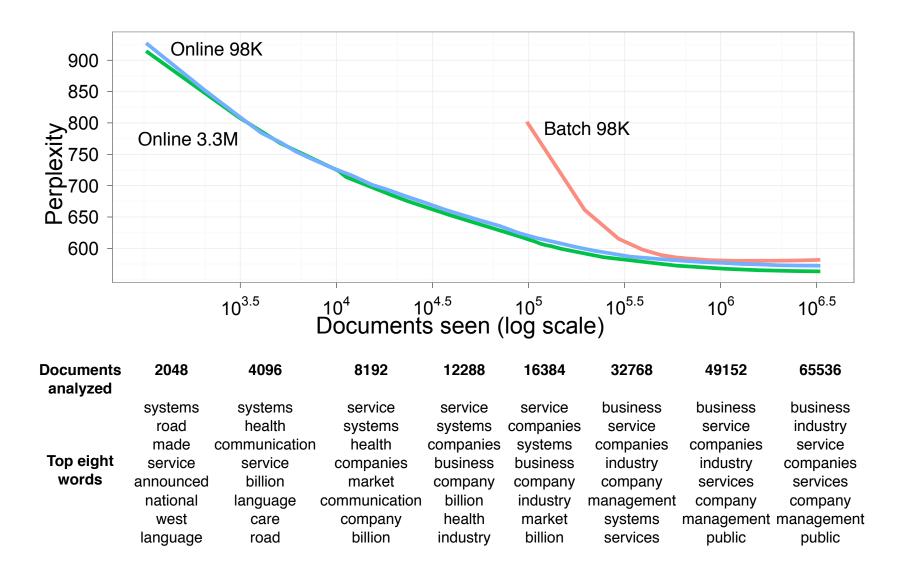
VARIATIONAL INFERENCE RESULTS


Collapsed Variational Bayesian LDA

Explicit Variational Inference

Collapsed Variational Bayesian LDA


Collapsed Variational Inference


Collapsed Variational Bayesian LDA

- First row: test set per word log probabilities as functions of numbers of iterations for VB, CVB and Gibbs.
- Second row:

 histograms of
 final test set per
 word log
 probabilities
 across 50
 random
 initializations.

Online Variational Bayes for LDA

Online Variational Bayes for LDA

Algorithm 1 Batch variational Bayes for LDA

```
Initialize \lambda randomly.

while relative improvement in \mathcal{L}(\boldsymbol{w}, \boldsymbol{\phi}, \boldsymbol{\gamma}, \boldsymbol{\lambda}) > 0.00001 do

E step:

for d=1 to D do

Initialize \gamma_{dk}=1. (The constant 1 is arbitrary.)

repeat

Set \phi_{dwk} \propto \exp\{\mathbb{E}_q[\log\theta_{dk}] + \mathbb{E}_q[\log\beta_{kw}]\}

Set \gamma_{dk}=\alpha+\sum_w\phi_{dwk}n_{dw}

until \frac{1}{K}\sum_k|\text{change in}\gamma_{dk}|<0.00001

end for

M step:

Set \lambda_{kw}=\eta+\sum_d n_{dw}\phi_{dwk}
end while
```

Algorithm 2 Online variational Bayes for LDA

```
Define \rho_t \triangleq (\tau_0 + t)^{-\kappa}

Initialize \lambda randomly.

for t = 0 to \infty do

E step:

Initialize \gamma_{tk} = 1. (The constant 1 is arbitrary.)

repeat

Set \phi_{twk} \propto \exp\{\mathbb{E}_q[\log \theta_{tk}] + \mathbb{E}_q[\log \beta_{kw}]\}

Set \gamma_{tk} = \alpha + \sum_w \phi_{twk} n_{tw}

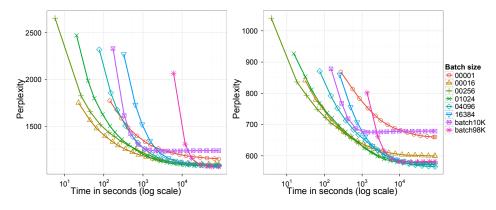
until \frac{1}{K} \sum_k |\text{change in} \gamma_{tk}| < 0.00001

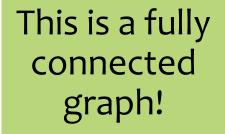
M step:

Compute \tilde{\lambda}_{kw} = \eta + Dn_{tw} \phi_{twk}

Set \lambda = (1 - \rho_t) \lambda + \rho_t \tilde{\lambda}.

end for
```




Figure 2: Held-out perplexity obtained on the *Nature* (left) and Wikipedia (right) corpora as a function of CPU time. For moderately large mini-batch sizes, online LDA finds solutions as good as those that the batch LDA finds, but with much less computation. When fit to a 10,000-document subset of the training corpus batch LDA's speed improves, but its performance suffers.

Fully-Connected CRF

Model

$$p(\mathbf{x}|\mathbf{i}) = \frac{1}{Z(\mathbf{i})} \exp(-E(\mathbf{x}))$$

$$E(\mathbf{x}) = \sum_{i} \psi_u(x_i) + \sum_{i < j} \psi_p(x_i, x_j),$$

Inference

- Can do MCMC, but slow
- Instead use Variational Inference
- Then filter some variables for speed up

Results

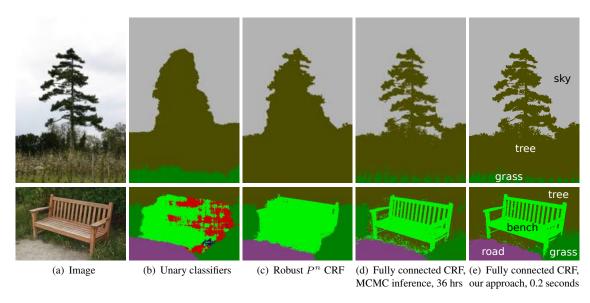


Figure 1: Pixel-level classification with a fully connected CRF. (a) Input image from the MSRC-21 dataset. (b) The response of unary classifiers used by our models. (c) Classification produced by the Robust P^n CRF [9]. (d) Classification produced by MCMC inference [17] in a fully connected pixel-level CRF model; the algorithm was run for 36 hours and only partially converged for the bottom image. (e) Classification produced by our inference algorithm in the fully connected model in 0.2 seconds.

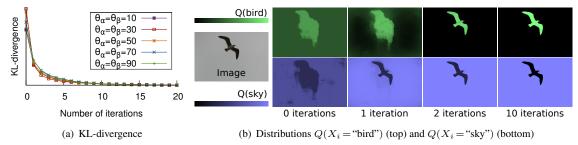
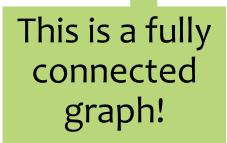


Figure 2: Convergence analysis. (a) KL-divergence of the mean field approximation during successive iterations of the inference algorithm, averaged across 94 images from the MSRC-21 dataset. (b) Visualization of convergence on distributions for two class labels over an image from the dataset.

Fully-Connected CRF


Model

Follow-up Work (combine with CNN)

Published as a conference paper at ICLR 2015

$$p(\mathbf{x}|\mathbf{i}) = \frac{1}{Z(\mathbf{i})} \exp(-E(\mathbf{x}))$$

$$E(\mathbf{x}) = \sum_{i} \psi_u(x_i) + \sum_{i < j} \psi_p(x_i, x_j),$$

Inference

- Can do MCMC, but slow
- Instead use Variational Inference
- Then filter some variables for speed up

SEMANTIC IMAGE SEGMENTATION WITH DEEP CON-VOLUTIONAL NETS AND FULLY CONNECTED CRFS

Liang-Chieh Chen

Univ. of California, Los Angeles lcchen@cs.ucla.edu

George Papandreou *

Google Inc.

gpapan@google.com

Iasonas Kokkinos

CentraleSupélec and INRIA iasonas.kokkinos@ecp.fr

Kevin Murphy

Google Inc.

kpmurphy@google.com

Alan L. Yuille

Univ. of California, Los Angeles yuille@stat.ucla.edu

ABSTRACT

Deep Convolutional Neural Networks (DCNNs) have recently shown state of the art performance in high level vision tasks, such as image classification and object detection. This work brings together methods from DCNNs and probabilistic graphical models for addressing the task of pixel-level classification (also called "semantic image segmentation"). We show that responses at the final layer of DCNNs are not sufficiently localized for accurate object segmentation. This is due to the very invariance properties that make DCNNs good for high level tasks. We overcome this poor localization property of deep networks by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF). Qualitatively, our "DeepLab" system is able to localize segment boundaries at a level of accuracy which is beyond previous methods. Quantitatively, our method sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 71.6% IOU accuracy in the test set. We show how these results can be obtained efficiently: Careful network re-purposing and a novel application of the 'hole' algorithm from the wavelet community allow dense computation of neural net responses at 8 frames per second on a modern GPU.

Joint Parsing and Alignment with Weakly Synchronized Grammars

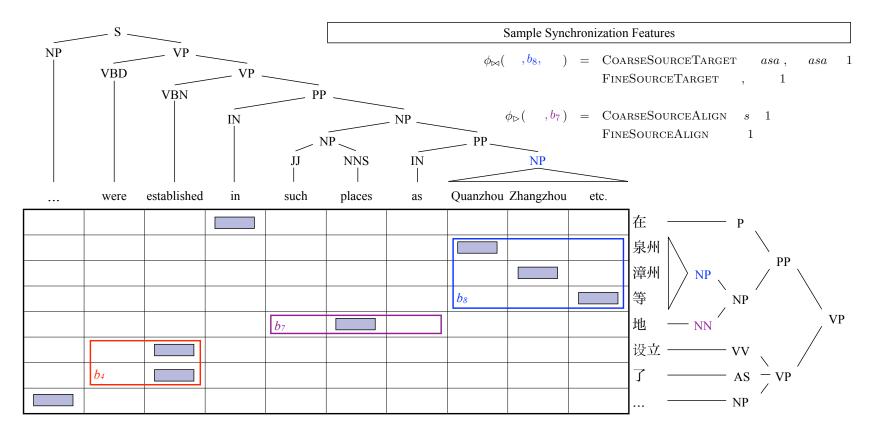
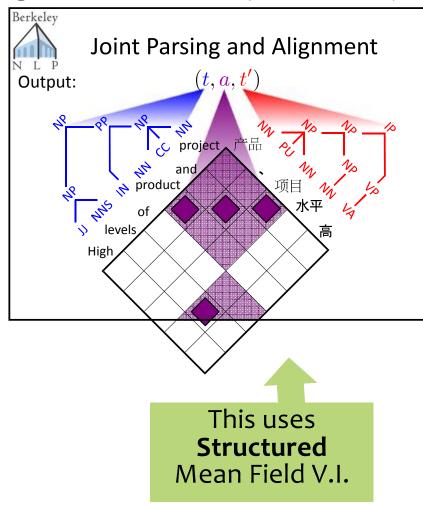



Figure 2: An example of a Chinese-English sentence pair with parses, word alignments, and a subset of the full optimal ITG derivation, including one totally unsynchronized bispan (b_4) , one partially synchronized bispan (b_7) , and and fully synchronized bispan (b_8) . The inset provides some examples of active synchronization features (see Section 4.3) on these bispans. On this example, the monolingual English parser erroneously attached the lower PP to the VP headed by *established*, and the non-syntactic ITG word aligner misaligned $\mbox{\ematheighthat{\emathei$

Joint Parsing and Alignment with Weakly Synchronized Grammars

Figures from Burkett & Klein (ACL 2013 tutorial)

	Test Results		
	Ch F ₁	Eng F ₁	Tot F ₁
Monolingual	83.6	81.2	82.5
Reranker	86.0	83.8	84.9
Joint	85.7	84.5	85.1

Table 1: Parsing results. Our joint model has the highest reported F_1 for English-Chinese bilingual parsing.

	Test Results			
	Precision	Recall	AER	F_1
HMM	86.0	58.4	30.0	69.5
ITG	86.8	73.4	20.2	79.5
Joint	85.5	84.6	14.9	85.0

Table 2: Word alignment results. Our joint model has the highest reported F_1 for English-Chinese word alignment.

HIDDEN STATE CRFS

Data consists of images x and labels y.

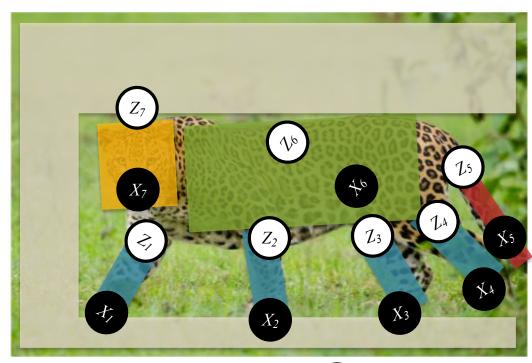
pigeon

leopard

rhinoceros

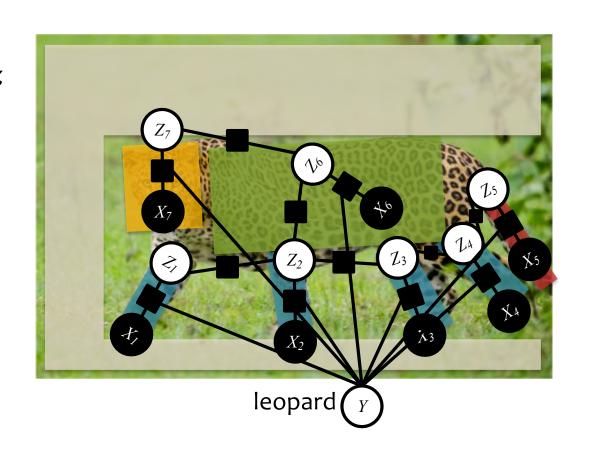
llama

Data consists of images x and labels y.


- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time

leopard

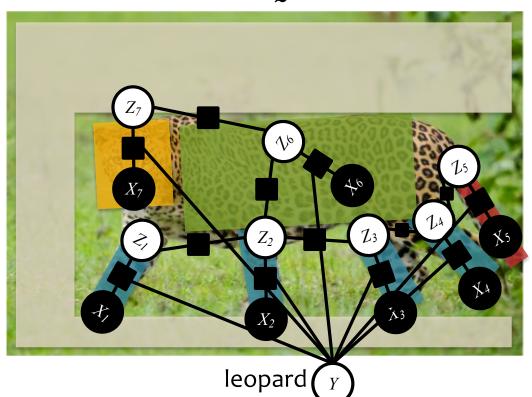
Data consists of images x and labels y.


- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time

leopard (y)

Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time



Hidden-state CRFs

Data:
$$\mathcal{D} = \{ oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)} \}_{n=1}^N$$

Joint model:
$$p_{m{ heta}}(m{y},m{z}\midm{x}) = rac{1}{Z(m{x},m{ heta})}\prod_{lpha}\psi_{lpha}(m{y}_{lpha},m{z}_{lpha},m{x})$$

Marginalized model:
$$p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) = \sum_{\boldsymbol{z}} p_{\boldsymbol{\theta}}(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{x})$$

Hidden-state CRFs

Data:
$$\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$$

Joint model:
$$p_{m{ heta}}(m{y},m{z}\midm{x}) = rac{1}{Z(m{x},m{ heta})}\prod_{lpha}\psi_{lpha}(m{y}_{lpha},m{z}_{lpha},m{x})$$

Marginalized model:
$$p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) = \sum_{\boldsymbol{z}} p_{\boldsymbol{\theta}}(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{x})$$

We can train using gradient based methods: (the values x are omitted below for clarity)

$$\begin{split} \frac{d\ell(\boldsymbol{\theta}|\mathcal{D})}{d\boldsymbol{\theta}} &= \sum_{n=1}^{N} \left(\mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{\theta}}(\cdot|\boldsymbol{y}^{(n)})}[f_{j}(\boldsymbol{y}^{(n)}, \boldsymbol{z})] - \mathbb{E}_{\boldsymbol{y}, \boldsymbol{z} \sim p_{\boldsymbol{\theta}}(\cdot, \cdot)}[f_{j}(\boldsymbol{y}, \boldsymbol{z})] \right) \\ &= \sum_{n=1}^{N} \sum_{\alpha} \left(\sum_{\boldsymbol{z}_{\alpha}} p_{\boldsymbol{\theta}}(\boldsymbol{z}_{\alpha} \mid \boldsymbol{y}^{(n)}) f_{\alpha, j}(\boldsymbol{y}_{\alpha}^{(n)}, \boldsymbol{z}_{\alpha}) - \sum_{\boldsymbol{y}_{\alpha}, \boldsymbol{z}_{\alpha}} p_{\boldsymbol{\theta}}(\boldsymbol{y}_{\alpha}, \boldsymbol{z}_{\alpha}) f_{\alpha, j}(\boldsymbol{y}_{\alpha}, \boldsymbol{z}_{\alpha}) \right) \\ &\text{Inference on clamped factor graph} \end{split}$$

GAUSSIAN MIXTURE MODEL (GMM)

Gaussian Mixture-Model

Data: $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N \text{ where } \mathbf{x}^{(i)} \in \mathbb{R}^M$

Generative Story: $z \sim \mathsf{Categorical}(\phi)$

 $\mathbf{x} \sim \mathsf{Gaussian}(oldsymbol{\mu}_z, oldsymbol{\Sigma}_z)$

Model: $p(\mathbf{x}, z; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = p(\mathbf{x}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma})p(z; \boldsymbol{\phi})$

Marginal: $p(\mathbf{x}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{z=1}^{K} p(\mathbf{x}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z; \boldsymbol{\phi})$

(Marginal) Log-likelihood:

$$\ell(\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log \prod_{i=1}^{N} p(\mathbf{x}^{(i)}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= \sum_{i=1}^{N} \log \sum_{z=1}^{K} p(\mathbf{x}^{(i)}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z; \boldsymbol{\phi})$$

Mixture-Model

Data:
$$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N \text{ where } \mathbf{x}^{(i)} \in \mathbb{R}^M$$

Generative Story: $z \sim \mathsf{Categorical}(\phi)$

$$\mathbf{x} \sim p_{\boldsymbol{\theta}}(\cdot|z)$$

Joint:
$$p_{\boldsymbol{\theta}, \boldsymbol{\phi}}(\mathbf{x}, z) = p_{\boldsymbol{\theta}}(\mathbf{x}|z)p_{\boldsymbol{\phi}}(z)$$

Marginal:
$$p_{\theta,\phi}(\mathbf{x}) = \sum_{z=1}^{K} p_{\theta}(\mathbf{x}|z) p_{\phi}(z)$$

(Marginal) Log-likelihood:

$$\ell(\boldsymbol{\theta}) = \log \prod_{i=1}^{N} p_{\boldsymbol{\theta}, \boldsymbol{\phi}}(\mathbf{x}^{(i)})$$
$$= \sum_{i=1}^{N} \log \sum_{z=1}^{K} p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|z) p_{\boldsymbol{\phi}}(z)$$

Mixture-Model

 $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$ where $\mathbf{x}^{(i)} \in \mathbb{R}^M$ Data:

Generative Story: $z \sim \text{Categorical}(\phi)$

$$\mathbf{x} \sim p_{\boldsymbol{\theta}}(\cdot|z)$$

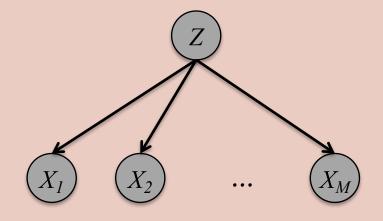
Model:

Joint: $p_{\theta,\phi}(\mathbf{x},z) = p_{\theta}(\mathbf{x},z)$ parameterized by $\boldsymbol{\theta}$.

Marginal: $p_{\theta,\phi}(\mathbf{x}) = \sum_{z=1}^{N} p_{\theta}(z)$ Today we're thinking about the case where it is a Multivariate

 $\mathbf{x} \sim p_{\boldsymbol{\theta}}(\cdot|z)$ This could be any arbitrary distribution

is a Multivariate Gaussian.

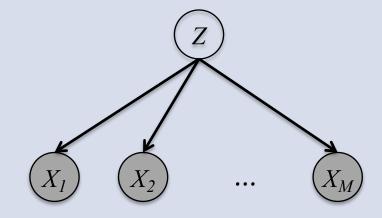

(Marginal) Log-likelihood:

$$\ell(\boldsymbol{\theta}) = \log \prod_{i=1}^{N} p_{\boldsymbol{\theta}, \boldsymbol{\phi}}(\mathbf{x}^{(i)})$$
$$= \sum_{i=1}^{N} \log \sum_{z=1}^{K} p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|z) p_{\boldsymbol{\phi}}(z)$$

Learning a Mixture Model

Supervised Learning: The parameters decouple!

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, \mathbf{z}^{(i)}) \}_{i=1}^{N}$$


$$\boldsymbol{\theta}^*, \boldsymbol{\phi}^* = \underset{\boldsymbol{\theta}, \boldsymbol{\phi}}{\operatorname{argmax}} \sum_{i=1}^N \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|z^{(i)}) p_{\boldsymbol{\phi}}(z^{(i)})$$

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{N} \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|z^{(i)})$$

$$\phi^* = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{N} \log p_{\boldsymbol{\phi}}(z^{(i)})$$

Unsupervised Learning: Parameters are coupled by marginalization.

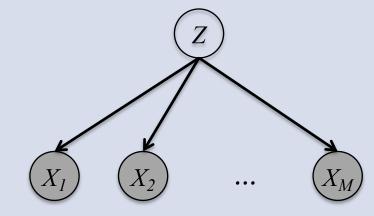
$$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^{N}$$

$$\boldsymbol{\theta}^*, \boldsymbol{\phi}^* = \underset{\boldsymbol{\theta}, \boldsymbol{\phi}}{\operatorname{argmax}} \sum_{i=1}^N \log \sum_{z=1}^K p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|z) p_{\boldsymbol{\phi}}(z)$$

Learning a Mixture Model

Supervised Learning: The parameters decouple!

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, \mathbf{z}^{(i)}) \}_{i=1}^{N}$$


Training certainly isn't as simple as the supervised case.

In many cases, we could still use some black-box optimization method (e.g. Newton-Raphson) to solve this coupled optimization problem.

This lecture is about a more problem-specific method: EM.

Unsupervised Learning: Parameters are coupled by marginalization.

$$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^{N}$$

$$\boldsymbol{\theta}^*, \boldsymbol{\phi}^* = \operatorname*{argmax}_{\boldsymbol{\theta}, \boldsymbol{\phi}} \sum_{i=1}^N \log \sum_{z=1}^K p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|z) p_{\boldsymbol{\phi}}(z)$$

EXPECTATION MAXIMIZATION

Hard Expectation-Maximization

- Initialize parameters randomly
- while not converged
 - 1. E-Step:

Set the latent variables to the the values that maximizes likelihood, treating parameters as observed

Estimate unobserved variables

2. M-Step:

Set the **parameters** to the values that maximizes likelihood, treating

latent variables as observed

MLE given the estimated values of unobserved variables

(Soft) Expectation-Maximization

- Initialize parameters randomly
- while not converged
 - 1. E-Step:

Create one training example for each possible value of the latent variables

Weight each example according to model's confidence

Treat parameters as observed

2. M-Step:

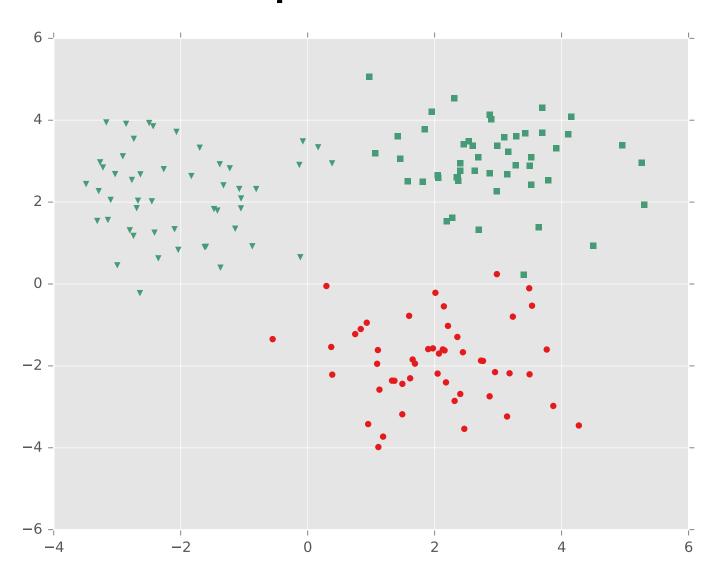
Set the **parameters** to the values that maximizes likelihood

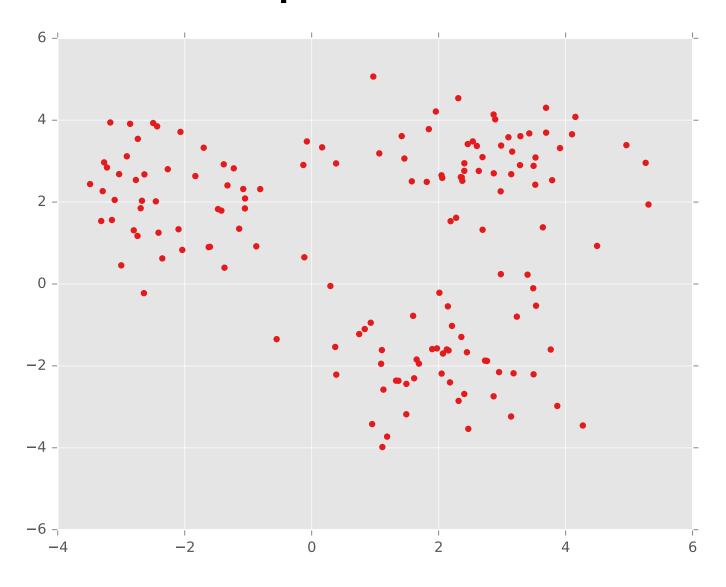
Treat pseudo-counts from above as observed

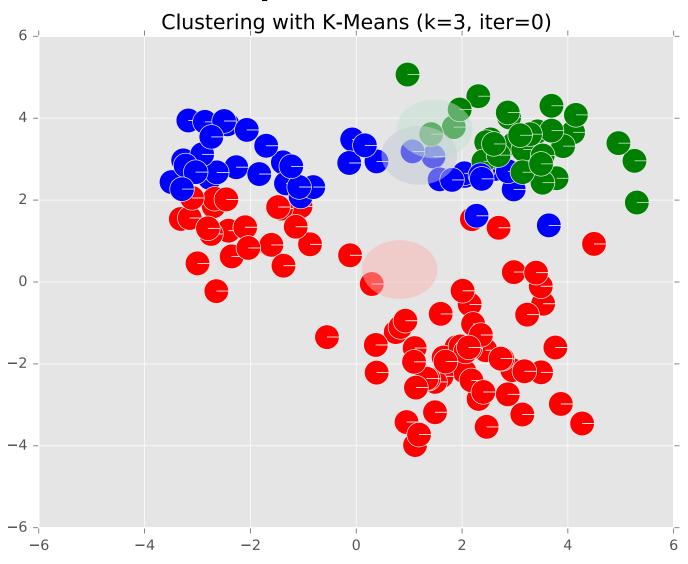
Estimate unobserved variables

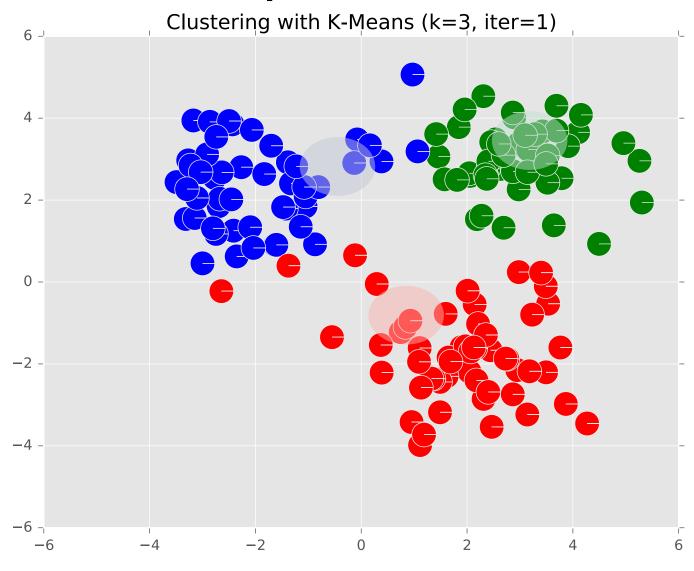
MLE given the estimated values of unobserved variables

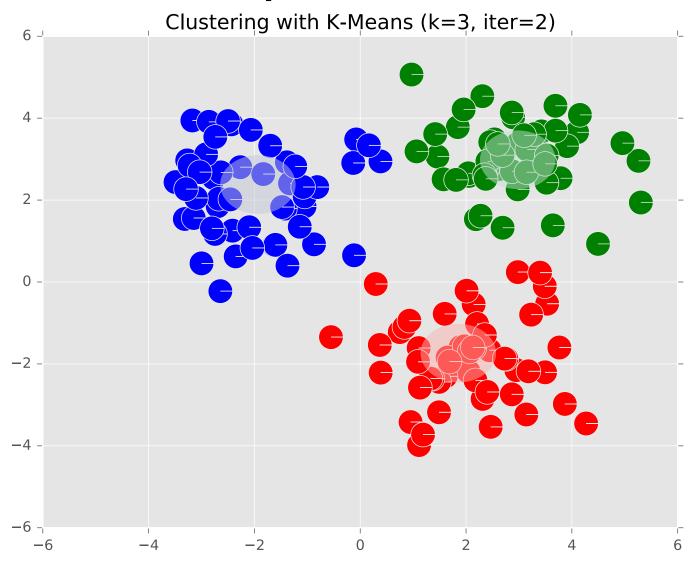
Hard EM vs. Soft EM

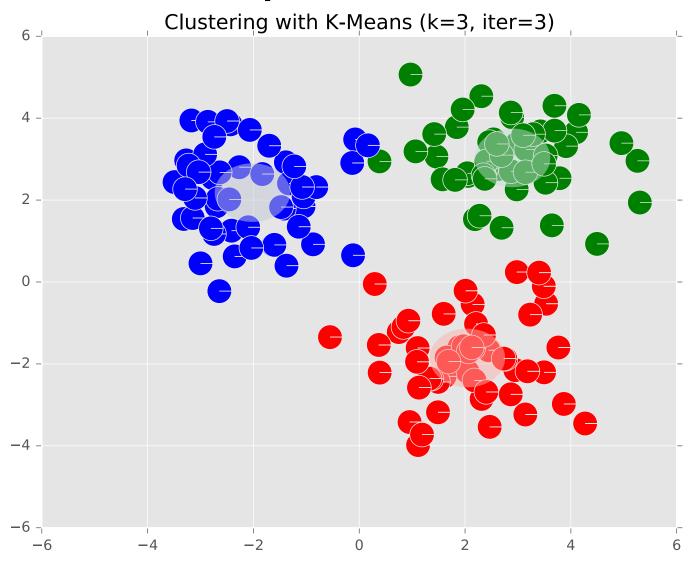

Algorithm 1 Hard EM for GMMs	Algorithm 1 Soft EM for GMMs	
1: procedure HARDEM($\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$) 2: Randomly initialize parameters, $\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}$ 3: while not converged do 4: E-Step: $z^{(i)} \leftarrow \operatorname{argmax} \log p(\mathbf{x}^{(i)} z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) + \log p(z; \boldsymbol{\phi})$	1: procedure SOFTEM $(\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N)$ 2: Randomly initialize parameters, $\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}$ 3: while not converged do 4: E-Step: $c_h^{(i)} \leftarrow p(z^{(i)} = k \mathbf{x}^{(i)}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$	
5: M-Step:	5: M-Step:	
$\phi_k \leftarrow \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(z^{(i)} = k), \forall k$ $\boldsymbol{\mu}_k \leftarrow \frac{\sum_{i=1}^{N} \mathbb{I}(z^{(i)} = k) \mathbf{x}^{(i)}}{\sum_{i=1}^{N} \mathbb{I}(z^{(i)} = k)}, \forall k$	$\phi_k \leftarrow \frac{1}{N} \sum_{i=1}^{N} c_k^{(i)}, \forall k$ $\boldsymbol{\mu}_k \leftarrow \frac{\sum_{i=1}^{N} c_k^{(i)} \mathbf{x}^{(i)}}{\sum_{i=1}^{N} c_k^{(i)}}, \forall k$	
$\boldsymbol{\Sigma}_{k} \leftarrow \frac{\sum_{i=1}^{N} \mathbb{I}(z^{(i)} = k) (\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k}) (\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k})^{T}}{\sum_{i=1}^{N} \mathbb{I}(z^{(i)} = k)}, \forall k$	$oldsymbol{\Sigma}_k \leftarrow rac{\sum_{i=1}^N c_k^{(i)} (\mathbf{x}^{(i)} - oldsymbol{\mu}_k) (\mathbf{x}^{(i)} - oldsymbol{\mu}_k)^T}{\sum_{i=1}^N c_k^{(i)}}, oldsymbol{orall} k$	
6: return $(oldsymbol{\phi},oldsymbol{\mu},oldsymbol{\Sigma})$	6: return $(oldsymbol{\phi},oldsymbol{\mu},oldsymbol{\Sigma})$	

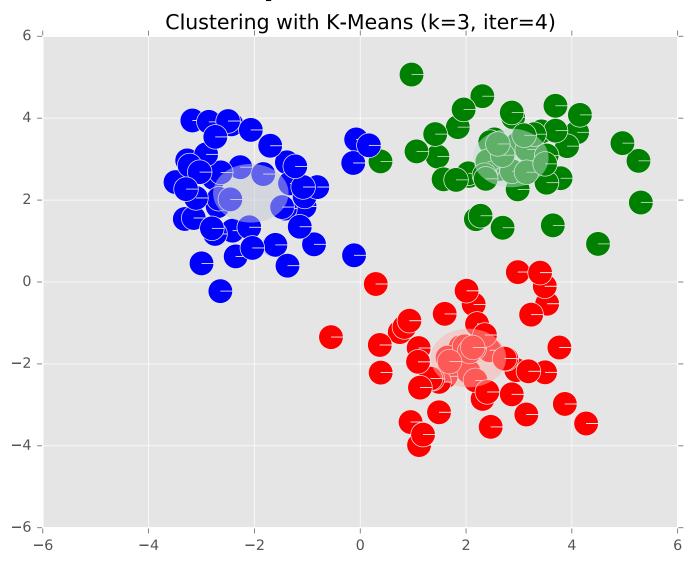

Posterior Inference for Mixture Model

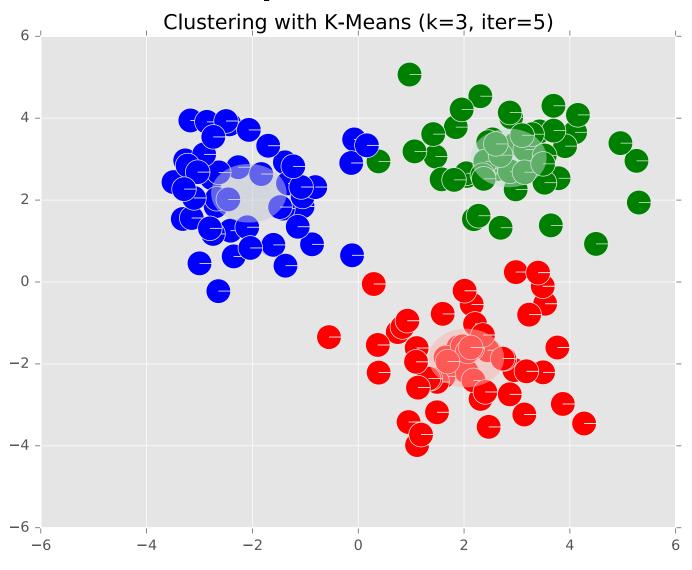

We obtain the posterior $p(z^{(i)} = k | x^{(i)}; \phi, \mu, \Sigma)$ as follows:

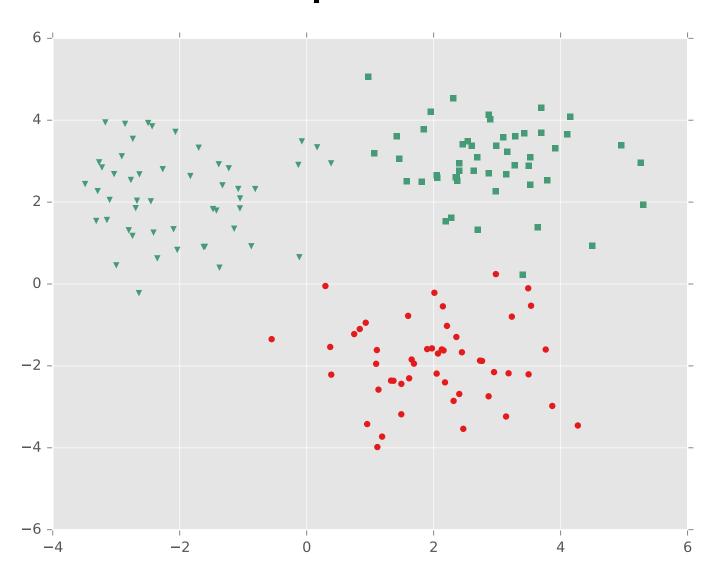

$$p(z^{(i)} = k | \mathbf{x}^{(i)}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{p(\mathbf{x}^{(i)} | z^{(i)} = k; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z^{(i)} = k; \boldsymbol{\phi})}{\sum_{j=1}^{K} p(\mathbf{x}^{(i)} | z^{(i)} = j; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z^{(i)} = j; \boldsymbol{\phi})}$$
(1)

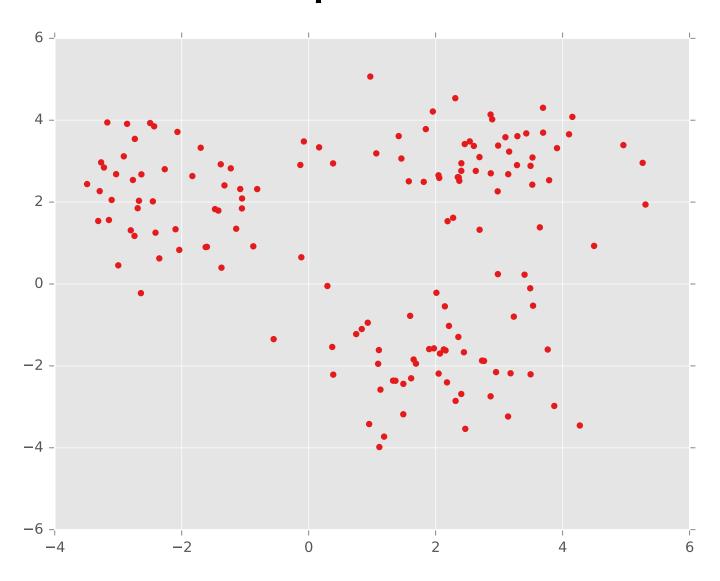

EXAMPLE: K-MEANS VS GMM

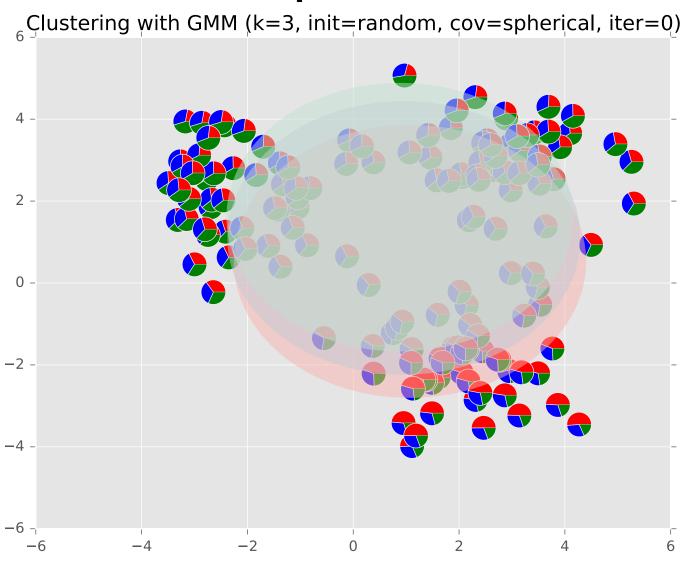


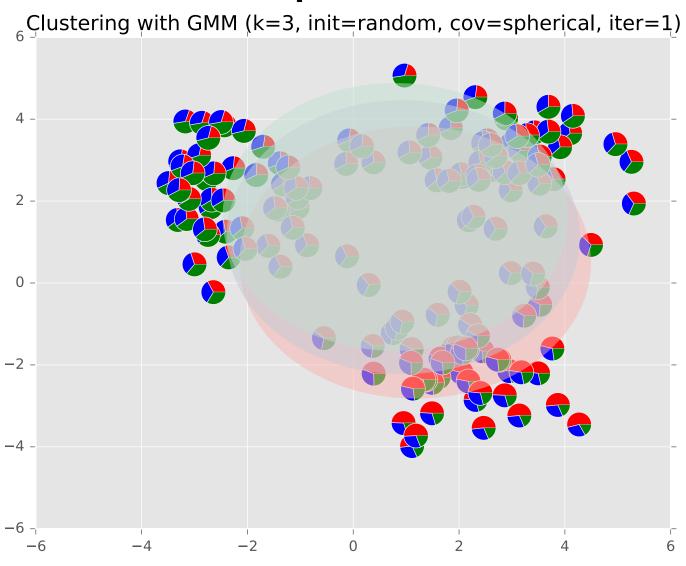


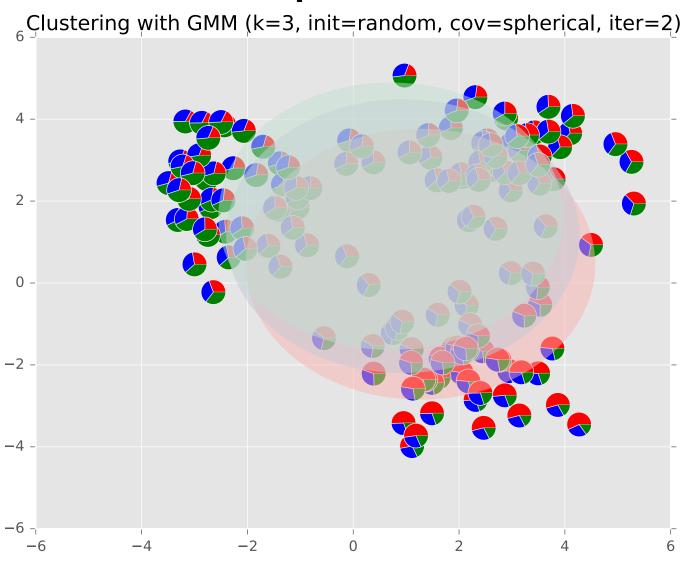

Example: K-Means

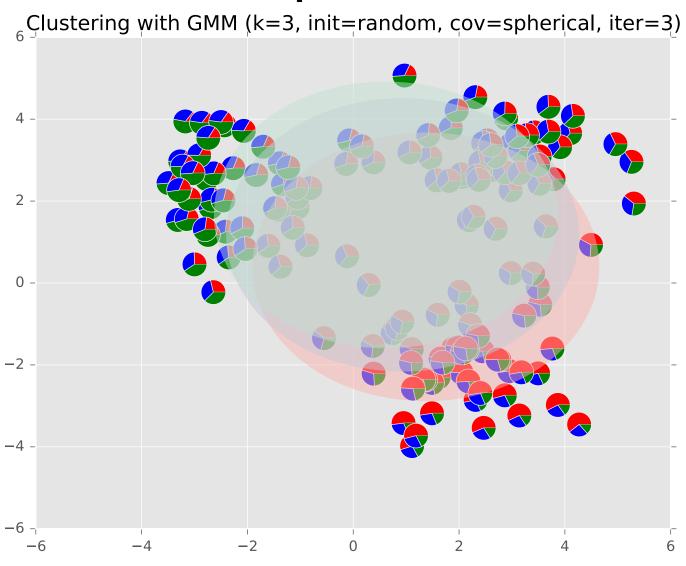


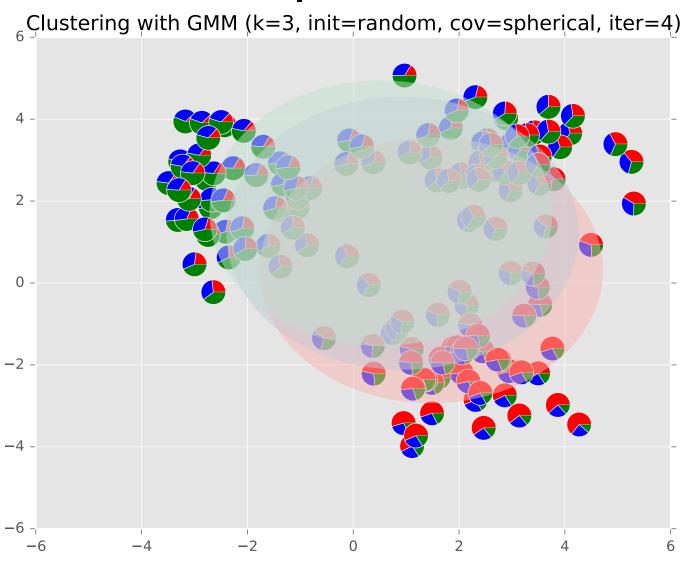

Example: K-Means

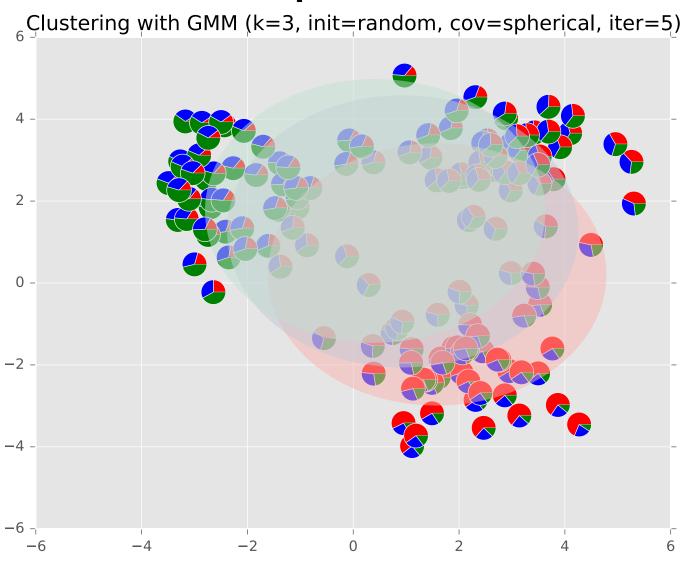


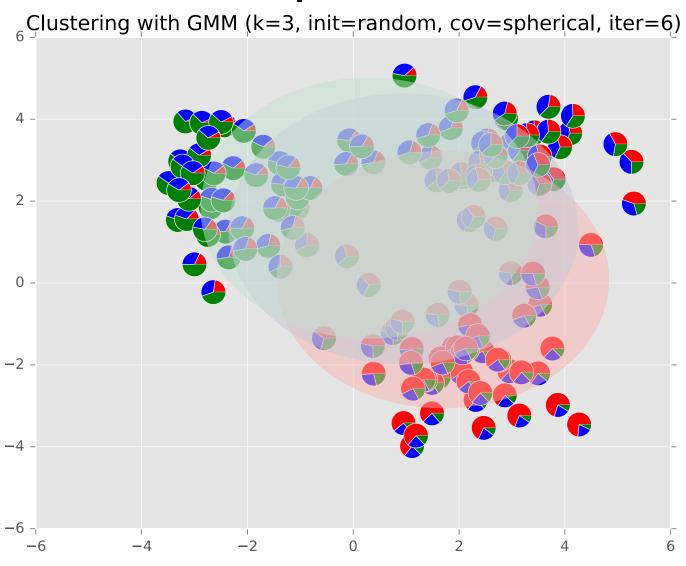

Example: K-Means

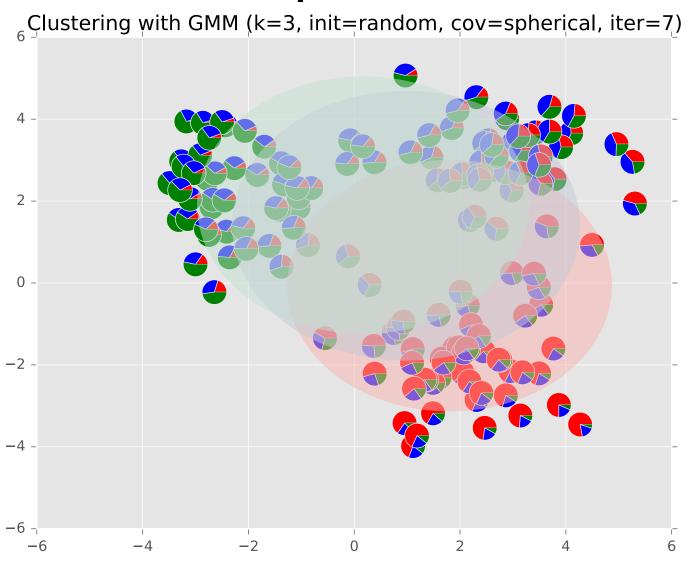


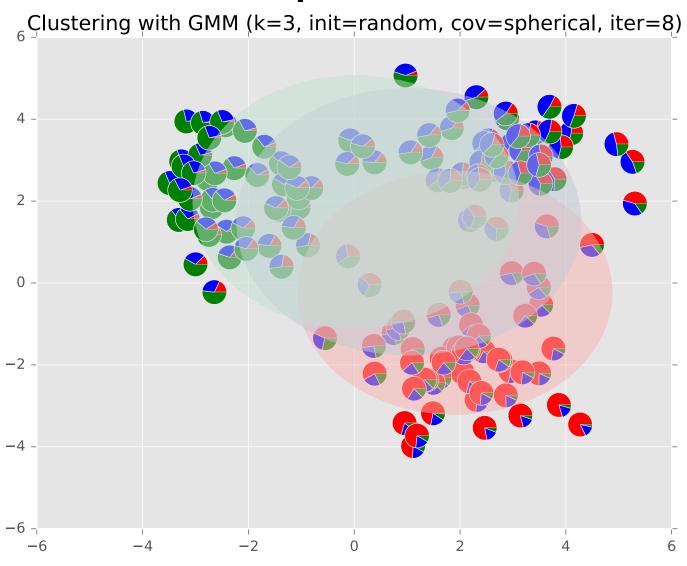


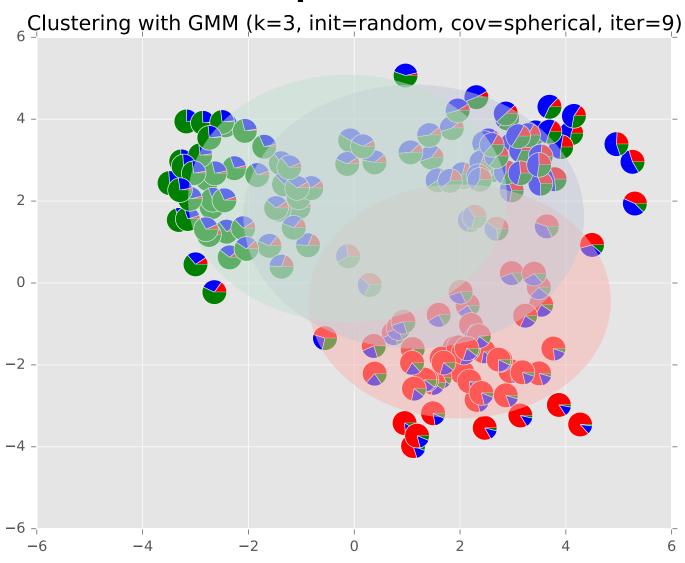


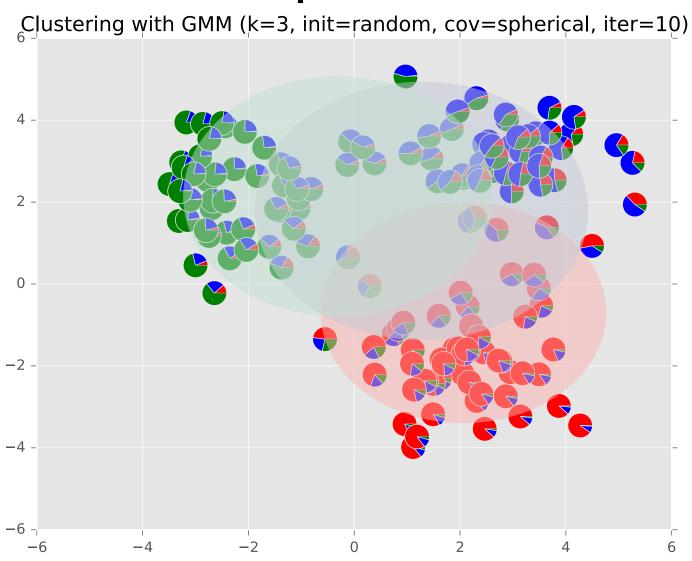


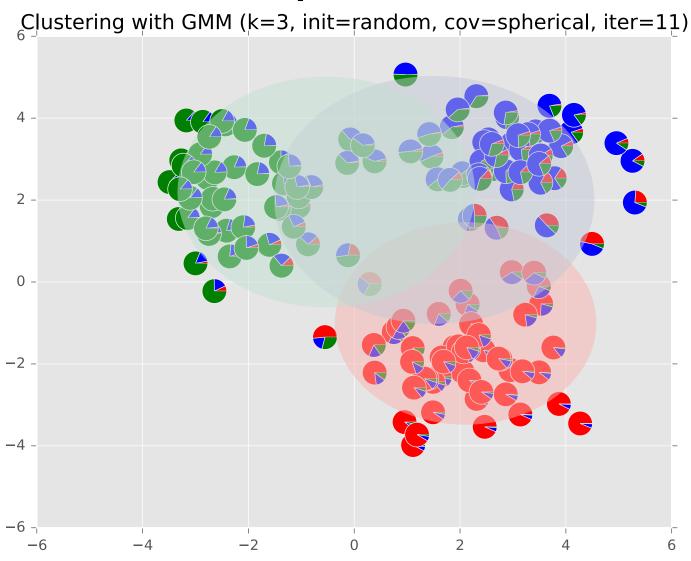


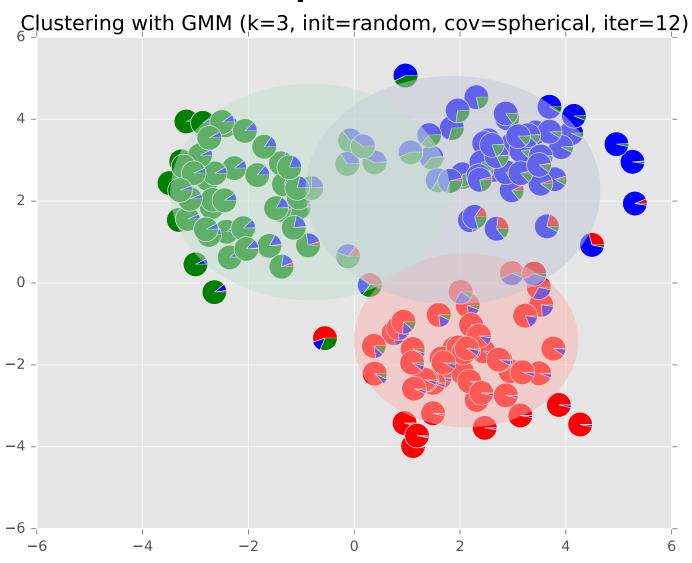


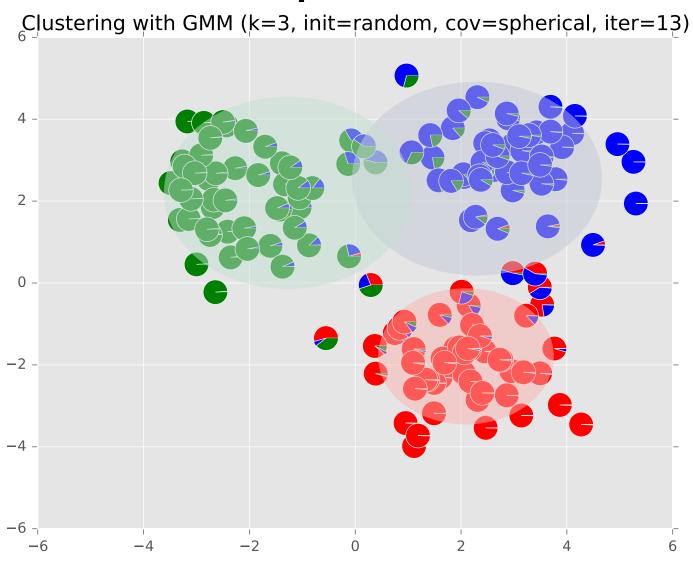


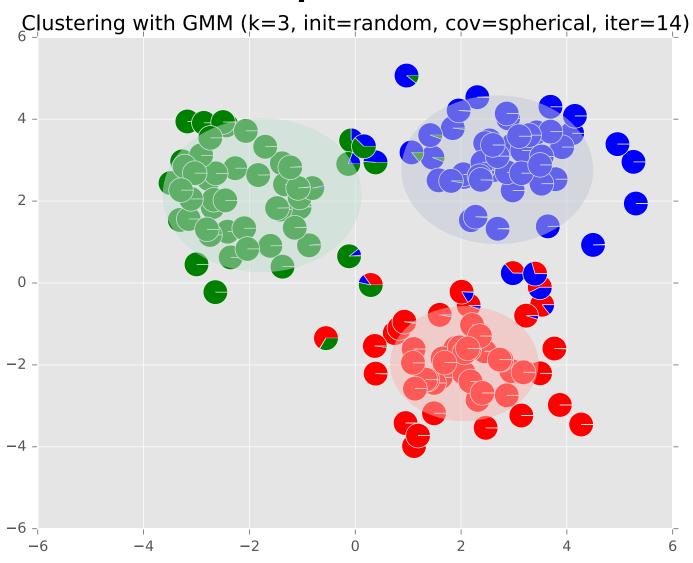


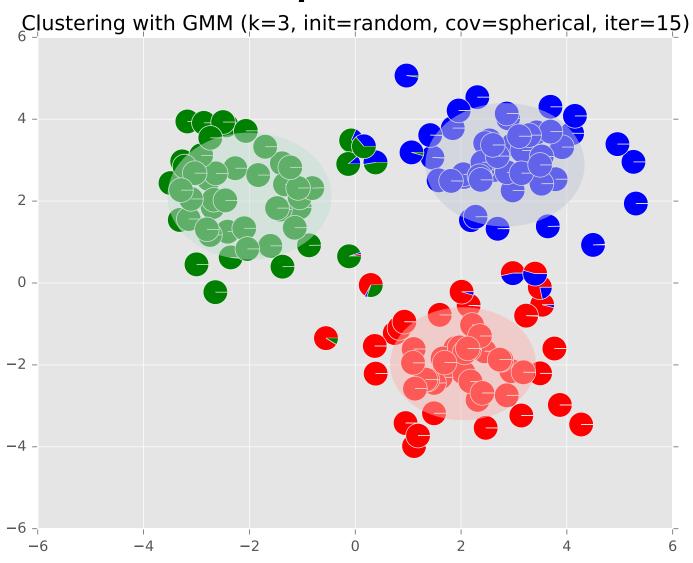


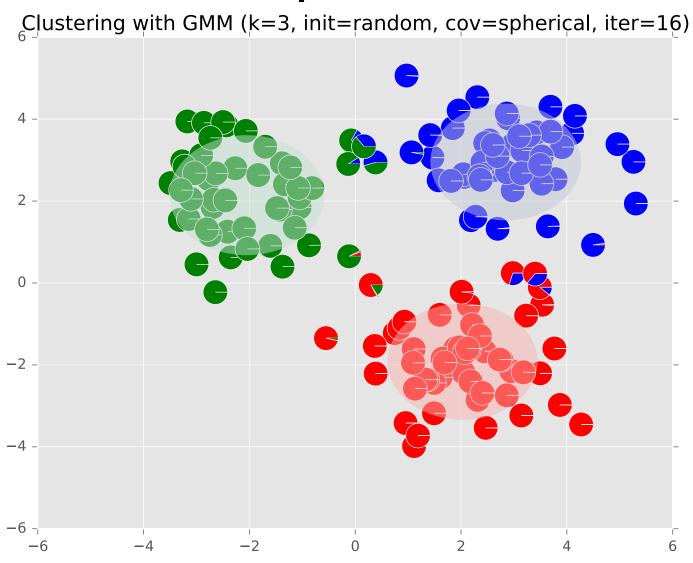


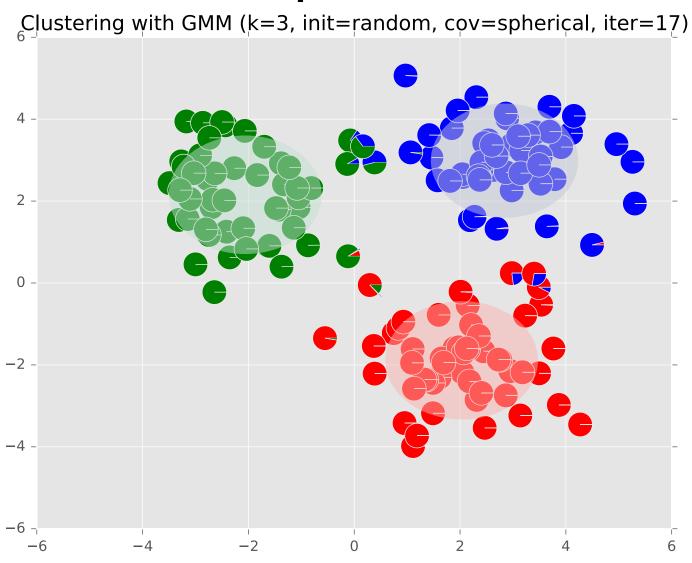


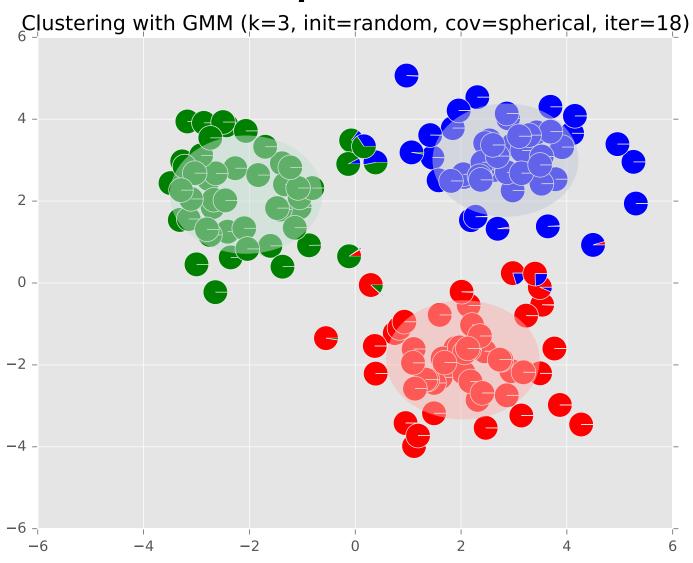


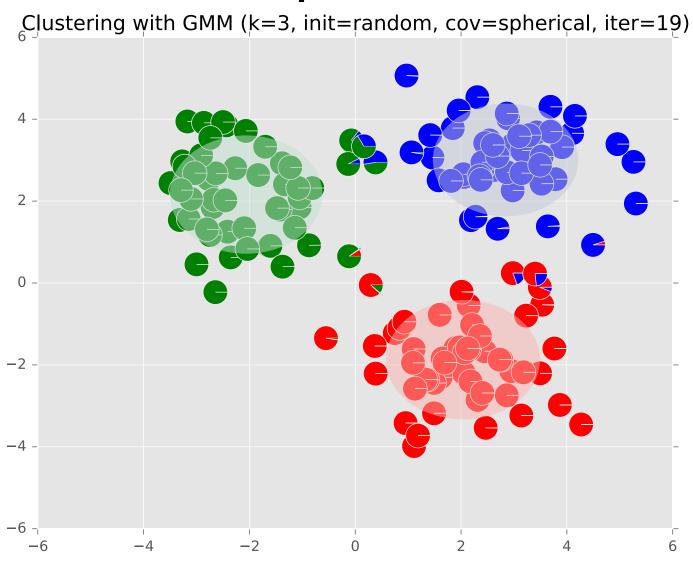












K-Means vs. GMM

Convergence:

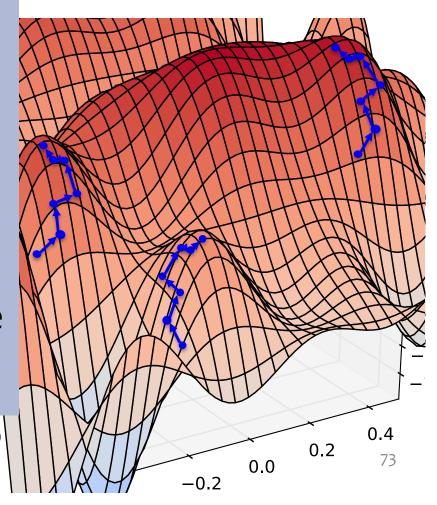
K-Means tends to converge much faster than a GMM

Speed:

Each iteration of K-Means is computationally less intensive than each iteration of a GMM

Initialization:

To **initialize** a **GMM**, we typically first run **K-Means** and use the resulting cluster centers as the means of the Gaussian components


Output:

A GMM yields a probability distribution over the cluster assignment for each point; whereas K-Means gives a single hard assignment

PROPERTIES OF EM

Properties of (Variational) EM

- EM is trying to optimize a nonconvex function
- But EM is a **local** optimization algorithm
- Typical solution: Random Restarts
 - Just like K-Means, we run the algorithm many times
 - Each time initialize parameters randomly
 - Pick the parameters that give highest likelihood

Variants of EM

- Generalized EM: Replace the M-Step by a single gradient-step that improves the likelihood
- Monte Carlo EM: Approximate the E-Step by sampling
- Sparse EM: Keep an "active list" of points (updated occasionally) from which we estimate the expected counts in the E-Step
- Incremental EM / Stepwise EM: If standard EM is described as a batch algorithm, these are the online equivalent
- etc.

A Report Card for EM

- Some good things about EM:
 - no learning rate (step-size) parameter
 - automatically enforces parameter constraints
 - very fast for low dimensions
 - each iteration guaranteed to improve likelihood
- Some bad things about EM:
 - can get stuck in local minima
 - can be slower than conjugate gradient (especially near convergence)
 - requires expensive inference step
 - is a maximum likelihood/MAP method

VARIATIONAL EM

Variational EM

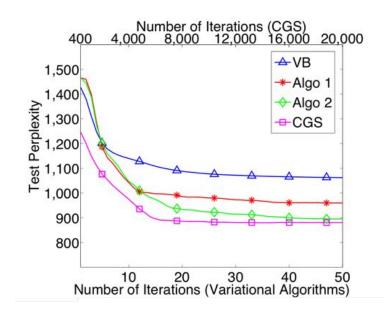
Whiteboard

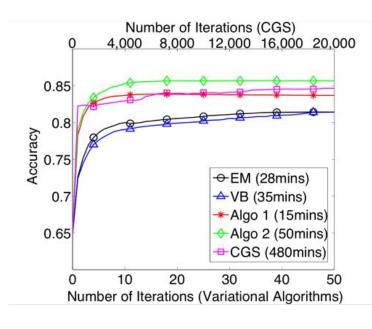
- Example: Unsupervised POS Tagging
- Variational Bayes
- Variational EM

Unsupervised POS Tagging

Bayesian Inference for HMMs

- Task: unsupervised POS tagging
- Data: 1 million words (i.e. unlabeled sentences) of WSJ text
- **Dictionary:** defines legal part-of-speech (POS) tags for each word type
- Models:
 - EM: standard HMM
 - VB: uncollapsed variational Bayesian HMM
 - Algo 1 (CVB): collapsed variational Bayesian HMM (strong indep. assumption)
 - Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
 - CGS: collapsed Gibbs Sampler for Bayesian HMM


 $\textbf{Algo 1 mean field update:} \quad q(z_t = k) \propto \frac{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{k,w}^{\neg t}] + \beta}{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{k,\cdot}^{\neg t}] + W\beta} \cdot \frac{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{z_{t-1},k}^{\neg t}] + \alpha}{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{z_{t-1},\cdot}^{\neg t}] + K\alpha} \cdot \frac{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{k,z_{t+1}}^{\neg t}] + \alpha + \mathbb{E}_{q(\mathbf{z}^{\neg t})}[\delta(z_{t-1} = k = z_{t+1})]}{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{k,\cdot}^{\neg t}] + K\alpha} \cdot \frac{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{k,z_{t+1}}^{\neg t}] + \alpha + \mathbb{E}_{q(\mathbf{z}^{\neg t})}[\delta(z_{t-1} = k = z_{t+1})]}{\mathbb{E}_{q(\mathbf{z}^{\neg t})}[C_{k,\cdot}^{\neg t}] + K\alpha + \mathbb{E}_{q(\mathbf{z}^{\neg t})}[\delta(z_{t-1} = k)]}$


CGS full conditional: $p(z_t = k | \mathbf{x}, \mathbf{z}^{\neg t}, \alpha, \beta) \propto \frac{C_{k,w}^{\neg t} + \beta}{C_{k,\cdot}^{\neg t} + W\beta} \cdot \frac{C_{z_{t-1},k}^{\neg t} + \alpha}{C_{z_{t-1},\cdot}^{\neg t} + K\alpha} \cdot \frac{C_{k,z_{t+1}}^{\neg t} + \alpha + \delta(z_{t-1} = k = z_{t+1})}{C_{k,\cdot}^{\neg t} + K\alpha + \delta(z_{t-1} = k)}$

Unsupervised POS Tagging

Bayesian Inference for HMMs

- Task: unsupervised POS tagging
- Data: 1 million words (i.e. unlabeled sentences) of WSJ text
- Dictionary: defines legal part-of-speech (POS) tags for each word type
- Models:
 - EM: standard HMM
 - VB: uncollapsed variational Bayesian HMM
 - Algo 1 (CVB): collapsed variational Bayesian HMM (strong indep. assumption)
 - Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
 - CGS: collapsed Gibbs Sampler for Bayesian HMM

Unsupervised POS Tagging

Bayesian Inference for HMMs

- Task: unsupervised POS tagging
- Data: 1 million words (i.e. unlabeled sentences) of WSJ text
- Dictionary: defines legal part-of-speech (POS) tags for each word type
- Models:
 - EM: standard HMM
 - VB: uncollapsed variational Bayesian HMM
 - Algo 1 (CVB): collapsed variational Bayesian HMM (strong indep. assumption)
 - Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
 - CGS: collapsed Gibbs Sampler for Bayesian HMM

Speed:

- → EM (28mins)
- → VB (35mins)
- *Algo 1 (15mins)
- → Algo 2 (50mins)
- --- CGS (480mins)

- EM is slow b/c of log-space computations
- VB is slow b/c of digamma computations
- Algo 1 (CVB) is the fastest!
- Algo 2 (CVB) is slow b/c it computes dynamic parameters
- CGS: an order of magnitude slower than any deterministic algorithm

Stochastic Variational Bayesian HMM

- Task: Human Chromatin Segmentation
- Goal: unsupervised segmentation of the genome
- Data: from ENCODE, "250 million observations consisting of twelve assays carried out in the chronic myeloid leukemia cell line K562"
- Metric: "the false discovery rate (FDR) of predicting active promoter elements in the sequence"

Models:

- DBN HMM: dynamic Bayesian HMM trained with standard EM
- SVIHMM: stochastic variational inference for a Bayesian HMM

Main Takeaway:

- the two models perform at similar levels of FDR
- SVIHMM takes one hour
- DBNHMM takes days

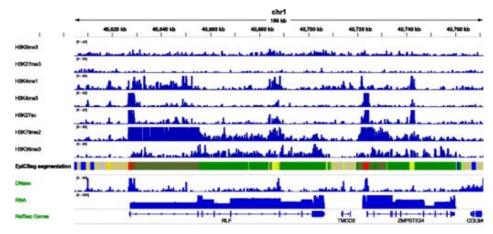
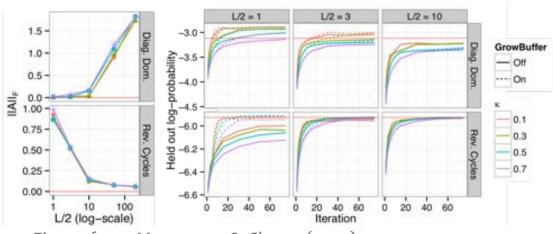
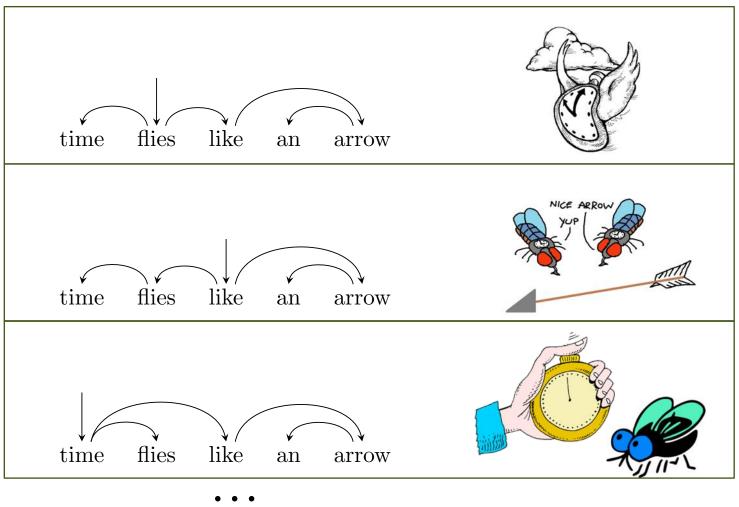
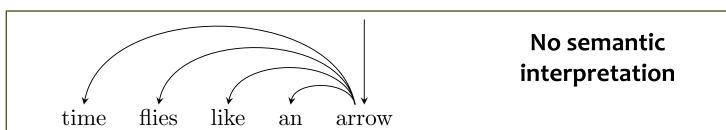
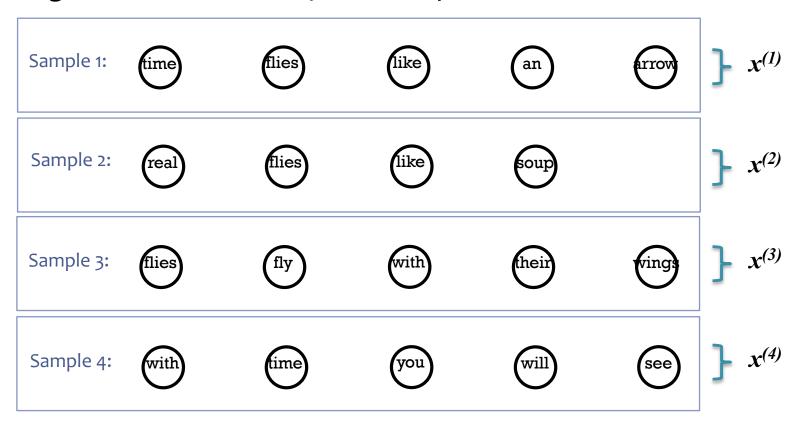


Figure from Foti et al. (2014)

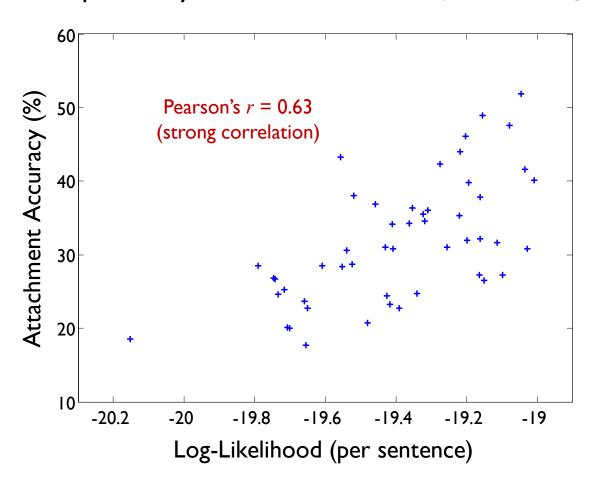

Figure from Mammana & Chung (2015)

Question: Can maximizing (unsupervised) marginal likelihood produce useful results?

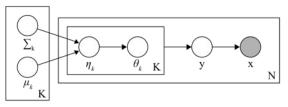

Answer: Let's look at an example...

- Babies learn the syntax of their native language (e.g. English) just by hearing many sentences
- Can a computer similarly learn syntax of a human language just by looking at lots of example sentences?
 - This is the problem of Grammar Induction!
 - It's an unsupervised learning problem
 - We try to recover the syntactic structure for each sentence without any supervision

Training Data: Sentences only, without parses



Test Data: Sentences **with** parses, so we can evaluate accuracy


Q: Does likelihood correlate with accuracy on a task we care about?

A: Yes, but there is still a wide range of accuracies for a particular likelihood value

Dependency Model with Valence (Klein & Manning, 2004)

Graphical Model for Logistic Normal Probabilistic Grammar

y = syntactic parse

x = observed sentence

Settings:

EM Maximum likelihood estimate of θ using the EM algorithm to optimize $p(\mathbf{x} \mid \theta)$ [14].

EM-MAP Maximum a posteriori estimate of $\boldsymbol{\theta}$ using the EM algorithm and a fixed symmetric Dirichlet prior with $\alpha > 1$ to optimize $p(\mathbf{x}, \boldsymbol{\theta} \mid \alpha)$. Tune α to maximize the likelihood of an unannotated development dataset, using grid search over [1.1, 30].

VB-Dirichlet Use variational Bayes inference to estimate the posterior distribution $p(\theta \mid \mathbf{x}, \alpha)$, which is a Dirichlet. Tune the symmetric Dirichlet prior's parameter α to maximize the likelihood of an unannotated development dataset, using grid search over [0.0001, 30]. Use the mean of the posterior Dirichlet as a point estimate for θ .

VB-EM-Dirichlet Use variational Bayes EM to optimize $p(\mathbf{x} \mid \boldsymbol{\alpha})$ with respect to $\boldsymbol{\alpha}$. Use the mean of the learned Dirichlet as a point estimate for $\boldsymbol{\theta}$ (similar to [5]).

VB-EM-Log-Normal Use variational Bayes EM to optimize $p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with respect to $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. Use the (exponentiated) mean of this Gaussian as a point estimate for $\boldsymbol{\theta}$.

Results:	Vite	attac rbi decodir		accuracy (%) MBR decoding		
	$ {\bf x} \le 10$	$ x \le 20$	all	$ x \le 10$	$ x \le 20$	all
Attach-Right	38.4	33.4	31.7	38.4	33.4	31.7
EM	45.8	39.1	34.2	46.1	39.9	35.9
EM-MAP, $\alpha = 1.1$	45.9	39.5	34.9	46.2	40.6	36.7
VB-Dirichlet, $\alpha = 0.25$	46.9	40.0	35.7	47.1	41.1	37.6
VB-EM-Dirichlet	45.9	39.4	34.9	46.1	40.6	36.9
VB-EM-Log-Normal, $\Sigma_k^{(0)} = \mathbf{I}$	56.6	43.3	37.4	59.1	45.9	39.9
VB-EM-Log-Normal, families	59.3	45.1	39.0	59.4	45.9	40.5

Table 1: Attachment accuracy of different learning methods on unseen test data from the Penn Treebank of varying levels of difficulty imposed through a length filter. Attach-Right attaches each word to the word on its right and the last word to \$. EM and EM-MAP with a Dirichlet prior (α > 1) are reproductions of earlier results [14, 18].