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Reminders

* Homework 4: Topic Modeling
— Out: Wed, Nov. 6
— Due: Mon, Nov. 18 at 11:59pm

 Homework 5: Variational Inference
— Out: Wed, Nov. 20
— Due: Mon, Dec. 2 at 11:59pm

* 618 Midway Poster:
— Submission: Thu, Nov. 21 at 11:59pm
— Presentation: Fri, Nov. 22 or Mon, Nov. 25




VARIATIONAL INFERENCE
RESULTS



Collapsed Variational Bayesian LDA
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Collapsed Variational Bayesian LDA

* Firstrow: test
set per word log
probabilities as
functions of
numbers of

iterations for VB,
CVB and Gibbs.

e Second row:
histograms of
final test set per
word log
probabilities
across 50
random
initializations.

Slide from Teh et al (2007)
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Online Variational Bayes for LDA
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Figures from Hoffman et al. (2010)



Online Variational Bayes for LDA

Algorithm 1 Batch variational Bayes for LDA Algorithm 2 Online variational Bayes for LDA

Initialize A randomly.

:  ran . Define p; = (19 +1) ™"
while relative improvement in £(w, ¢, vy, A) > 0.00001 do

Initialize A randomly.

E step: for t = 0 to oo do
ford=1to D do E step:
Initialize 4, = 1. (The constant 1 is arbitrary.) Initialize y;;, = 1. (The constant 1 is arbitrary.)

repeat
Set pauwr x exp{E,[log 04| + E,[log Brw] }
Set Yar = a+ ), PdwkNdw
until - >, |change inyqy| < 0.00001
end for
M step:
Set Apw = n+ Zd Ndw Pdwk
end while

repeat

Set ¢ < exp{E,[log 0:x] + E,[log Brw]}

Set i = @ + >, PrwkNiw
until - >, |change iny,| < 0.00001
M step:
Compute Ay = 7 + D1igey Gruk
Set A = (1 — pt>A + ptj\

end for
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Figure 2: Held-out perplexity obtained on the Nature (left) and Wikipedia (right) corpora as a func-
tion of CPU time. For moderately large mini-batch sizes, online LDA finds solutions as good as
those that the batch LDA finds, but with much less computation. When fit to a 10,000-document

Fi gures from Hoffman et al. (201 O) subset of the training corpus batch LDA’s speed improves, but its performance suffers.



Fully-Connected CRF

Model Results

This is a fully

C O n n e Ct e d (a) >Image (b) Unary classifiers (c) Robust P™ CRF (d) Fully connected CRF, (e) Fully connected CRF,
MCMC inference, 36 hrs our approach, 0.2 seconds

r' a h ' Figure 1: Pixel-level classification with a fully connected CRF. (a) Input image from the MSRC-21 dataset. (b)

p O The response of unary classifiers used by our models. (c) Classification produced by the Robust P CRF [9].

(d) Classification produced by MCMC inference [17] in a fully connected pixel-level CRF model; the algorithm
was run for 36 hours and only partially converged for the bottom image. (e) Classification produced by our
Infe rence inference algorithm in the fully connected model in 0.2 seconds.

e Cando MCMC, but B,=05=10 —+— Q(bird) )ﬁ \
oy S e "
. . o= B=70 ¢
* Instead use Variational 600590

Inference o 5 10 15 Zo_ﬂ----

KL-divergence

b * & &

Number of iterations 0 iterations 1 iteration 2 iterations 10 iterations
* Th e n fl Ite r SO m e (a) KL-divergence (b) Distributions Q (X ; =“bird”) (top) and Q(X; =“sky”) (bottom)
. Figure 2: Convergence analysis. (a) KL-divergence of the mean field approximation during successive itera-
varia b I es fOl’ SpGEd u p tions of the inference algorithm, averaged across 94 images from the MSRC-21 dataset. (b) Visualization of

convergence on distributions for two class labels over an image from the dataset.

Figures from Krahenbiihl & Koltun (2011)
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Model
1

Fully-Connected CRF

p(x]i) = —75 exp(—E(x))

Z(i)

E(x) = Z%(%) +

This is

> (i, 7)),

1<j

a fully

connected
graph!

Inference

« Cando MCM(, but

slow

* |nstead use Variational

Inference

* Then filter some
variables for speed up

Figures from Krahenbiihl & Koltun (2011)

Follow-up Work (combine with CNN)

Published as a conference paper at ICLR 2015

SEMANTIC IMAGE SEGMENTATION WITH DEEP CON-
VOLUTIONAL NETS AND FULLY CONNECTED CRFS

Liang-Chieh Chen
Univ. of California, Los Angeles
lcchen@cs.ucla.edu

George Papandreou *
Google Inc.
gpapan@google.com

Iasonas Kokkinos
CentraleSupélec and INRIA
iasonas.kokkinos@ecp.fr

Kevin Murphy
Google Inc.
kpmurphy@google.com

Alan L. Yuille
Univ. of California, Los Angeles
yuille@stat.ucla.edu

ABSTRACT

Deep Convolutional Neural Networks (DCNNs) have recently shown state of the
art performance in high level vision tasks, such as image classification and ob-
ject detection. This work brings together methods from DCNNs and probabilistic
graphical models for addressing the task of pixel-level classification (also called
“semantic image segmentation”). We show that responses at the final layer of
DCNNs are not sufficiently localized for accurate object segmentation. This is
due to the very invariance properties that make DCNNs good for high level tasks.
We overcome this poor localization property of deep networks by combining the
responses at the final DCNN layer with a fully connected Conditional Random
Field (CRF). Qualitatively, our “DeepLab” system is able to localize segment
boundaries at a level of accuracy which is beyond previous methods. Quantita-
tively, our method sets the new state-of-art at the PASCAL VOC-2012 semantic
image segmentation task, reaching 71.6% IOU accuracy in the test set. We show
how these results can be obtained efficiently: Careful network re-purposing and a
novel application of the "hole’ algorithm from the wavelet community allow dense
computation of neural net responses at 8 frames per second on a modern GPU.
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Joint Parsing and Alignment with
Weakly Synchronized Grammars

— S _ | Sample Synchronization Features |
NP _—— VP #sa( 503, ) = COARSESOURCETARGET  asa, asa |1
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IN NP > , 07 = OARSESOURCEALIGN S
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were  established in such places as Quanzhou Zhangzhou etc.
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Figure 2: An example of a Chinese-English sentence pair with parses, word alignments, and a subset of the full optimal
ITG derivation, including one totally unsynchronized bispan (b4), one partially synchronized bispan (b7), and and fully
synchronized bispan (bg). The inset provides some examples of active synchronization features (see Section 4.3) on
these bispans. On this example, the monolingual English parser erroneously attached the lower PP to the VP headed by
established, and the non-syntactic ITG word aligner misaligned % to such instead of to etc. Our joint model corrected
both of these mistakes because it was rewarded for the synchronization of the two NPs joined by bs.

Figures from Burkett et al. (2010)
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Joint Parsing and Alignment with
Weakly Synchronized Grammars

Figures from Burkett & Klein (ACL 2013 tutorial)

N _ ' _ Test Results
@) Joint Parsing and Alignment ChF, EngF, TotF,
Output: Monolingual | 83.6 81.2 82.5
& Qe Reranker 86.0 83.8 84.9
r f Joint 857 845  85.1
ﬁ_@‘o\ Table 1: Parsing results. Our joint model has the highest
reported F; for English-Chinese bilingual parsing.
Test Results
Precision Recall AER F;
HMM 86.0 584  30.0 69.5
ITG 86.8 73.4 202 795
: Joint 85.5 84.6 149 85.0
This uses
Structured

Table 2: Word alignment results. Our joint model has the

Mean Field V.I. highest reported F; for English-Chinese word alignment.

13
Figures from Burkett et al. (2010)



HIDDEN STATE CRFS



Case Study: Object Recognition

Data consists of images x and labels y.

' v v v, TR )R . &2
l\ \ ’ _'\ 3 f . A \;

leopard
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Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches”

* Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
l[atent variables in
mind

e zisnotobserved at
train or test time

leopard



Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
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Case Study: Object Recognition

Data consists of images x and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

Define graphical
model with these
l[atent variables in
mind

z is not observed at
train or test time
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Hidden-state CRFs

pata: D = {z",y "}

1
Jointmodel:  po(y,z | x) = Ve (Yo Za, )
Z(x,0) *-

Marginalized model: Do (y | x) Zpé’ Y,z | x)

19



Hidden-state CRFs

Data: D = {z\™, ym IV

1
Joint model: pe(y7z ‘ m) — Z(w 0) Hwa(yaazaam)

Marginalized model: Do (y | x) Zpé’ Y,z | x)

We can train using gradient based methods:
(the values x are omitted below for clarity)

d(0D)
(d0| ) — Z (EZNPG('|y(n))[fj (y(n), Z)] — Ey,sze(-,-)[fj (y, Z)])

n=1

N
S:Y <7p9 o ‘ y(n) (y((xn)vza Z ‘pe(yavzazfoz,j(yaaza)>

Yo ;R
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GAUSSIAN MIXTURE MODEL
(GMM)



Gaussian Mixture-Model

Data: D = {(x(W1¥ . wherex® ¢ RM

Generative Story: ; ~ Categorical(¢)

x ~ Gaussian(u,, 2,)

Model: Joint:  p(X, z; ¢, u, )_ p(x|z; pu, X)p(2; @)

Marginal: p(x; ¢, , 3 Zp x|2; p, X)p(z; @)

(Marginal) Log-likelihood:
U, X long (x\; ¢, pu, X)



Mixture-Model

Data: D — {x( )}N where x() ¢ RM

Generative Story: ; ~ Categorical(¢)

x ~ po(-|2)
Model: Joint:  Dg.¢(X, Z) = po(x[2)pe(2)
Marginal: Dg (X ZPO 2)pg(2)

(Marginal) Log-likelihood:



Mixture-Model

Data: D = {xW1Y  wherex!?) ¢ RM

Generative Story: ; ~ Categorical(¢)

——

X ~ pg(-|2) C:‘ This could be any
arbitrary distribution

Model: Joint:  Pa.o(X, z) — pg (] parameterized by ©.

Z po: Today we’re thinking

about the case where it
is a Multivariate
Gaussian.

Marginal:  pg ¢

(Marginal) Log-likelihood:

N
() =log | | pe,¢(x™)
=1

N K -
= log ) pe(x"|2)pg(2)
1=1 z=1



Learning a Mixture Model

Supervised Learning: The Unsupervised Learning: Parameters
parameters decouple! are coupled by marginalization.
D = {(x®, 20NN, D= {x"}Y,

N N K
0", " = ar%rgax Z log pe (x\V|2())pg (2(9) 0", " = ar%rgax Z log Zpg(x(") 12)pe(2)
2 =1 ! =1 z=1

N
0" = argmax Z log pe (x9|2(9)
o =1

N
¢* = argmax Z log pg (2\V)
o =1



Learning a Mixture Model

Supervised Learning: The Unsupervised Learning: Parameters
parameters decouple! are coupled by marginalization.
D = {(x®, 20NN, D= {x"}Y,
RN

Training certainly isn’t as simple
as the supervised case.

In many cases, we could still use
< some black-box optimization
method (e.g. Newton-Raphson)

_ ] to solve this coupled . Y& @
0" 4 optimization problem. 0%, 0 =af%fga><210g2pe<x 12)pe(2)

1=1 z=1
This lecture is about a more @

problem-specific method: EM.




EXPECTATION MAXIMIZATION



Hard Expectation-Maximization

* |nitialize parameters randomly

* while not converged

1. [E-Step:
Set the latent variables to the the
values that maximizes likelihood,
treating parameters as observed

2. M-Step:

Set the parameters to the values
that maximizes IikelihOOd, treating

latent variables as observed

Estimate
unobserved
variables

MLE given the
estimated values
of unobserved
variables



(Soft) Expectation-Maximization

* |nitialize parameters randomly
* while not converged

1.

E-Step:
Create one training example for
each possible value of the

Weight each example according
to model’s confidence

Treat parameters as observed

2. M-Step:

Set the parameters to the values
that maximizes likelihood

Treat pseudo-counts from above as observed

Estimate
unobserved
variables

MLE given the
estimated values
of unobserved
variables



Hard EM vs. Soft EM

Algorithm 1 Hard EM for GMMs

Algorithm 1 Soft EM for GMMs

1: procedure HARDEM(D = {x(V}N )

2:
3:
4:

6:

Randomly initialize parameters, ¢, pu, 32
while not converged do
E-Step:

2 « argmax logp(x(i)\z; w, ) + log p(z; @)

M-Step:

N
1 :
— (@) —
O ;:1 I(z\" =k),Vk

Zif\il I(z® = k)x
Y Iz = k)
N 7 7 7

Zi:l H(z( ) = k/’)(x( ) — Mk)(x( ) — Nk)T Vi

Zi\;1 H(Z(i) = k)

Y

My <

Ek<—

return (¢, p, X)

1: procedure SOFTEM(D = {x(}N )

2:
3:
4:

5:

6:

Randomly initialize parameters, ¢, p, 2

while not converged do

E-Step:

M-Step:

A p(z® = k|xD; ¢, 1, )

1 <
b1 S e vk
1=1

By, <—

2k<_

2

N (9)
i=1 Ck

<@

ZN

i=1 Ck
(X(i) = “k)(x(i) - Hk)T

2.

N (9)
i=1 Ck

(4)

Yk

return (¢, p, X)

>

N (i)
i=1Ck

, Vk




Posterior Inference
for Mixture Model
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EXAMPLE: K-MEANS VS GMM



Example: K-Means
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Example: K-Means
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Example: K-Means

- Clustering with K-Means (k=3, iter=0)
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Example: K-Means

- Clustering with K-Means (k=3, iter=1)
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Example: K-Means

~ Clustering with K-Means (k=3, iter=2)
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Example: K-Means

- Clustering with K-Means (k=3, iter=3)
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Example: K-Means

~ Clustering with K-Means (k=3, iter=4)
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Example: K-Means

~ Clustering with K-Means (k=3, iter=5)
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Example: GMM
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EX
W ample: GMM
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Example: GMM

. Clustering with GMM (k=3, init=random, cov=spherical, iter=0)
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Example: GMM

. Clustering with GMM (k=3, init=random, cov=spherical, iter=1)
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Example: GMM

. Clustering with GMM (k=3, init=random, cov=spherical, iter=2)
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Example: GMM

. Clustering with GMM (k=3, init=random, cov=spherical, iter=3)
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. Clustering with GMM

Example: GMM
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Example: GMM

. Clustering with GMM (k=3, init=random, cov=spherical, iter=5)
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GMM

Example

Clustering with GMM (k=3, init

6_|

=spherical, iter=6)
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. Clustering with GMM (k=3, init=random, cov=spherical, iter=7)

Example: GMM
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Example: GMM

with GMM

spherical, iter=8)
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GMM

Example

Clustering with GMM (k=3, init

6_I

=spherical, iter=9)

-random, cov
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GMM

Example

Clustering with GMM (k=3, init

6_I

=spherical, iter=10)

random, cov
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GMM

Example

Clustering with GMM (k=3, init

6_I

[

spherical, iter=11)
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Example: GMM

Llustering with GMM (k=3, init=random, cov=spherical, iter=12)
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Example: GMM

LClustering with GMM (k=3, init=random, cov=spherical, iter=13)
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Example: GMM

Llustering with GMM (k=3, init=random, cov=spherical, iter=14)
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Example: GMM

LClustering with GMM (k=3, init=random, cov=spherical, iter=15)
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Example: GMM

Llustering with GMM (k=3, init=random, cov=spherical, iter=16)
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Example: GMM

LClustering with GMM (k=3, init=random, cov=spherical, iter=17)
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Example: GMM

Llustering with GMM (k=3, init=random, cov=spherical, iter=18)
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Example: GMM

LClustering with GMM (k=3, init=random, cov=spherical, iter=19)
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K-Means vs. GMM

Convergence:
K-Means tends to converge much faster than a GMM

Speed:

Each iteration of K-Means is computationally less intensive than
each iteration of a GMM

Initialization:

To initialize a GMM, we typically first run K-Means and use the
resulting cluster centers as the means of the Gaussian components

Output:

A GMM yields a probability distribution over the cluster assignment
for each point; whereas K-Means gives a single hard assignment
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PROPERTIES OF EM



Properties of (Variational) EM

* EMis trying to optimize a
nonconvex function

* ButEM s a local
optimization algorithm

* Typical solution: Random

Restarts

— Just like K-Means, we run the ¢
algorithm many times

— Each time initialize
parameters randomly

— Pick the parameters that give
nighest likelihood
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Variants of EM

Generalized EM: Replace the M-Step by a single
gradient-step that improves the likelihood

Monte Carlo EM: Approximate the E-Step by
sampling
Sparse EM: Keep an “active list” of points

(updated occasionally) from which we estimate
the expected counts in the E-Step

Incremental EM [ Stepwise EM: If standard EM
is described as a batch algorithm, these are the
online equivalent

etc.



A Report Card for EM

* Some good things about EM:
— no learning rate (step-size) parameter
— automatically enforces parameter constraints
— very fast for low dimensions
— each iteration guaranteed to improve likelihood

* Some bad things about EM:
— can get stuck in local minima

— can be slower than conjugate gradient (especially
near convergence)

— requires expensive inference step
— is a maximum likelihood/MAP method



VARIATIONAL EM



Variational EM

Whiteboard
— Example: Unsupervised POS Tagging
— Variational Bayes
— Variational EM



Unsupervised POS Tagging

Bayesian Inference for HMMs
* Task: unsupervised POS tagging
« Data: 1 million words (i.e. unlabeled sentences) of WSJ text
* Dictionary: defines legal part-of-speech (POS) tags for each word type
* Models:
— EM: standard HMM
— VB: uncollapsed variational Bayesian HMM
— Algo 1(CVB): collapsed variational Bayesian HMM (strong indep. assumption)

— Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
— CGS: collapsed Gibbs Sampler for Bayesian HMM

]Eq(zﬁ:,)[cl?ﬁn] + 3 E(I(Zﬁ‘)[czﬂil,k] + « IE,I(zﬂ)[C,:‘Zl ] + o+ Eq(zﬁc)[(g(zl,l =k= ZL+1>]

+1

Algo 1mean field update:  at =0 o g T s 5 e R T B O Kot By o0 = )

Ct,+ 8 . Cot o+« . Crlyy ta+d(zm1 =k = 241)
Clt+WwWp CIt +Ka Cill + Koo+ (21 = k)

CGS full conditional: p(z = klx, 27", o, B) o

/79
Figure from Wang & Blunsom (2013)



Unsupervised POS Tagging

Bayesian Inference for HMMs
* Task: unsupervised POS tagging
« Data: 1 million words (i.e. unlabeled sentences) of WSJ text
* Dictionary: defines legal part-of-speech (POS) tags for each word type
* Models:
— EM: standard HMM
— VB: uncollapsed variational Bayesian HMM
— Algo 1(CVB): collapsed variational Bayesian HMM (strong indep. assumption)

— Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
— CGS: collapsed Gibbs Sampler for Bayesian HMM

Number of Iterations sCGS) Number of lterations (CGS)
400 4,000 8,000 12,000 16,000 20.000 0 4,000 8,000 12,000 16,000 20,000
1,500 =VB
—-Algo 1
’?1,400 - Algo 2
3 1,300 -5CGS "
Q y o
& 1,200 ©
o 3
2 1,100 A—Aa—A < ‘ -©-EM (28mins)
1,000 e . o] 0.7, -A-V/B (35mins)
900 e SEE: B - 2 4 4 —*-Algo 1 (15mins)
0.65 Algo 2 (50mins)
B0 = CGS (480mins)
10 30 40 50 0 10 20 30 40 50
Number of Iterations (Variational Algorithms) Number of Iterations (Variational Algorithms)

Figure from Wang & Blunsom (2013)
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Unsupervised POS Tagging

Bayesian Inference for HMMs
* Task: unsupervised POS tagging
« Data: 1 million words (i.e. unlabeled sentences) of WSJ text
* Dictionary: defines legal part-of-speech (POS) tags for each word type
* Models:
— EM: standard HMM
— VB: uncollapsed variational Bayesian HMM
— Algo 1(CVB): collapsed variational Bayesian HMM (strong indep. assumption)

— Algo 2 (CVB): collapsed variational Bayesian HMM (weaker indep. assumption)
— CGS: collapsed Gibbs Sampler for Bayesian HMM

Speed:

* EM s slow b/c of log-space computations
* VB is slow b/c of digamma computations

-©-EM (28mins)

“VB (35mins)_ * Algo 1(CVB)is the fastest!
—“Algo 1 (15mins) . Algo 2 (CVB) is slow b/c it computes dynamic
Algo 2 (50mins) parameters

-5 CGS (480mins)| * CGS:an order of magnitude slower than any
- \ deterministic algorithm

Figure from Wang & Blunsom (2013)



Stochastic Variational Bayesian HMM

Task: Human Chromatin
Segmentation

Goal: unsupervised
segmentation of the genome

Data: from ENCODE, “250
million observations consisting
of twelve assays carried out in
the chronic myeloid leukemia
cell line K562”

Metric: “the false discovery
rate (FDR) of predicting active
promoter elements in the
sequence"

Models:

— DBN HMM: dynamic Bayesian
HMM trained with standard EM

— SVIHMM: stochastic variational
inference for a Bayesian HMM
Main Takeaway:

— the two models perform at
similar levels of FDR

—  SVIHMM takes one hour
— DBNHMM takes days
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Grammar Induction

Question: Can maximizing (unsupervised) marginal
likelihood produce useful results?

Answer: Let’s look at an example...

 Babies learn the syntax of their native language (e.g.
English) just by hearing many sentences

* Can a computer similarly learn syntax of a human
language just by looking at lots of example
sentences?

— This is the problem of Grammar Induction!

— It’s an unsupervised learning problem

— We try to recover the syntactic structure for each
sentence without any supervision



Grammar Induction

T

time flies like an  arrow

V)ACW

time flies like an  arrow

LA~ TN

time flies like an  arrow

No semantic
interpretation

time flies like an  arrow




Grammar Induction

Training Data: Sentences only, without parses
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Test Data: Sentences with parses, so we can evaluate accuracy



Grammar Induction

Q: Does likelihood

i Dependency Model with Valence (Kiein & Manning, 2004)
correlate with

accuracy on a task l
we care about? . +
o2 50; Pearson’s r = 0.63 .
> (strong correlation) P
° 1 ] + . +
A: Yes, but there is S o
stilla widerange ¢ e Lt
of accuracies fora ¢ T e
particular £V o, W
likelihood value 9 i 5 "
20 - '
10 ‘ ‘ ‘ ‘ ‘ ‘ ‘
-20.2 -20 -19.8 -19.6 -194 -19.2 -19

Log-Likelihood (per sentence)

Figure from Gimpel & Smith (NAACL 2012) - slides



Figures from Cohen et al. (2009)

Grammar Induction

Graphical Model for Logistic
Normal Probabilistic Grammar

O+
| PO—0O

] 0, 0, K y X N

y = syntactic parse
X = observed sentence

Settings:

EM Maximum likelihood estimate of @ using the EM algorithm to optimize p(x | €) [14].

EM-MAP Maximum a posteriori estimate of @ using the EM algorithm and a fixed sym-
metric Dirichlet prior with a > 1 to optimize p(x, 0 | @). Tune « to maximize the
likelihood of an unannotated development dataset, using grid search over [1.1, 30].

VB-Dirichlet Use variational Bayes inference to estimate the posterior distribution p(@ |
x.«), which is a Dirichlet. Tune the symmetric Dirichlet prior's parameter a to
maximize the likelihood of an unannotated development dataset, using grid search
over [0.0001,30]. Use the mean of the posterior Dirichlet as a point estimate for .

VB-EM-Dirichlet Use variational Bayes EM to optimize p(x | e) with respect to ae. Use
the mean of the learned Dirichlet as a point estimate for @ (similar to [5]).

VB-EM-Log-Normal Use variational Bayes EM to optimize p(x | g, ¥) with respect to
p and . Use the (exponentiated) mean of this Gaussian as a point estimate for 6.

attachment accuracy (%)
Results: Viterbi decoding MBR decoding
x| <10 |x| <20 all x| <10 |x| <20 all
| Attach-Right 38.4 33.4 | 31.7 38.4 33.4 | 31.7
EM 45.8 39.1 | 34.2 46.1 399 | 359
EM-MAP, a = 1.1 45.9 395 1 349 16.2 40.6 | 36.7
' VB-Dirichlet, a = 0.25 46.9 40.0 | 35.7 47.1 41.1 | 37.6
VB-EM-Dirichlet 45.9 394 1 349 46.1 40.6 | 36.9
VB-EM-Log-Normal, £} = I 56.6 43.3 | 374 59.1 45.9 | 39.9
VB-EM-Log-Normal, families 59.3 45.1 | 39.0 59.4 45.9 | 40.5

Table 1: Attachment accuracy of different
Penn Treebank of varying levels of difficulty imposed through a length filter. Attach-Right
attaches each word to the word on its right and the last word to §. EM and EM-MAP with
a Dirichlet prior (a > 1) are reproductions of earlier results [14, 18].

learning methods on unseen test data from the
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