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Reminders

* Homework 4: Topic Modeling
— Out: Wed, Nov. 6
— Due: Mon, Nov. 18 at 11:59pm
 Homework 5: Variational Inference
— Out: Mon, Nov. 18
— Due: Mon, Nov. 25 at 11:59pm
* 618 Midway Poster:

— Submission: Thu, Nov. 21 at 11:59pm
— Presentation: Fri, Nov. 22 or Mon, Nov. 25




MEAN FIELD VARIATIONAL
INFERENCE



Variational Inference

Whiteboard
— Background: KL Divergence
— Mean Field Variational Inference (overview)
— Evidence Lower Bound (ELBO)
— ELBO’s relation to log p(x)



Variational Inference

Whiteboard

— Mean Field Variational Inference (derivation)
— Algorithm Summary (CAVI)
— Example: Factor Graph with Discrete Variables



Variational Inference

Whiteboard

— Example: two variable factor graph
* Iterated Conditional Models
* Gibbs Sampling
* Mean Field Variational Inference



EXACT INFERENCE ON GRID CRF



Application: Pose Estimation

di(yi, x) € R¥9: Jocal image representation, e.g. HoG
—  (w;, ¢i(yi,x)): local confidence map

bi.i(yi, y;) = good_fit(y;,y;) € R!: test for geometric fit
—  (wij, 0ij(vi,y;)): penalizer for unrealistic poses

together: argmax, p( (ylx) is sanitized version of local cues

s

original local classification  local + geometry

CAIIE (W LIVIU, 20U5-2U15
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Feature Functions for CRF in Vision

®i(yi, x): local representation, high-dimensional
—  (w;, ¢i(yi, x)): local classifier

oS-

/

i.i(yi,y;): prior knowledge, low-dimensional
—  (wij, ¢ij(vi,y;)): penalize outliers

learning adjusts parameters:

» unary w;: learn local classifiers and their importance
> binary w;;: learn importance of smoothing/penalization

argmax, p(y|x) is cleaned up version of local prediction

© Eric Xing @ CMU, 2005-2015 26



Case Study: Image Segmentation

* Image segmentation (FG/BG) by modeling of interactions btw RVs

— Images are noisy.
— Objects occupy continuous regions in an image.

[Nowozin,Lampert 2012]

Input image Pixel-wise separate Locally-consistent
optimal labeling joint optimal labeling

Unary Term  Pairwise Term

,—|—| f A 1 Y: labels
Y* = arg max Ev(y_’X)_l_E E V..(y.,y)|. X: data (features)
ot |1 Pt Lt Lo BT S: pixels
LS AN A - N;: neighbors of pixeli  »;

© Eric Xing (@ CMU, 2005-2015



Grid CRF

* Suppose we want to image segmentation using a grid model
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Grid CRF

* Suppose we want to image segmentation using a grid model
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Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?
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Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?
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Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?
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Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?
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Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?
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Grid CRF

Suppose we want to image segmentation using a grid model
What happens when we run variable elimination?
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Grid CRF

Suppose we want to image segmentation using a grid model
What happens when we run variable elimination?
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Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?
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VARIATIONAL INFERENCE
RESULTS



Collapsed Variational Bayesian LDA

* Explicit Variational Inference
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Collapsed Variational Bayesian LDA

* Collapsed Variational Inference
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Collapsed Variational Bayesian LDA

* Firstrow: test
set per word log
probabilities as
functions of
numbers of

iterations for VB,
CVB and Gibbs.

e Second row:
histograms of
final test set per
word log
probabilities
across 50
random
initializations.

Slide from Teh et al (2007)

Data from
dailykos.com
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Online Variational Bayes for LDA

Online 98K
900 -
850 -
~.800 - _ ~
:'i Online 3.3M \\ Batch S8k
? 750 -
Q700 -
)
0 650 -
600 -
[ [ [ [ [ [ [
Documents seen (log scale)
Documents 2048 4096 8192 12288 16384 32768 49152 65536
analyzed
systems systems service service service business business business
road health systems systems companies  service service industry
made communication health companies systems companies companies service
Top eight service service companies  business business industry industry companies
words announced billion market company company  company services services
national language = communication  billion industry management company company
west care company health market systems management management
language road billion industry billion services public public

Figures from Hoffman et al. (2010)
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Online Variational Bayes for LDA

Algorithm 1 Batch variational Bayes for LDA Algorithm 2 Online variational Bayes for LDA

Initialize A randomly.

:  ran . Define p; = (19 +1) ™"
while relative improvement in £(w, ¢, vy, A) > 0.00001 do

Initialize A randomly.

E step: for t = 0 to oo do
ford=1to D do E step:
Initialize 4, = 1. (The constant 1 is arbitrary.) Initialize y;;, = 1. (The constant 1 is arbitrary.)

repeat
Set pauwr x exp{E,[log 04| + E,[log Brw] }
Set Yar = a+ ), PdwkNdw
until - >, |change inyqy| < 0.00001
end for
M step:
Set Apw = n+ Zd Ndw Pdwk
end while

repeat

Set ¢ < exp{E,[log 0:x] + E,[log Brw]}

Set i = @ + >, PrwkNiw
until - >, |change iny,| < 0.00001
M step:
Compute Ay = 7 + D1igey Gruk
Set A = (1 — pt>A + ptj\

end for
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Figure 2: Held-out perplexity obtained on the Nature (left) and Wikipedia (right) corpora as a func-
tion of CPU time. For moderately large mini-batch sizes, online LDA finds solutions as good as
those that the batch LDA finds, but with much less computation. When fit to a 10,000-document

Fi gures from Hoffman et al. (201 O) subset of the training corpus batch LDA’s speed improves, but its performance suffers.
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Fully-Connected CRF

Model Results

This is a fully

C O n n e Ct e d (a) >Image (b) Unary classifiers (c) Robust P™ CRF (d) Fully connected CRF, (e) Fully connected CRF,
MCMC inference, 36 hrs our approach, 0.2 seconds

r' a h ' Figure 1: Pixel-level classification with a fully connected CRF. (a) Input image from the MSRC-21 dataset. (b)

p O The response of unary classifiers used by our models. (c) Classification produced by the Robust P CRF [9].

(d) Classification produced by MCMC inference [17] in a fully connected pixel-level CRF model; the algorithm
was run for 36 hours and only partially converged for the bottom image. (e) Classification produced by our
Infe rence inference algorithm in the fully connected model in 0.2 seconds.

e Cando MCMC, but B,=05=10 —+— Q(bird) )ﬁ \
oy S e "
. . o= B=70 ¢
* Instead use Variational 600590

Inference o 5 10 15 Zo_ﬂ----

KL-divergence

b * & &

Number of iterations 0 iterations 1 iteration 2 iterations 10 iterations
* Th e n fl Ite r SO m e (a) KL-divergence (b) Distributions Q (X ; =“bird”) (top) and Q(X; =“sky”) (bottom)
. Figure 2: Convergence analysis. (a) KL-divergence of the mean field approximation during successive itera-
varia b I es fOl’ SpGEd u p tions of the inference algorithm, averaged across 94 images from the MSRC-21 dataset. (b) Visualization of

convergence on distributions for two class labels over an image from the dataset.

Figures from Krahenbiihl & Koltun (2011)
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Model
1

Fully-Connected CRF

p(x]i) = —75 exp(—E(x))

Z(i)

E(x) = Z%(%) +

This is

> (i, 7)),

1<j

a fully

connected
graph!

Inference

« Cando MCM(, but

slow

* |nstead use Variational

Inference

* Then filter some
variables for speed up

Figures from Krahenbiihl & Koltun (2011)

Follow-up Work (combine with CNN)

Published as a conference paper at ICLR 2015

SEMANTIC IMAGE SEGMENTATION WITH DEEP CON-
VOLUTIONAL NETS AND FULLY CONNECTED CRFS

Liang-Chieh Chen
Univ. of California, Los Angeles
lcchen@cs.ucla.edu

George Papandreou *
Google Inc.
gpapan@google.com

Iasonas Kokkinos
CentraleSupélec and INRIA
iasonas.kokkinos@ecp.fr

Kevin Murphy
Google Inc.
kpmurphy@google.com

Alan L. Yuille
Univ. of California, Los Angeles
yuille@stat.ucla.edu

ABSTRACT

Deep Convolutional Neural Networks (DCNNs) have recently shown state of the
art performance in high level vision tasks, such as image classification and ob-
ject detection. This work brings together methods from DCNNs and probabilistic
graphical models for addressing the task of pixel-level classification (also called
“semantic image segmentation”). We show that responses at the final layer of
DCNNs are not sufficiently localized for accurate object segmentation. This is
due to the very invariance properties that make DCNNs good for high level tasks.
We overcome this poor localization property of deep networks by combining the
responses at the final DCNN layer with a fully connected Conditional Random
Field (CRF). Qualitatively, our “DeepLab” system is able to localize segment
boundaries at a level of accuracy which is beyond previous methods. Quantita-
tively, our method sets the new state-of-art at the PASCAL VOC-2012 semantic
image segmentation task, reaching 71.6% IOU accuracy in the test set. We show
how these results can be obtained efficiently: Careful network re-purposing and a
novel application of the "hole’ algorithm from the wavelet community allow dense
computation of neural net responses at 8 frames per second on a modern GPU.
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Joint Parsing and Alignment with
Weakly Synchronized Grammars

— S _ | Sample Synchronization Features |
NP _—— VP #sa( 503, ) = COARSESOURCETARGET  asa, asa |1
VED _— VP —_— FINESOURCETARGET ) 1

VBN PP
— 6(  .b7) = COARSESOURCEA 1
IN NP > , 07 = OARSESOURCEALIGN S
NP/ \PP FINESOURCEALIGN 1
.}J NI\|IS Hl\I NP
were  established in such places as Quanzhou Zhangzhou etc.
[ 1 P
— 5 \
PP
[ JE NP /
p AN
bs |15 NP
/
by [ o — NN VP
[ [ZAYA ABN /
bs [ 7 AS P VP
[ NP

Figure 2: An example of a Chinese-English sentence pair with parses, word alignments, and a subset of the full optimal
ITG derivation, including one totally unsynchronized bispan (b4), one partially synchronized bispan (b7), and and fully
synchronized bispan (bg). The inset provides some examples of active synchronization features (see Section 4.3) on
these bispans. On this example, the monolingual English parser erroneously attached the lower PP to the VP headed by
established, and the non-syntactic ITG word aligner misaligned % to such instead of to etc. Our joint model corrected
both of these mistakes because it was rewarded for the synchronization of the two NPs joined by bs.

Figures from Burkett et al. (2010)
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Joint Parsing and Alignment with
Weakly Synchronized Grammars

Berkeley

Joint Parsing and Alignment

;t, a,t’)
\ .

N L P
Output:

Test Results
ChF; EngF; TotF;
Monolingual | 83.6 81.2 82.5
Reranker 86.0 83.8 84.9
Joint 85.7 84.5 85.1

I S 1, YW 4
|7 f giroject 3 4/x7|/0—|,°j/0

Figures from Burkett & Klein (ACL 2013 tutorial)

Figures from Burkett et al. (2010)

Table 1: Parsing results. Our joint model has the highest
reported F; for English-Chinese bilingual parsing.

Test Results
Precision Recall AER F;
HMM 86.0 584 30.0 695
ITG 86.8 734 202 79.5
Joint 85.5 84.6 149 85.0

Table 2: Word alignment results. Our joint model has the
highest reported F; for English-Chinese word alignment.
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