

10-418 / 10-618 Machine Learning for Structured Data

MACHINE LEARNING DEPARTMENT

Machine Learning Department School of Computer Science Carnegie Mellon University

From Binary to Extreme Classification

Matt Gormley Lecture 2 Aug. 28, 2019

Q&A

Q: How do I get into the online section?

A: Sorry! I erroneously claimed we would automatically add you to the online section. Here's the correct answer:

To join the online section, email Dorothy Holland-Minkley at dfh@andrew.cmu.edu stating that you would like to join the online section.

Why the extra step? We want to make sure you've seen the **non-professional video recording** and are okay with the quality.

Q&A

Q: Will I get off the waitlist?

A: Don't be on the waitlist. Just email Dorothy to join the online section instead!

Q&A

Q: Can I move between 10-418 and 10-618?

A: Yes. Just email Dorothy Holland-Minkley at dfh@andrew.cmu.edu to do so.

Q: When is the last possible moment I can move between 10-418 and 10-618?

A: I'm not sure. We'll announce on Piazza once I have an answer.

QnA

Populating Wikipedia Infoboxes

Q: Why do interactions appear between variables in this example?

A: Consider the test time setting:

- Author writes a new article (vector x)
- Infobox is empty
- ML system must populate all fields (vector y) at once
- Interactions that were seen (i.e. vector y) at training time are unobserved at test time – so we wish to model them

romotional flyer Taito JP: Taito NA: Midway EU: Midway[1] AU: Leisure & Allied Industries^[2] Atari, Inc. (home) Tomohiro Nishikado Arcade, Atari 2600, Atari 5200. Atari 8-bit, MSX JP: June 1978[3] NA: July 1978 Fixed shooter Single-player, 2 players alternating Upright, cocktail[4] Taito 8080^[5] 8080 @ 2 MHz^[5] SN76477 @ 1.9968 MHz Fujitsu MB14241.[6] monochrome raster, vertical orientation, 224×256

resolution[5]

ROADMAP

How do we get from Classification to Structured Prediction?

- 1. We start with the simplest decompositions (i.e. classification)
- Then we formulate structured prediction as a search problem (decomposition of into a sequence of decisions)
- 3. Finally, we formulate structured prediction in the framework of **graphical models** (decomposition into **parts**)

Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.

Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.

Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.

Factors have local opinions (≥ 0)

Each black box looks at *some* of the tags X_i and words W_i

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
p	1	3	1	3
d	0.1	8	0	0

Note: We chose to reuse the same factors at different positions in the sentence.

Factors have local opinions (≥ 0)

Each black box looks at *some* of the tags X_i and words W_i

Global probability = product of local opinions

Each black box looks at *some* of the tags X_i and words W_i

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	v	n	р	d
V	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	О

Uh-oh! The probabilities of the various assignments sum up to Z > 1.

So divide them all by Z.

Markov Random Field (MRF)

Joint distribution over tags X_i and words W_i The individual factors aren't necessarily probabilities.

0.1 0.2 0.1

15

0.1 0.2 0.1

Hidden Markov Model

But sometimes we *choose* to make them probabilities. Constrain each row of a factor to sum to one. Now Z = 1.

Markov Random Field (MRF)

Joint distribution over tags X_i and words W_i

$$p(n, v, p, d, n, time, flies, like, an, arrow) = \frac{1}{Z}(4*8*5*3*...)$$

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

17

Conditional Random Field (CRF)

Conditional distribution over tags X_i given words w_i . The factors and Z are now specific to the sentence w.

$$p(n, v, p, d, n | time, flies, like, an, arrow) = \frac{1}{Z} (4 * 8 * 5 * 3 * ...)$$

$$v | p | d v | 1 6 3 4 n 8 4 2 0.1 p 1 3 1 3 d 0.1 8 0 0$$

$$v | p | d v | 1 6 3 4 n 8 4 2 0.1 p 1 3 1 3 d 0.1 8 0 0$$

$$v | p | d v | 1 6 3 4 n 8 4 2 0.1 p 1 3 1 3 d 0.1 8 0 0$$

like

an

arrow

time

flies

BACKGROUND: BINARY CLASSIFICATION

Linear Models for Classification

Key idea: Try to learn this hyperplane directly

- There are lots of commonly used Linear Classifiers
- These include:
 - Perceptron
 - (Binary) Logistic Regression
 - Naïve Bayes (under certain conditions)
 - (Binary) Support Vector Machines

Directly modeling the hyperplane would use a decision function:

$$h(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$$

for:

$$y \in \{-1, +1\}$$

(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs are discrete. $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots$

where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{+1, -1\}$

Prediction: Output determined by hyperplane.

$$\hat{y} = h_{m{ heta}}(\mathbf{x}) = \mathrm{sign}(m{ heta}^T\mathbf{x})$$
 sign $(a) = \begin{cases} 1, & \text{if } a \geq 0 \\ -1, & \text{otherwise} \end{cases}$ Assume $m{ heta} = [b, w_1, \dots, w_M]^T$ and $x_0 = 1$

Learning: Iterative procedure:

- initialize parameters to vector of all zeroes
- while not converged
 - receive next example $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$
 - predict $y' = h(x^{(i)})$
 - **if** positive mistake: **add x**⁽ⁱ⁾ to parameters
 - **if** negative mistake: **subtract x**⁽ⁱ⁾ from parameters

(Binary) Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{0, 1\}$

Model: Logistic function applied to dot product of parameters with input vector.

$$p_{\boldsymbol{\theta}}(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$

Learning: finds the parameters that minimize some objective function. $m{ heta}^* = \operatorname*{argmin} J(m{ heta})$

Prediction: Output is the most probable class.

$$\hat{y} = \operatorname*{argmax} p_{\boldsymbol{\theta}}(y|\mathbf{x})$$
$$y \in \{0,1\}$$

Support Vector Machines (SVMs)

Hard-margin SVM (Primal)

$$egin{aligned} \min_{\mathbf{w},b} & rac{1}{2} \|\mathbf{w}\|_2^2 \ ext{s.t.} & y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)}+b) \geq 1, \quad orall i=1,\dots,N \end{aligned}$$

Hard-margin SVM (Lagrangian Dual)

$$\max_{\boldsymbol{\alpha}} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}$$
s.t. $\alpha_i \ge 0$, $\forall i = 1, \dots, N$

$$\sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

Soft-margin SVM (Primal)

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C\left(\sum_{i=1}^{N} e_{i}\right)$$

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y$$

$$\text{s.t. } y^{(i)}(\mathbf{w}^{T} \mathbf{x}^{(i)} + b) \ge 1 - e_{i}, \quad \forall i = 1, \dots, N$$

$$e_{i} \ge 0, \quad \forall i = 1, \dots, N$$

Soft-margin SVM (Lagrangian Dual)

$$\max_{\boldsymbol{\alpha}} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}$$
s.t. $0 \le \alpha_i \le C, \quad \forall i = 1, \dots, N$

$$\sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

Decision Trees

Which attribute should be tested here?

$$S_{sunny} = \{D1,D2,D8,D9,D11\}$$

 $Gain(S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$
 $Gain(S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$
 $Gain(S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$

Binary and Multiclass Classification

Supervised Learning:

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N}$$

$$\mathbf{x} \sim p^*(\cdot)$$
 and $y = c^*(\cdot)$

Binary Classification:

$$y^{(i)} \in \{+1, -1\}$$

Multiclass Classification:

$$y^{(i)} \in \{1, \dots, K\}$$

Outline

Reductions (Binary → Multiclass)

- 1. one-vs-all (OVA)
- 2. all-vs-all (AVA)
- 3. classification tree
- error correcting output codes (ECOC)

Settings

- A. Multiclass Classification
- B. Hierarchical Classification
- C. Extreme Classification

Why?

- multiclass is the simplest structured prediction setting
- key insights in the simple reductions are analogous to later (less simple) concepts

REDUCTIONS OF MULTICLASS TO BINARY CLASSIFICATION

Reductions to Binary Classification

Whiteboard:

- Setting for multiclass to binary reductions
- Reduction 1: One-vs-All (OVA)
- Reduction 2: All-vs-All (AVA)
- Reduction 3: Classification Tree

HIERARCHICAL CLASSIFICATION

Hierarchical Classification

Setting:

- Given
 hierarchy
 over output
 labels
- Otherwise,
 the same as
 multiclass
 classification
- Each leaf
 node is a label

Hierarchical Classification

13					
960				45-4022	Logging Equipment Operators
961				45-4023	Log Graders and Scalers
962				45-4029	Logging Workers, All Other
963	47-0000				Construction and Extraction Occupations
964		47-1000			Supervisors of Construction and Extraction Workers
965			47-1010		First-Line Supervisors of Construction Trades and Extraction Workers
966				47-1011	First-Line Supervisors of Construction Trades and Extraction Workers
967		47-2000			Construction Trades Workers
968			47-2010		Boilermakers
969				47-2011	Boilermakers
970			47-2020		Brickmasons, Blockmasons, and Stonemasons
971				47-2021	Brickmasons and Blockmasons
972				47-2022	Stonemasons
973			47-2030		Carpenters
974				47-2031	Carpenters
975			47-2040		Carpet, Floor, and Tile Installers and Finishers
976 977				47-2041 47-2042	Carpet Installers
977				47-2042	Floor Layers, Except Carpet, Wood, and Hard Tiles Floor Sanders and Finishers
979	-			47-2043	Tile and Marble Setters
980			47-2050	2011	Cement Masons, Concrete Finishers, and Terrazzo Workers
981					
982			Tr	aining	g Data: pairs of occupation
983		47-3000			
984			47	ccrin	tions and their SOC code
985			ae	:2CHb	tions and their 300 code
986					
987 988			•	056	o,Rigging up man
989				900	o, ngging up man
990					
991			•	5000	o,Mimeographer
992		47-4000			o,
993			47		- D 1
994			•	3040	o,Doctor of optometry
995			47	フィエ	5,5 0 cto. 0. op toct.)
996				0-1-	\ \ \ \ a
997			47	8310),Wool presser
998				- J	,
999			47	9730	Comproce machine aparator
1000				0/20	Compress machine operator
1001			47	-	
1002			47	064	o,Pretzel packer
1003			47	904	o, rietzei packei
1004					
					a llat bay anattar

9260,Hot box spotter

Setting:

- Given
 hierarchy
 over output
 labels
- Otherwise, the same as multiclass classification
- Each leaf
 node is a label

Hierarchical Classification

Setting:

- Given
 hierarchy
 over output
 labels
- Otherwise,
 the same as
 multiclass
 classification
- Each leaf
 node is a label

Reductions to Binary Classification

Whiteboard:

- Hierarchical classification: how to build an appropriate classifier?
- Features of input vector and label
- Reduction 4: Error Correcting Output Codes (ECOC)

EXTREME CLASSIFICATION

Extreme Classification

Extreme Classification

Setting:

- Output label set is extremely large (e.g. millions of labels)
- Otherwise, the same as multiclass classification

Example Tasks:

- Large-scale facial recognition (billions?)
- Predicting Amazon product categories (3 million)
- Recommending Amazon items (100 million products)
- Predicting Wikipedia tags (2 million)
- Predicting Flick image tags
- Language modeling (millions of words)

Logarithmic-time One-Against-Some

Key idea behind this algorithm:

- build a **Recall Tree** where
 - each leaf node contains a set S of labels where |S| ≤ log₂(K)
 - depth of tree is $d \le \log_2(K)$
- learn one binary classifier per internal node to route an instance (vector x) to a leaf node
- learn one multiclass classifier per leaf over the set of labels S
 which restricts the label set for instances x routed there
- given a new instance, predict one of the |S| labels at the leaf to which the instance was routed

Logarithmic-time One-Against-Some

Properties:

- Competes with one-against-all (i.e. standard multiclass classifier) on benchmark datasets
- 2. Speed: O(log K) training and prediction
- 3. Space: O(K), same as one-against-all
- 4. Online learning!

Logarithmic-time One-Against-Some

Experiments:

Dataset	Task	Classes	Examples
ALOI[10]	Visual Object Recognition	1k	10^{5}
Imagenet[19]	Visual Object Recognition	$\approx 20k$	$\approx 10^7$
LTCB[14]	Language Modeling	$\approx 80k$	$\approx 10^8$
ODP[2]	Document Classification	$\approx 100k$	$\approx 10^6$

Learning Objectives

From Binary to Multiclass Classification

You should be able to...

- 1. Reduce the multiclass classification problem to a collection of binary classification problems
- 2. Identify the advantages and deficiencies of different multiclass-to-binary reductions
- 3. Implement one-vs-all, all-vs-all, classification tree, error correcting output codes
- 4. Differentiate multiclass, hierarchical, and extreme classification settings