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Q&A
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Q: How do I get into the online section?

A: Sorry! I erroneously claimed we would automatically 
add you to the online section. Here’s the correct 
answer:

To join the online section, email Dorothy Holland-
Minkley at dfh@andrew.cmu.edu stating that you 
would like to join the online section.

Why the extra step? We want to make sure you’ve seen 
the non-professional video recording and are okay with 
the quality.



Q&A
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Q: Will I get off the waitlist?

A: Don’t be on the waitlist. Just email Dorothy 
to join the online section instead! 



Q&A
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Q: Can I move between 10-418 and 10-618?

A: Yes. Just email Dorothy Holland-Minkley at 
dfh@andrew.cmu.edu to do so.

Q: When is the last possible moment I can 
move between 10-418 and 10-618?

A: I’m not sure. We’ll announce on Piazza once 
I have an answer.



QnA
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Populating Wikipedia Infoboxes

Q: Why do interactions appear between variables 
in this example?
A: Consider the test time setting:

– Author writes a new article (vector x)
– Infobox is empty
– ML system must populate all fields (vector y) at once
– Interactions that were seen (i.e. vector y) at training 

time are unobserved at test time – so we wish to 
model them



ROADMAP
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How do we get from Classification 
to Structured Prediction?
1. We start with the simplest decompositions (i.e. 

classification)
2. Then we formulate structured prediction as a search 

problem (decomposition of into a sequence of decisions)
3. Finally, we formulate structured prediction in the 

framework of graphical models (decomposition into 
parts)
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Sampling from a Joint Distribution

9time likeflies an arrow

X1 ψ2 X2 ψ4 X3 ψ6 X4 ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

A joint distribution defines a probability p(x) for each assignment of values x to variables X. 
This gives the proportion of samples that will equal x.



Sampling from a Joint Distribution
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A joint distribution defines a probability p(x) for each assignment of values x to variables X. 
This gives the proportion of samples that will equal x.



n n v d n
Sample 2:

time likeflies an arrow

Sampling from a Joint Distribution

11W1 W2 W3 W4 W5

X1 ψ2 X2 ψ4 X3 ψ6 X4 ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

A joint distribution defines a probability p(x) for each assignment of values x to variables X. 
This gives the proportion of samples that will equal x.



W1 W2 W3 W4 W5

X1 ψ2 X2 ψ4 X3 ψ6 X4 ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

Factors have local opinions (≥ 0)
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Each black box looks at some of the tags Xi and words Wi

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m
e

fli
es

lik
e

…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m
e

fli
es

lik
e

…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Note: We chose to reuse 
the same factors at 

different positions in the 
sentence.



Factors have local opinions (≥ 0)
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time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

Each black box looks at some of the tags Xi and words Wi

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

p(n, v, p, d, n, time, flies, like, an, arrow)     =      ?



Global probability = product of local opinions
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time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

Each black box looks at some of the tags Xi and words Wi

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Uh-oh! The probabilities of 
the various assignments sum 

up to Z > 1.
So divide them all by Z.



Markov Random Field (MRF)
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time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)

v n p d
v 1 6 3 4

n 8 4 2 0.1

p 1 3 1 3

d 0.1 8 0 0

v n p d
v 1 6 3 4

n 8 4 2 0.1

p 1 3 1 3

d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3

n 4 5 2

p 0.1 0.1 3

d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3

n 4 5 2

p 0.1 0.1 3

d 0.1 0.2 0.1

Joint distribution over tags Xi and words Wi
The individual factors aren’t necessarily probabilities.



time flies like an arrow

n v p d n<START>

Hidden Markov Model

16

But sometimes we choose to make them probabilities.  
Constrain each row of a factor to sum to one.  Now Z = 1.

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (.3 * .8 * .2 * .5 * …)



Markov Random Field (MRF)
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time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Joint distribution over tags Xi and words Wi



Conditional Random Field (CRF)

18time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v 5
n 5
p 0.1
d 0.2

Conditional distribution over tags Xi given words wi.
The factors and Z are now specific to the sentence w.

p(n, v, p, d, n | time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)



BACKGROUND: BINARY 
CLASSIFICATION
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Key idea: Try to learn 
this hyperplane directly

Linear Models for Classification

Directly modeling the 
hyperplane would use a 
decision function:

for:

h( ) = sign(�T )

y � {�1, +1}

• There are lots of 
commonly used 
Linear Classifiers

• These include:
– Perceptron
– (Binary) Logistic 

Regression
– Naïve Bayes (under 

certain conditions)
– (Binary) Support 

Vector Machines



(Online) Perceptron Algorithm
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Learning: Iterative procedure:
• initialize parameters to vector of all zeroes
• while not converged
• receive next example (x(i), y(i))
• predict y’ = h(x(i))
• if positive mistake: add x(i) to parameters
• if negative mistake: subtract x(i) from parameters

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.

Prediction: Output determined by hyperplane.
ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise



(Binary) Logistic Regression
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Learning: finds the parameters that minimize some 
objective function. �� = argmin

�
J(�)

Prediction: Output is the most probable class.
ŷ =

y�{0,1}
p�(y| )

Model: Logistic function applied to dot product of 
parameters with input vector.

p�(y = 1| ) =
1

1 + (��T )

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.



Hard-margin SVM (Primal)

Soft-margin SVM (Primal) Soft-margin SVM (Lagrangian Dual)

Hard-margin SVM (Lagrangian Dual)

Support Vector Machines (SVMs)
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H=0.940 H=0.940 

H=0.985 H=0.592 H=0.811 H=1.0 

Decision Trees
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Figure from Tom Mitchell



Binary and Multiclass Classification
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Binary Classification:

Supervised Learning:

Multiclass Classification:



Outline

Reductions 
(Binary à Multiclass)
1. one-vs-all (OVA)
2. all-vs-all (AVA)
3. classification tree
4. error correcting output 

codes (ECOC)

Settings
A. Multiclass Classification
B. Hierarchical Classification
C. Extreme Classification

26

Why?
– multiclass is the simplest structured prediction setting
– key insights in the simple reductions are analogous to 

later (less simple) concepts



REDUCTIONS OF MULTICLASS TO 
BINARY CLASSIFICATION
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Reductions to Binary Classification

Whiteboard:
– Setting for multiclass to binary reductions
– Reduction 1: One-vs-All (OVA)
– Reduction 2: All-vs-All (AVA)
– Reduction 3: Classification Tree
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HIERARCHICAL CLASSIFICATION
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Hierarchical Classification
Setting:
• Given 

hierarchy 
over output 
labels

• Otherwise, 
the same as 
multiclass 
classification

• Each leaf 
node is a label

32



Hierarchical Classification

Setting:

• Given 
hierarchy 
over output 
labels

• Otherwise, 
the same as 
multiclass 
classification

• Each leaf 
node is a label

33

Training Data: pairs of occupation 
descriptions and their SOC code

• 9560,Rigging up man
• 5900,Mimeographer

• 3040,Doctor of optometry

• 8310,Wool presser
• 8720,Compress machine operator

• 9640,Pretzel packer

• 9260,Hot box spotter



Hierarchical Classification
Setting:
• Given 

hierarchy 
over output 
labels

• Otherwise, 
the same as 
multiclass 
classification

• Each leaf 
node is a label

34

root

0

00 01

000 001 010 011

0010 0011

1

10 11

100 101

1010 1011



Reductions to Binary Classification

Whiteboard:
– Hierarchical classification: how to build an 

appropriate classifier?
– Features of input vector and label
– Reduction 4: Error Correcting Output Codes 

(ECOC)
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EXTREME CLASSIFICATION
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Extreme Classification
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Example adapted from Paul Miniero’s ICML 2017 talk



Extreme Classification
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Setting:
• Output label set is extremely large 

(e.g. millions of labels)
• Otherwise, the same as multiclass 

classification
Example Tasks:
• Large-scale facial recognition (billions?)
• Predicting Amazon product categories (3 million)
• Recommending Amazon items (100 million products)
• Predicting Wikipedia tags (2 million)
• Predicting Flick image tags 
• Language modeling (millions of words)



Logarithmic-time One-Against-Some
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An example Recall Tree:

Key idea behind this algorithm: 
– build a Recall Tree where 

• each leaf node contains a set S of labels where |S| ≤ log2(K)
• depth of tree is d ≤ log2(K)

– learn one binary classifier per internal node to route an 
instance (vector x) to a leaf node

– learn one multiclass classifier per leaf over the set of labels S 
which restricts the label set for instances x routed there

– given a new instance, predict one of the |S| labels at the leaf 
to which the instance was routed

Figure from Daumé III et al., (2017)



Logarithmic-time One-Against-Some
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An example Recall Tree:

Properties:
1. Competes with one-against-all (i.e. standard 

multiclass classifier) on benchmark datasets
2. Speed: O(log K) training and prediction
3. Space: O(K), same as one-against-all
4. Online learning!

Figure from Daumé III et al., (2017)



Logarithmic-time One-Against-Some
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Experiments:

Figure from Daumé III et al., (2017)



Learning Objectives
From Binary to Multiclass Classification

You should be able to…
1. Reduce the multiclass classification problem to 

a collection of binary classification problems
2. Identify the advantages and deficiencies of 

different multiclass-to-binary reductions
3. Implement one-vs-all, all-vs-all, classification 

tree, error correcting output codes
4. Differentiate multiclass, hierarchical, and 

extreme classification settings
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