10-418 / 10-618 Machine Learning for Structured Data
Machine Learning Department
School of Computer Science
Carnegie Mellon University
MACHINE LEARNING DEPARTMENT

From Binary to Extreme Classification

Matt Gormley
Lecture 2
Aug. 28, 2019

Q\&A

Q: How do I get into the online section?
A: Sorry! I erroneously claimed we would automatically add you to the online section. Here's the correct answer:

To join the online section, email Dorothy HollandMinkley at dfh@andrew.cmu.edu stating that you would like to join the online section.

Why the extra step? We want to make sure you've seen the non-professional video recording and are okay with the quality.

Q\&A

Q: Will I get off the waitlist?
A: Don't be on the waitlist. Just email Dorothy to join the online section instead!

Q\&A

Q: Can I move between 10-418 and 10-618?
A: Yes. Just email Dorothy Holland-Minkley at dfh@andrew.cmu.edu to do so.

Q: When is the last possible moment I can move between 10-418 and 10-618?

A: I'm not sure. We'll announce on Piazza once I have an answer.

QnA

Populating Wikipedia Infoboxes

ROADMAP

How do we get from Classification to Structured Prediction?

1. We start with the simplest decompositions (i.e. classification)
2. Then we formulate structured prediction as a search problem (decomposition of into a sequence of decisions)
3. Finally, we formulate structured prediction in the framework of graphical models (decomposition into parts)

Sampling from a Joint Distribution

A joint distribution defines a probability $p(\boldsymbol{x})$ for each assignment of values \boldsymbol{x} to variables \boldsymbol{X}. This gives the proportion of samples that will equal \boldsymbol{x}.

Sampling from a Joint Distribution

A joint distribution defines a probability $p(\boldsymbol{x})$ for each assignment of values \boldsymbol{x} to variables \boldsymbol{X}. This gives the proportion of samples that will equal \boldsymbol{x}.

Sampling from a Joint Distribution

A joint distribution defines a probability $p(\boldsymbol{x})$ for each assignment of values \boldsymbol{x} to variables \boldsymbol{X}. This gives the proportion of samples that will equal \boldsymbol{x}.

Factors have local opinions (≥ 0)

Each black box looks at some of the tags X_{i} and words W_{i}

	\mathbf{v}	\mathbf{n}	\mathbf{p}	\mathbf{d}					
\mathbf{v}	1	6	3	4					
\mathbf{n}	8	4	2	0.1	\mathbf{v}	\mathbf{n}	\mathbf{p}	\mathbf{d}	
\mathbf{p}	1	3	1	3	\mathbf{v}	1	6	3	4
\mathbf{n}	0.1	8	0	0	4	2	0.1		
\mathbf{p}	1	3	1	3					
\mathbf{d}	0.1	8	0	0					

Note: We chose to reuse the same factors at different positions in the sentence.

Factors have local opinions (≥ 0)

Each black box looks at some of the tags X_{i} and words W_{i}
$p(\mathrm{n}, \mathrm{v}, \mathrm{p}, \mathrm{d}, \mathrm{n}$, time, flies, like, an, arrow $)=?$

	v	n	p	d
v	1	6	3	4
n	8	4	2	0.1
p	1	3	1	3
d	0.1	8	0	0

	\mathbf{v}	\mathbf{n}	p	d
\mathbf{v}	1	6	3	4
n	8	4	2	0.1
p	1	3	1	3
d	0.1	8	0	0

Global probability = product of local opinions

Each black box looks at some of the tags X_{i} and words W_{i}
$p(\mathrm{n}, \mathrm{v}, \mathrm{p}, \mathrm{d}, \mathrm{n}$, time, flies, like, an, arrow $)=\frac{1}{Z}(4 * 8 * 5 * 3 * \ldots)$

Markov Random Field (MRF)

Joint distribution over tags X_{i} and words W_{i}
The individual factors aren't necessarily probabilities.
$p(\mathrm{n}, \mathrm{v}, \mathrm{p}, \mathrm{d}, \mathrm{n}$, time, flies, like, an, arrow $)=\frac{1}{Z}(4 * 8 * 5 * 3 * \ldots)$

	\mathbf{v}	\mathbf{n}	\mathbf{p}	\mathbf{d}					
\mathbf{v}	1	6	3	4					
\mathbf{n}	8	4	2	0.1					
\mathbf{p}	1	3	1	3					
\mathbf{d}	0.1	8	0	0	\quad	\mathbf{v}	1	6	3
:---:	:---:	:---:	:---:						
\mathbf{n}	8	4	2						
\mathbf{p}	1	3	1						
\mathbf{d}	0.1	8	0						

Hidden Markov Model

But sometimes we choose to make them probabilities. Constrain each row of a factor to sum to one. Now $Z=1$.

$$
p(\mathrm{n}, \mathrm{v}, \mathrm{p}, \mathrm{~d}, \mathrm{n}, \text { time, flies, like, an, arrow })=\frac{1}{/}(.3 * .8 * .2 * .5 * \ldots)
$$

	v	n	p	d						
v	.1	.4	.2	.3						
n	.8	.1	.1	o						
p	.2	.3	.2	.3						
d	.2	.8	0	0	\quad		v	n	p	d
:---:	:---:	:---:	:---:	:---:						
v	.1	.4	.2	.3						
n	.8	.1	.1	0						
p	.2	.3	.2	.3						
d	.2	.8	0	0						

Markov Random Field (MRF)

Joint distribution over tags X_{i} and words W_{i}

$p(\mathrm{n}, \mathrm{v}, \mathrm{p}, \mathrm{d}, \mathrm{n}$, time, flies, like, an, arrow $)=\frac{1}{Z}(4 * 8 * 5 * 3 * \ldots)$

| | \mathbf{v} | \mathbf{n} | \mathbf{p} | \mathbf{d} | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \mathbf{v} | 1 | 6 | 3 | 4 | | | | |
| \mathbf{n} | 8 | 4 | 2 | 0.1 | | | | |
| \mathbf{p} | 1 | 3 | 1 | 3 | \mathbf{v} | \mathbf{n} | \mathbf{p} | \mathbf{d} |
| \mathbf{d} | 0.1 | 8 | \mathbf{v} | $\mathbf{1}$ | 6 | 6 | 3 | 4 |
| \mathbf{n} | 8 | 4 | 2 | 0.1 | | | | |
| \mathbf{p} | 1 | 3 | 1 | 3 | | | | |
| \mathbf{d} | 0.1 | 8 | 0 | 0 | | | | |

Conditional Random Field (CRF)

Conditional distribution over tags X_{i} given words w_{i}. The factors and Z are now specific to the sentence w.

$$
p(\mathrm{n}, \mathrm{v}, \mathrm{p}, \mathrm{~d}, \mathrm{n} \mid \text { time, flies, like, an, arrow })=\frac{1}{Z}(4 * 8 * 5 * 3 * \ldots)
$$

	v	n	p	d		v	n	p	d
v	1	6	3	4	V	1	6	3	4
n	8	4	2	0.1	n	8	4	2	0.1
p	1	3	1	3	p	1	3	1	3
d	0.1	8	0	0	d	0.1	8	0	0

BACKGROUND: BINARY CLASSIFICATION

(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs are discrete.

$$
\begin{aligned}
& \left(\mathbf{x}^{(1)}, y^{(1)}\right),\left(\mathbf{x}^{(2)}, y^{(2)}\right), \ldots \\
& \text { where } \mathbf{x} \in \mathbb{R}^{M} \text { and } y \in\{+1,-1\}
\end{aligned}
$$

Prediction: Output determined by hyperplane.

$$
\begin{aligned}
& \hat{y}=h_{\boldsymbol{\theta}}(\mathbf{x})=\operatorname{sign}\left(\boldsymbol{\theta}^{T} \mathbf{x}\right) \quad \operatorname{sign}(a)= \begin{cases}1, & \text { if } a \geq 0 \\
-1, & \text { otherwise }\end{cases} \\
& \text { Assume } \boldsymbol{\theta}=\left[b, w_{1}, \ldots, w_{M}\right]^{T} \text { and } x_{0}=1
\end{aligned}
$$

Learning: Iterative procedure:

- initialize parameters to vector of all zeroes
- while not converged
- receive next example $\left(x^{(i)}, y^{(i)}\right)$
- predict $y^{\prime}=\mathrm{h}\left(\mathbf{x}^{(i)}\right)$
- if positive mistake: add $\mathbf{x}^{(i)}$ to parameters
- if negative mistake: subtract $\mathbf{x}^{(i)}$ from parameters

(Binary) Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs are discrete.

$$
\mathcal{D}=\left\{\mathbf{x}^{(i)}, y^{(i)}\right\}_{i=1}^{N} \text { where } \mathbf{x} \in \mathbb{R}^{M} \text { and } y \in\{0,1\}
$$

Model: Logistic function applied to dot product of parameters with input vector.

$$
p_{\boldsymbol{\theta}}(y=1 \mid \mathbf{x})=\frac{1}{1+\exp \left(-\boldsymbol{\theta}^{T} \mathbf{x}\right)}
$$

Learning: finds the parameters that minimize some objective function. $\quad \boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})$

Prediction: Output is the most probable class.

$$
\hat{y}=\underset{y \in\{0,1\}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(y \mid \mathbf{x})
$$

Support Vector Machines (SVMs)

Hard-margin SVM (Primal)

$$
\begin{aligned}
& \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \\
& \text { s.t. } y^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1, \quad \forall i=1, \ldots, N
\end{aligned}
$$

Soft-margin SVM (Primal)

$$
\begin{aligned}
& \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C\left(\sum_{i=1}^{N} e_{i}\right) \\
& \text { s.t. } y^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1-e_{i}, \quad \forall i=1, \ldots, N \\
& \quad e_{i} \geq 0, \quad \forall i=1, \ldots, N
\end{aligned}
$$

Hard-margin SVM (Lagrangian Dual)

$$
\begin{aligned}
\max _{\boldsymbol{\alpha}} & \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)} \\
\text { s.t. } & \alpha_{i} \geq 0, \quad \forall i=1, \ldots, N \\
& \sum_{i=1}^{N} \alpha_{i} y^{(i)}=0
\end{aligned}
$$

Soft-margin SVM (Lagrangian Dual)

$$
\max _{\boldsymbol{\alpha}} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}
$$

$$
\text { s.t. } 0 \leq \alpha_{i} \leq C, \quad \forall i=1, \ldots, N
$$

$$
\sum_{i=1}^{N} \alpha_{i} y^{(i)}=0
$$

Decision Trees

Which attribute should be tested here?

```
Ssunny }={\textrm{D}1,\textrm{D}2,\textrm{D},\textrm{D}9,\textrm{D}11
    Gain (S Sunny,Humidity) = .970-(3/5) 0.0-(2/5) 0.0 = .970
    Gain (S Sunny,Temperature) = . }970-(2/5)0.0-(2/5)1.0-(1/5) 0.0 = . 570
    Gain (S Sunny,Wind) = .970-(2/5) 1.0-(3/5).918 = .019
```


Binary and Multiclass Classification

Supervised Learning:

$$
\mathcal{D}=\left\{\mathbf{x}^{(i)}, y^{(i)}\right\}_{i=1}^{N} \quad \mathbf{x} \sim p^{*}(\cdot) \text { and } y=c^{*}(\cdot)
$$

Binary Classification:
$y^{(i)} \in\{+1,-1\}$

Multiclass Classification:
$y^{(i)} \in\{1, \ldots, K\}$

Outline

Reductions
(Binary \rightarrow Multiclass)

1. one-vs-all (OVA)
2. all-vs-all (AVA)
3. classification tree
4. error correcting output codes (ECOC)

Settings

A. Multiclass Classification
B. Hierarchical Classification
C. Extreme Classification

Why?

- multiclass is the simplest structured prediction setting
- key insights in the simple reductions are analogous to later (less simple) concepts

REDUCTIONS OF MULTICLASS TO BINARY CLASSIFICATION

Reductions to Binary Classification

Whiteboard:

- Setting for multiclass to binary reductions
- Reduction 1: One-vs-All (OVA)
- Reduction 2: All-vs-All (AVA)
- Reduction 3: Classification Tree

HIERARCHICAL CLASSIFICATION

Hierarchical Classification

Setting:

- Given hierarchy over output labels
- Otherwise, the same as multiclass classification
- Each leaf node is a label

Hierarchical Classification

960			45-4022	Logging Equipment Operators
961			45-4023	Log Graders and Scalers
962			45-4029	Logging Workers, All Other
963	47-0000			Construction and Extraction Occupations
964	47-1000			Supervisors of Construction and Extraction Workers
965		47-1010		First-Line Supervisors of Construction Trades and Extraction Workers
966			47-1011	First-Line Supervisors of Construction Trades and Extraction Workers
967	47-2000			Construction Trades Workers
968		47-2010		Boilermakers
969			47-2011	Boilermakers
970		47-2020		Brickmasons, Blockmasons, and Stonemasons
971			47-2021	Brickmasons and Blockmasons
972			47-2022	Stonemasons
973		47-2030		Carpenters
974			47-2031	Carpenters
975		47-2040		Carpet, Floor, and Tile Installers and Finishers
976			47-2041	Carpet Installers
977			47-2042	Floor Layers, Except Carpet, Wood, and Hard Tiles
978			47-2043	Floor Sanders and Finishers
979			47-2044	Tile and Marble Setters
980		47-2050		Cement Masons, Concrete Finishers, and Terrazzo Workers

47-3000
Training Data: pairs of occupation descriptions and their SOC code

- 9560,Rigging up man
- 5900,Mimeographer
- 3040,Doctor of optometry
- 8310,Wool presser
- 8720,Compress machine operator
- 9640,Pretzel packer
- 9260, Hot box spotter

Setting:

- Given hierarchy over output labels
- Otherwise, the same as multiclass classification
- Each leaf node is a label

Hierarchical Classification

Setting:

- Given hierarchy over output labels
- Otherwise, the same as multiclass
classification
- Each leaf node is a label

Reductions to Binary Classification

Whiteboard:

- Hierarchical classification: how to build an appropriate classifier?
- Features of input vector and label
- Reduction 4: Error Correcting Output Codes (ECOC)

EXTREME CLASSIFICATION

Extreme Classification

Extreme Classification

Setting:

- Output label set is extremely large (e.g. millions of labels)
- Otherwise, the same as multiclass classification

Example Tasks:

- Large-scale facial recognition (billions?)
- Predicting Amazon product categories (3 million)
- Recommending Amazon items (100 million products)
- Predicting Wikipedia tags (2 million)
- Predicting Flick image tags
- Language modeling (millions of words)

Logarithmic-time One-Against-Some

Key idea behind this algorithm:

- build a Recall Tree where
- each leaf node contains a set S of labels where $|S| \leq \log _{2}(K)$
- depth of tree is $\mathrm{d} \leq \log _{2}(\mathrm{~K})$
- learn one binary classifier per internal node to route an instance (vector \mathbf{x}) to a leaf node
- learn one multiclass classifier per leaf over the set of labels S which restricts the label set for instances \mathbf{x} routed there
- given a new instance, predict one of the $|S|$ labels at the leaf to which the instance was routed

Logarithmic-time One-Against-Some

Properties:

1. Competes with one-against-all (i.e. standard multiclass classifier) on benchmark datasets
2. Speed: $\mathrm{O}(\log \mathrm{K})$ training and prediction
3. Space: $O(K)$, same as one-against-all 4. Online learning!

Logarithmic-time One-Against-Some

Experiments:

Dataset	Task	Classes	Examples
ALOI[10]	Visual Object Recognition	$1 k$	10^{5}
Imagenet[19]	Visual Object Recognition	$\approx 20 k$	$\approx 10^{7}$
LTCB[14]	Language Modeling	$\approx 80 k$	$\approx 10^{8}$
ODP[2]	Document Classification	$\approx 100 k$	$\approx 10^{6}$

Statistical Performance

Computational Performance

Learning Objectives

From Binary to Multiclass Classification

You should be able to...

1. Reduce the multiclass classification problem to a collection of binary classification problems
2. Identify the advantages and deficiencies of different multiclass-to-binary reductions
3. Implement one-vs-all, all-vs-all, classification tree, error correcting output codes
4. Differentiate multiclass, hierarchical, and extreme classification settings
