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Reminders

• Homework 3: Structured SVM
– Out: Fri, Oct. 24
– Due: Wed, Nov. 6 at 11:59pm

• Project Team Office Hours
– Fri, Nov. 1, 
– GHC 5222, 1:45 – 2:50pm
– informally chat with classmates / course staff 

about project ideas
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METROPOLIS-HASTINGS
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Metropolis-Hastings

Whiteboard
– Metropolis Algorithm
– Metropolis-Hastings Algorithm

5



Random Walk Behavior of M-H
• For Metropolis-Hastings, a generic proposal 

distribution is:

• If ϵ is large, many rejections
• If ϵ is small, slow mixing
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q(x|x(t)) = N (0, ✏2)



Random Walk Behavior of M-H
• For Rejection Sampling, the accepted samples 

are are independent
• But for Metropolis-Hastings, the samples are 
correlated

• Question: How long must we wait to get 
effectively independent samples?
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Whiteboard

• Gibbs Sampling as M-H
• Blocked Gibbs Sampling
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MARKOV CHAINS
Definitions and Theoretical Justification for MCMC
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Whiteboard

• Markov chains
• Transition probabilities
• Invariant distribution
• Equilibrium distribution
• Sufficient conditions for MCMC
• Markov chain as a WFSM
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Detailed Balance

Detailed balance means that, for each pair of 
states x and x’,

arriving at x then x’ and arriving at x’ then x
are equiprobable.
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Whiteboard

• Simple Markov chain example
• Constructing Markov chains
• Transition Probabilities for MCMC
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Practical Issues
• Question: Is it better to move along one dimension 

or many?

• Answer: For Metropolis-Hasings, it is sometimes 
better to sample one dimension at a time
– Q: Given a sequence of 1D proposals, compare rate of 

movement for one-at-a-time vs. concatenation.

• Answer: For Gibbs Sampling, sometimes better to 
sample a block of variables at a time
– Q: When is it tractable to sample a block of variables?
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Practical Issues
• Question: How do we assess convergence of 

the Markov chain?
• Answer: It’s not easy!
– Compare statistics of multiple independent chains
– Ex: Compare log-likelihoods
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Practical Issues
• Question: Is one long Markov chain better than many 

short ones?
• Note: typical to discard initial samples (aka. “burn-

in”) since the chain might not yet have mixed
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• Answer: Often a balance is 
best:
– Compared to one long chain: 

More independent samples 
– Compared to many small 

chains: Less samples 
discarded for burn-in 

– We can still parallelize
– Allows us to assess mixing 

by comparing chains



MCMC Summary

• Pros
– Very general purpose
– Often easy to implement
– Good theoretical guarantees as 

• Cons
– Lots of tunable parameters / design choices
– Can be quite slow to converge
– Difficult to tell whether it's working
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Slide adapted from Daphe Koller
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Extra Slides

The remaining slides on auxiliary variable 
MCMC methods are extra slides  that were not 
covered in lecture. They are left here in case 
you’re curious to see two more examples of 
MCMC methods.
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MCMC (AUXILIARY VARIABLE 
METHODS)

Slice Sampling, Hamiltonian Monte Carlo
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Auxiliary variables

The point of MCMC is to marginalize out variables,
but one can introduce more variables:
∫

f(x)P (x) dx =

∫
f(x)P (x, v) dxdv

≈ 1

S

S∑

s=1

f(x(s)), x, v ∼ P (x, v)

We might want to do this if

• P (x|v) and P (v|x) are simple

• P (x, v) is otherwise easier to navigate

Slide from Ian Murray



Slice Sampling
• Motivation:
– Want samples from p(x) and don’t know the 

normalizer Z
– Choosing a proposal at the correct scale is difficult

• Properties:
– Similar to Gibbs Sampling: one-dimensional 

transitions in the state space
– Similar to Rejection Sampling: (asymptotically) draws 

samples from the region under the curve

– An MCMC method with an adaptive proposal
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Slice sampling idea

Sample point uniformly under curve P̃ (x) ∝ P (x)

x

u

(x, u)

P̃ (x)

p(u|x) = Uniform[0, P̃ (x)]

p(x|u) ∝
{

1 P̃ (x) ≥ u

0 otherwise
= “Uniform on the slice”

Slide from Ian Murray

This is just an 
auxiliary-variable 
Gibbs Sampler!

Problem: Sampling 
from the conditional 

p(x | u) might be 
infeasible.



Slice Sampling
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Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.
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Figure 29.16. Slice sampling. Each
panel is labelled by the steps of
the algorithm that are executed in
it. At step 1, P ∗(x) is evaluated
at the current point x. At step 2,
a vertical coordinate is selected
giving the point (x, u′) shown by
the box; At steps 3a-c, an
interval of size w containing
(x, u′) is created at random. At
step 3d, P ∗ is evaluated at the left
end of the interval and is found to
be larger than u′, so a step to the
left of size w is made. At step 3e,
P ∗ is evaluated at the right end of
the interval and is found to be
smaller than u′, so no stepping
out to the right is needed. When
step 3d is repeated, P ∗ is found to
be smaller than u′, so the
stepping out halts. At step 5 a
point is drawn from the interval,
shown by a ◦. Step 6 establishes
that this point is above P ∗ and
step 8 shrinks the interval to the
rejected point in such a way that
the original point x is still in the
interval. When step 5 is repeated,
the new coordinate x′ (which is to
the right-hand side of the
interval) gives a value of P ∗

greater than u′, so this point x′ is
the outcome at step 7.

Figure adapted from MacKay Ch. 29



Slice Sampling
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Slice Sampling
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Slice Sampling
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Goal: sample (x, u) given (u(t)
, x

(t)).

u ⇠ Uniform(0, p(x(t))

Part 1: Stepping Out

Sample interval (xl, xr) enclosing x

(t).

r ⇠ Uniform(u,w)

(xl, xr) = (x(t) � r, x

(t) + w � r)

Expand until endpoints are ”outside” region under curve.

while(p̃(xl) > u){xl = xl � w}
while(p̃(xr) > u){xr = xr + w}

Part 2: Sample x (Shrinking)

while(true) {
Draw x from within the interval (xl, xr), then accept or shrink.

x ⇠ Uniform(xl, xr)

if(p̃(x) > u){break}
else if(x > x

(t)){xr = x}
else{xl = x}

}
x

(t+1) = x, u

(t+1) = u



Slice Sampling
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Slice Sampling

28

Goal: sample (x, u) given (u(t)
, x

(t)).

u ⇠ Uniform(0, p(x(t))

Part 1: Stepping Out

Sample interval (xl, xr) enclosing x

(t).

r ⇠ Uniform(u,w)

(xl, xr) = (x(t) � r, x

(t) + w � r)

Expand until endpoints are ”outside” region under curve.

while(p̃(xl) > u){xl = xl � w}
while(p̃(xr) > u){xr = xr + w}

Part 2: Sample x (Shrinking)

while(true) {
Draw x from within the interval (xl, xr), then accept or shrink.

x ⇠ Uniform(xl, xr)

if(p̃(x) > u){break}
else if(x > x

(t)){xr = x}
else{xl = x}

}
x

(t+1) = x, u

(t+1) = u

A
lg
or

ith
m
:



Slice Sampling

Multivariate Distributions
– Resample each variable xi one-at-a-time (just like 

Gibbs Sampling)
– Does not require sampling from 

– Only need to evaluate a quantity proportional to 
the conditional

29

p(xi|{xj}j 6=i)

p(xi|{xj}j 6=i) / p̃(xi|{xj}j 6=i)



Hamiltonian Monte Carlo

• Suppose we have a distribution of the form:

• We could use random-walk M-H to draw 
samples, but it seems a shame to discard 
gradient information

• If we can evaluate it, the gradient tells us 
where to look for high-probability regions!

30

p(x) = exp{�E(x)}/Z

r
x

E(x)

x 2 RN

p 2 RN

where



Background: Hamiltonian Dynamics
Applications:
– Following the motion of atoms in a fluid through 

time
– Integrating the motion of a solar system over time
– Considering the evolution of a galaxy (i.e. the 

motion of its stars)
– “molecular dynamics”
– “N-body simulations”

Properties:
– Total energy of the system H(x,p) stays constant
– Dynamics are reversible

31

Important for 
detailed balance



Background: Hamiltonian Dynamics
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Let
x 2 RN

p 2 RN

E(x)

K(p) = p

T
p/2

H(x,p) = E(x) +K(p)

be a position

be a momentum

Potential energy:

Kinetic energy:

Total energy:

Hamiltonian function

Given a starting position x(1) and a starting momentum p(1) we 
can simulate the Hamiltonian dynamics of the system via:

1. Euler’s method
2. Leapfrog method
3. etc.



Background: Hamiltonian Dynamics
Parameters to tune:

1. Step size, ϵ
2. Number of iterations, L

Leapfrog Algorithm:

33

for ⌧ in 1 . . . L:

p = p� ✏
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r
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x = x+ ✏p
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Background: Hamiltonian Dynamics

34

120 Handbook of Markov Chain Monte Carlo

at times ε, 2ε, 3ε, . . . , and hence find (approximate) values for q(τ) and p(τ) after τ/ε steps
(assuming τ/ε is an integer).

Figure 5.1a shows the result of using Euler’s method to approximate the dynamics defined
by the Hamiltonian of Equation 5.8, starting from q(0) = 0 and p(0) = 1, and using a stepsize
of ε = 0.3 for 20 steps (i.e. to τ = 0.3 × 20 = 6). The results are not good—Euler’s method
produces a trajectory that diverges to infinity, but the true trajectory is a circle. Using a
smaller value of ε, and correspondingly more steps, produces a more accurate result at
τ = 6, but although the divergence to infinity is slower, it is not eliminated.
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(b) Modified Euler’s method, stepsize 0.3
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(c) (d)Leapfrog method, stepsize 0.3
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Position (q)
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Leapfrog method, stepsize 1.2

FIGURE 5.1
Results using three methods for approximating Hamiltonian dynamics, when H(q, p) = q2/2 + p2/2. The initial
state was q = 0, p = 1. The stepsize was ε = 0.3 for (a), (b), and (c), and ε = 1.2 for (d). Twenty steps of the simulated
trajectory are shown for each method, along with the true trajectory (in gray).

Figure from Neal (2011) 



Since p(x,p) is 
separable…

Hamiltonian Monte Carlo
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Figure from Neal (2011) 

p(x) = exp{�E(x)}/Z x 2 RN

p 2 RN

where

E(x)

K(p) = p

T
p/2

H(x,p) = E(x) +K(p)

Goal:

Define:

Note:

p(x,p) = exp{�H(x,p)}/ZH

= exp{�E(x} exp{�K(p)}/ZH

)
X

p

p(x,p) = exp{�E(x}/Z

)
X

x

p(x,p) = exp{�K(x}/ZK

Target dist.

Gaussian

Preliminaries



Whiteboard

• Hamiltonian Monte Carlo algorithm
(aka. Hybrid Monte Carlo)
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Hamiltonian Monte Carlo
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FIGURE 5.3
A trajectory for a two-dimensional Gaussian distribution, simulated using 25 leapfrog steps with a stepsize of
0.25. The ellipses plotted are one standard deviation from the means. The initial state had q = [−1.50, −1.55]T and
p = [−1, 1]T .

Figure 5.3 shows a trajectory based on this Hamiltonian, such as might be used to propose
a new state in the HMC method, computed using L = 25 leapfrog steps, with a stepsize of
ε = 0.25. Since the full state space is four-dimensional, Figure 5.3 shows the two position
coordinates and the two momentum coordinates in separate plots, while the third plot
shows the value of the Hamiltonian after each leapfrog step.

Notice that this trajectory does not resemble a random walk. Instead, starting from the
lower left-hand corner, the position variables systematically move upward and to the right,
until they reach the upper right-hand corner, at which point the direction of motion is
reversed. The consistency of this motion results from the role of the momentum variables.
The projection of p in the diagonal direction will change only slowly, since the gradient
in that direction is small, and hence the direction of diagonal motion stays the same for
many leapfrog steps. While this large-scale diagonal motion is happening, smaller-scale
oscillations occur, moving back and forth across the “valley” created by the high correlation
between the variables.

The need to keep these smaller oscillations under control limits the stepsize that can
be used. As can be seen in the rightmost plot in Figure 5.3, there are also oscillations in
the value of the Hamiltonian (which would be constant if the trajectory were simulated
exactly). If a larger stepsize were used, these oscillations would be larger. At a critical
stepsize (ε = 0.45 in this example), the trajectory becomes unstable, and the value of the
Hamiltonian grows without bound. As long as the stepsize is less than this, however, the
error in the Hamiltonian stays bounded regardless of the number of leapfrog steps done.
This lack of growth in the error is not guaranteed for all Hamiltonians, but it does hold for
many distributions more complex than Gaussians. As can be seen, however, the error in
the Hamiltonian along the trajectory does tend to be positive more often than negative. In
this example, the error is +0.41 at the end of the trajectory, so if this trajectory were used
for an HMC proposal, the probability of accepting the endpoint as the next state would be
exp(−0.41) = 0.66.

5.3.3.2 Sampling from a Two-Dimensional Distribution

Figures 5.4 and 5.5 show the results of using HMC and a simple random-walk Metropolis
method to sample from a bivariate Gaussian similar to the one just discussed, but with
stronger correlation of 0.98.

Figure from Neal (2011) 



M-H vs. HMC
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MCMC Using Hamiltonian Dynamics 129

Random−walk Metropolis
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FIGURE 5.4
Twenty iterations of the random-walk Metropolis method (with 20 updates per iteration) and of the Hamiltonian
Monte Carlo method (with 20 leapfrog steps per trajectory) for a two-dimensional Gaussian distribution with
marginal standard deviations of one and correlation 0.98. Only the two position coordinates are plotted, with
ellipses drawn one standard deviation away from the mean.

In this example, as in the previous one, HMC used a kinetic energy (defining the momen-
tum distribution) of K(p) = pTp/2. The results of 20 HMC iterations, using trajectories of
L = 20 leapfrog steps with stepsize ε = 0.18, are shown in the right plot of Figure 5.4. These
values were chosen so that the trajectory length, εL, is sufficient to move to a distant point
in the distribution, without being so large that the trajectory will often waste computation
time by doubling back on itself. The rejection rate for these trajectories was 0.09.

Figure 5.4 also shows every 20th state from 400 iterations of random-walk Metropolis,
with a bivariate Gaussian proposal distribution with the current state as mean, zero correla-
tion, and the same standard deviation for the two coordinates. The standard deviation of the
proposals for this example was 0.18, which is the same as the stepsize used for HMC propos-
als, so that the change in state in these random-walk proposals was comparable to that for a
single leapfrog step for HMC. The rejection rate for these random-walk proposals was 0.37.

Random−walk Metropolis
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Hamiltonian Monte Carlo
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FIGURE 5.5
Two hundred iterations, starting with the 20 iterations shown above, with only the first position coordinate plotted.

Figure from Neal (2011) 


