10-418 [ 10-618 Machine Learning for Structured Data

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Markov Chains

Matt Gormley
Lecture 19
Oct. 30, 2019



Reminders

* Homework 3: Structured SVM
— Out: Fri, Oct. 24
— Due: Wed, Nov. 6 at 11:59pm

* Project Team Office Hours

— Fri, Nowv. 1,
— GHC 5222, 1:45 — 2:50pm

— informally chat with classmates [ course staff
about project ideas




METROPOLIS-HASTINGS



Metropolis-Hastings

Whiteboard

— Metropolis Algorithm
— Metropolis-Hastings Algorithm



Figure from Bishop (2006)

Random Walk Behavior of M-H

For Metropolis-Hastings, a generic proposal
distribution is: q(fl?|$(t)) ZN(O,GQ)

If € is large, many rejections
If € is small, slow mixing




Figure from Bishop (2006)

Random Walk Behavior of M-H

* For Rejection Sampling, the accepted samples
are are independent

* But for Metropolis-Hastings, the samples are
correlated

* Question: How long must we wait to get
effectively independent samples?




Whiteboard

* Gibbs Sampling as M-H
* Blocked Gibbs Sampling




Definitions and Theoretical Justification for MCMC

MARKOV CHAINS



Whiteboard

Markov chains

Transition probabilities
Invariant distribution
Equilibrium distribution
Sufficient conditions for MCMC
Markov chain as a WFSM



Detailed Balance

S(a’ < x)p(z) = S(z < 2" )p(a’)

Detailed balance means that, for each pair of
states x and x’,

arriving at x then x’ and arriving at x’ then x

are equiprobable.




Whiteboard

* Simple Markov chain example
* Constructing Markov chains
* Transition Probabilities for MCMC



Practical Issues

* Question: Is it better to move along one dimension
or many?

* Answer: For Metropolis-Hasings, it is sometimes
better to sample one dimension at a time

— Q: Given a sequence of 1D proposals, compare rate of
movement for one-at-a-time vs. concatenation.

 Answer: For , sometimes better to
sample a block of variables at a time

— Q: When is it tractable to sample a block of variables?



Practical Issues

* Question: How do we assess convergence of
the Markov chain?

* Answer: It’s not easy!
— Compare statistics of multiple independent chains
— Ex: Compare log-likelihoods

Chain 1 Chain 2

>
>

Log-likelihood
Log-likelihood

# of MCMC steps # of MCMC steps
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Practical Issues

* Question: Is one long Markov chain better than many
short ones?

* Note: typical to discard initial samples (aka. “burn-
~in”) since the chain might not yet have mixed

*—0—0—0—0—0—0—0—0

‘—)‘—)‘—)H « Answer: Often a balance is

best:

H‘_)‘_)H‘ — Compared to one long chain:

More independent samples
— Compared to many small

‘—)‘—)‘ chains: Less samples
discarded for burn-in

‘—)‘—)‘ — We can still parallelize

. . . . . — Allows us to assess mixing
by comparing chains




Slide adapted from Daphe Koller

MCMC Summary

* Pros
— Very general purpose
— Often easy to implement
— Good theoretical guarantees as ¢t — o0
* Cons
— Lots of tunable parameters [ design choices

— Can be quite slow to converge
— Difficult to tell whether it's working



Extra Slides

The remaining slides on auxiliary variable
MCMC methods are extra slides that were not
covered in lecture. They are left here in case

you’re curious to see two more examples of
MCMC methods.




MCMC (AUXILIARY VARIABLE
METHODS)



Slide from lan Murray

Auxiliary variables

The point of MCMC is to marginalize out variables,
but one can introduce more variables:

/f(a:) dx_/f ) dz dv

1
~ EZf(zc(S>), xr,v~ P(x,v)
s=1

We might want to do this if

e P(x|v) and P(v|z) are simple

e P(x,v) is otherwise easier to navigate
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Slice Sampling

e Motivation:

— Want samples from p(x) and don’t know the
normalizer Z

— Choosing a proposal at the correct scale is difficult

* Properties:

— Similar to Gibbs Sampling: one-dimensional
transitions in the state space

— Similar to Rejection Sampling: (asymptotically) draws
samples from the region under the curve

p(z) N\

— An MCMC method with an Qaptive proposal




Slide from lan Murray

Slice sampling idea

Sample point uniformly under curve P(z) < P(z)

This is just an
auxiliary-variable
Gibbs Sampler!

p(u|z) = Uniform[0, P(z)]

1 P(z)>u

0 otherwise

= “Uniform on the slice”

p(z|u) o {
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Figure adapted from MacKay Ch. 29

Slice Sampling
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Figure adapted from MacKay Ch. 29

Slice Sampling
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Figure adapted from MacKay Ch. 29

Slice Sampling
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Algorithm

Slice Sampling
Goal: sample (z,u) given (u', ().

Part 1: Stepping Out

Sample interval (z;, x,) enclosing z").

Expand until endpoints are ”outside” region under curve.

Part 2: Sample x (Shrinking)

Draw z from within the interval (z;, x,), then accept or shrink.

26



Algorithm

Slice Sampling

Goal: sample (z,u) given (u', ().
u ~ Uniform(0, p(z®)
Part 1: Stepping Out
Sample interval (z;, x,) enclosing z").
r ~ Uniform(u, w)
(z1,2) = (29 —r,2® 4w —7)
Expand until endpoints are ”outside” region under curve.
while(p(z;) > u){z; = x; — w}
while(p(z,) > uw){z, = z, + w}
Part 2: Sample x (Shrinking)

Draw z from within the interval (z;, x,), then accept or shrink.
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Algorithm

Slice Sampling

Goal: sample (z,u) given (u', ().
u ~ Uniform(0, p(z™®)
Part 1: Stepping Out
Sample interval (z;, x,) enclosing z").
r ~ Uniform(u, w)
(z1,2) = (29 —r,2® 4w —7)
Expand until endpoints are ”outside” region under curve.
while(p(z;) > u){z; = x; — w}
while(p(z,) > uw){z, = z, + w}
Part 2: Sample x (Shrinking)
while(true) {
Draw z from within the interval (z;, x,), then accept or shrink.
x ~ Uniform(z;, ;)
if(p(z) > u){break}
else if(z > W) {z, = z}
else{x; = =}

}

2D — g (D) —
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Slice Sampling

Multivariate Distributions

— Resample each variable x; one-at-a-time (just like
Gibbs Sampling)

— Does not require sampling from
p(xi|{T;}ji)
— Only need to evaluate a quantity proportional to
the conditional

p(wil{z;}jzi) o< p(wil{T; } i)




Hamiltonian Monte Carlo

* Suppose we have a distribution of the form:
p(x) = expi—E(x)}/Z

where & & RN

* We could use random-walk M-H to draw
samples, but it seems a shame to discard
gradient information V  F/(x)

* If we can evaluate it, the gradient tells us
where to look for high-probability regions!



Background: Hamiltonian Dynamics

Applications:
— Following the motion of atoms in a fluid through
time
— Integrating the motion of a solar system over time

— Considering the evolution of a galaxy (i.e. the
motion of its stars)

— “molecular dynamics”
— “N-body simulations”

Properties:

— Total energy of the system H(x,p) stays constant
~ Dynamics are reversible - _
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Background: Hamiltonian Dynamics

let £ RY bea position

P E RN be a momentum

Potential energy:  F()
Kinetic energy: K(p) — pr/2
Total energy: H(x,p) = FE(x) + K(p)

© Hamitonianfunction

Given a starting position x” and a starting momentum p” we
can simulate the Hamiltonian dynamics of the system via:

1. Euler’s method
2. Leapfrog method
3. etc.
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Background: Hamiltonian Dynamics

Parameters to tune:
1. Stepsize, e
2. Number of iterations, L

Leapfrog Algorithm:
for 7in 1...L:

€
P—=D— §va}E(w)
r =X+ €P

€
P—=D— §vwE(a?)



Figure from Neal (2011)

Background: Hamiltonian Dynamics

(a) Euler’s method, stepsize 0.3 (b) Modified Euler’s method, stepsize 0.3

Momentum (p)
=
|
Momentum (p)

Position (g) Position (g)

(c) Leapfrog method, stepsize 0.3 (d) Leapfrog method, stepsize 1.2

Momentum (p)
=
|
Momentum (p)
=
|

Position (g) Position (q)
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Figure from Neal (2011)

Hamiltonian Monte Carlo

Preliminaries
Goal: plx) =exp{—F(x)}/Z  where T C RN

=3 p(@.p) = exp{~E(=}/Z [
= > p(e,p) = exp{—K(z}/Zx [CAUSSIONNIN
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Whiteboard

* Hamiltonian Monte Carlo algorithm
(aka. Hybrid Monte Carlo)



Figure from Neal (2011)

Hamiltonian Monte Carlo
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Figure from Neal (2011)

M-H vs. HMC

Random-walk Metropolis

Hamiltonian Monte Carlo




