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A: No! The indexing here is incorrect. It should be...



Reminders

* Homework 3: Structured SVM
— Out: Tue, Oct. 18
— Due: Mon, Nov. 4 at 11:59pm

* Midterm Exam Viewing

* Project Milestones




“‘A "A ANRRY \




A Few Problems for a Factor Graph

Suppose we already have the parameters of a Factor Graph...

1.  How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

2.  How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, Q)

3. How do we compute marginal probabilities?

P(A) = ...
<:| Can we

4. How do we draw samples from a conditional distribution? use
t,h,a~P(T,H,A|C=¢)

samples
5. How do we compute conditional marginal probabilities? P

PH|C=0)=... <:|



Marginals by Sampling on Factor Graph

Suppose we took many samples from the distribution over
taggings: ») =[] valea)

Sample 1:
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Marginals by Sampling on Factor Graph

The marginal p(X; = x,) gives the probability that variable X;
takes value x; in a random sample

Sample 1:
Sample 2:
Sample 3:

Sample 4:

Sample 5:

Sample 6:

E
[\S}

2HQO00000

?
10000000

<START>




I\/\argmals by Sampling on Factor Graph
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MONTE CARLO METHODS



Monte Carlo Methods

Whiteboard

— Problem 1: Generating samples from a
distribution

— Problem 2: Estimating expectations

— Why is sampling from p(x) hard?

— Example: estimating plankton concentrationin a
lake

— Algorithm: Uniform Sampling

— Example: estimating partition function of high
dimensional function



Slide from lan Murray

Properties of Monte Carlo

| S
Estimator: /f(a:)P(a:) de ~ f = Zf(x(s)), %) ~ P(z)

Estimator is unbiased:
Epoion || = 5O Epef@)] = Epwlf(@)

kchﬁA l \°‘>{'.

Variance shrinks « 1/5:
S
A 1
Valpro(s)1) {f} = ?ZVEHP(:C) ()] = varp) [f(x)] /S
s=1

“Error bars” shrink like v/.S
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A dumb approximation of

P(Cb,y) —

1l 0<z<1 and 0<y<l1
O otherwise

J;(ND
77—4// ) < 1) Pz, y) de dy

0 I

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
s

ans = 3.3333

octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
———

ans = 3.1418 1
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Aside: don't always sample!

“Monte Carlo is an extremely bad method; it should be used only
when all alternative methods are worse.”

— Alan Sokal, 1996

e

Example: numerical solutions to (nice) 1D integrals are fast
octave:1> 4 * quadl(@(x) sqrt(1-x.72), 0, 1, tolerance)

Gives 7 to 6 dp's in 108 evaluations, machine precision in 2598.

(NB Matlab's quadl fails at zero tolerance)
~

13
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Sampling from distributions

Draw points uniformly under the curve:

Probability mass to left of point ~ Uniform|[0,1]
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Sampling from distributions

How to convert samples from a Uniform[0,1] generator:

A CDF
FO I

hy) = [Y__p(y) dy

raw mass to left of point;
u ~ Uniform[0,1

Sample, y(u) = h=1(u)

g i

'J
Figure from PRML, BiSh‘p\ﬁ?a ,j)(ﬂjy L);](U(\)D .

Although we can't always compute and invert h(y)

15
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%JML e Z
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Rejection samg

/ g

Sampling underneath a P( Jx P(x ) curve is also valid \‘DB'\“\")\“’"
S"'

\ = ?mg‘“"’“"‘ hgmﬂ

Draw u rneath sllmple
curve ) > Pla: Wx
— Draw xr ~ Q(x) i
— height u ~ Uniform|0, kQ(x)]

Discard the point if above P,
ie. if u> P(x)

% Srples o PO
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Importance sampling

Computing P(z) and Q(z), then throwing x away seems wasteful

Instead rewrlte the integral as an expectation under ():
Q) B

’l c;bc)
i%j/ f(x /f P(z) (Q(z) > 0 if P(x) > 0)

_

z*) ~ Q(x)
=
5 %,

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation.
Divide and multiply any integrand by a convenient distribution.
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Importance sampling (2)

~

Previous slide assumed we could evaluate P(z) = P(z)/Zp

This estimator 1s consistent but biased

Exercise: Prove that Zp/Zg~ <), 7(s) 18
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Summary so far

Sums and integrals, often expectations, occur frequently in statistics
Monte Carlo approximates expectations with a sample average
Rejection sampling draws samples from complex distributions

Importance sampling applies Monte Carlo to ‘any’ sum/integral

19
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Pitfalls of Monte Carlo

Rejection & importance sampling scale badly with dimensionality

Example:

Rejection sampling:

Requires o > 1. Fraction of proposals accepted = 0%

Importance sampling:

2 \D/2
Variance of importance weights = (#M) —1

Infinite / undefined variance if 0 < 1/v/2 -



Outline

e Monte Carlo Methods

— Metropolis algorithm
— Metropolis-Hastings (M-H) algorithm
Gibbs Sampling
* Markov i

— Transition probabilities

— Invariant distribution

— Equilibrium distribution

— Markov chain as a WFSM

— Constructing Markov chains

— Why does M-H work?
* MCMC (Auxiliary Variable Methods)

— Slice Sampling

— Hamiltonian Monte Carlo




MCMC (BASIC METHODS)



A Few Problems for a Factor Graph

Suppose we already have the parameters of a Factor Graph...

1.  How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

2.  How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, Q)

3. How do we compute marginal probabilities?

P(A) = ...
<:| Can we

4. How do we draw samples from a conditional distribution? use
t,h,a~P(T,H,A|C=¢)

samples
5. How do we compute conditional marginal probabilities? P

PH|C=0)=... <:|



