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Q&A
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Q: Is this ILP for MAP inference from Lecture 13 
correct?

A: No! The indexing here is incorrect. It should be…



Reminders

• Homework 3: Structured SVM

– Out: Tue, Oct. 18

– Due: Mon, Nov. 4 at 11:59pm

• Midterm Exam Viewing

• Project Milestones
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A Few Problems for a Factor Graph
Suppose we already have the parameters of a Factor Graph…

1. How do we compute the probability of a specific assignment to the 
variables?
P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?
t,h,a,c ∼ P(T, H, A, C)

3. How do we compute marginal probabilities?
P(A) = …

4. How do we draw samples from a conditional distribution? 
t,h,a ∼ P(T, H, A | C = c)

5. How do we compute conditional marginal probabilities?
P(H | C = c) = …

5

Can we 
use 

samples
?



Marginals by Sampling on Factor Graph
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Suppose we took many samples from the distribution over 
taggings:



Marginals by Sampling on Factor Graph
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The marginal p(Xi = xi) gives the probability that variable Xi
takes value xi in a random sample



Marginals by Sampling on Factor Graph
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MONTE CARLO METHODS
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Monte Carlo Methods

Whiteboard
– Problem 1: Generating samples from a 

distribution
– Problem 2: Estimating expectations
– Why is sampling from p(x) hard?
– Example: estimating plankton concentration in a 

lake
– Algorithm: Uniform Sampling
– Example: estimating partition function of high 

dimensional function
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Properties of Monte Carlo

Estimator:

∫
f(x)P (x) dx ≈ f̂ ≡ 1

S

S∑

s=1

f(x(s)), x(s) ∼ P (x)

Estimator is unbiased:

EP ({x(s)})

[
f̂
]

=
1

S

S∑

s=1

EP (x) [f(x)] = EP (x) [f(x)]

Variance shrinks ∝ 1/S:

varP ({x(s)})

[
f̂
]

=
1

S2

S∑

s=1

varP (x) [f(x)] = varP (x) [f(x)] /S

“Error bars” shrink like
√

S

Slide from Ian Murray
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A dumb approximation of π

P (x, y) =

{
1 0<x<1 and 0<y<1

0 otherwise

π = 4

∫∫
I
(
(x2 + y2) < 1

)
P (x, y) dx dy

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.3333

octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.1418

Slide from Ian Murray
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Aside: don’t always sample!

“Monte Carlo is an extremely bad method; it should be used only
when all alternative methods are worse.”

— Alan Sokal, 1996

Example: numerical solutions to (nice) 1D integrals are fast

octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance)

Gives π to 6 dp’s in 108 evaluations, machine precision in 2598.
(NB Matlab’s quadl fails at zero tolerance)

Other lecturers are covering alternatives for higher dimensions.
No approx. integration method always works. Sometimes Monte Carlo is the best.

Slide from Ian Murray
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Sampling from distributions

Draw points uniformly under the curve:

P (x)

xx(2) x(3) x(1) x(4)

Probability mass to left of point ∼ Uniform[0,1]

Slide from Ian Murray
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Sampling from distributions
How to convert samples from a Uniform[0,1] generator:

p(y)

h(y)

y0

1

Figure from PRML, Bishop (2006)

h(y) =
∫ y
−∞ p(y′) dy′

Draw mass to left of point:
u ∼ Uniform[0,1]

Sample, y(u) = h−1(u)

Although we can’t always compute and invert h(y)

Slide from Ian Murray
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Rejection sampling

Sampling underneath a P̃ (x)∝P (x) curve is also valid

koptQ̃(x)

P̃ (x)

kQ̃(x)

xx(1)

(xj , uj)

(xi, ui)

Draw underneath a simple
curve kQ̃(x) ≥ P̃ (x):

– Draw x ∼ Q(x)
– height u ∼ Uniform[0, kQ̃(x)]

Discard the point if above P̃ ,
i.e. if u > P̃ (x)

Slide from Ian Murray
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Importance sampling

Computing P̃ (x) and Q̃(x), then throwing x away seems wasteful
Instead rewrite the integral as an expectation under Q:

∫
f(x)P (x) dx =

∫
f(x)

P (x)

Q(x)
Q(x) dx, (Q(x) > 0 if P (x) > 0)

≈ 1

S

S∑

s=1

f(x(s))
P (x(s))

Q(x(s))
, x(s) ∼ Q(x)

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation.
Divide and multiply any integrand by a convenient distribution.

Slide from Ian Murray
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Importance sampling (2)

Previous slide assumed we could evaluate P (x) = P̃ (x)/ZP

∫
f(x)P (x) dx ≈ ZQ

ZP

1

S

S∑

s=1

f(x(s))
P̃ (x(s))

Q̃(x(s))︸ ︷︷ ︸
r̃(s)

, x(s) ∼ Q(x)

≈
✄
✄
✄
✄
✄✄1

S

S∑

s=1

f(x(s))
r̃(s)

✁
✁
✁✁1

S

∑
s′ r̃

(s′)
≡

S∑

s=1

f(x(s))w(s)

This estimator is consistent but biased

Exercise: Prove that ZP/ZQ ≈ 1
S

∑
s r̃(s)

Slide from Ian Murray
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Summary so far

• Sums and integrals, often expectations, occur frequently in statistics

• Monte Carlo approximates expectations with a sample average

• Rejection sampling draws samples from complex distributions

• Importance sampling applies Monte Carlo to ‘any’ sum/integral

Slide from Ian Murray



Application to large problems

Rejection & importance sampling scale badly with dimensionality

Example:
P (x) = N (0, I), Q(x) = N (0, σ2

I)

Rejection sampling:

Requires σ ≥ 1. Fraction of proposals accepted = σ−D

Importance sampling:

Variance of importance weights =
(

σ2

2−1/σ2

)D/2
− 1

Infinite / undefined variance if σ ≤ 1/
√

2

Pitfalls of Monte Carlo
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Slide from Ian Murray



Outline
• Monte Carlo Methods
• MCMC (Basic Methods)

– Metropolis algorithm
– Metropolis-Hastings (M-H) algorithm
– Gibbs Sampling

• Markov Chains
– Transition probabilities
– Invariant distribution
– Equilibrium distribution
– Markov chain as a WFSM
– Constructing Markov chains
– Why does M-H work?

• MCMC (Auxiliary Variable Methods)
– Slice Sampling
– Hamiltonian Monte Carlo

21



MCMC (BASIC METHODS)
Metropolis, Metropolis-Hastings, Gibbs Sampling
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A Few Problems for a Factor Graph
Suppose we already have the parameters of a Factor Graph…

1. How do we compute the probability of a specific assignment to the 
variables?
P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?
t,h,a,c ∼ P(T, H, A, C)

3. How do we compute marginal probabilities?
P(A) = …

4. How do we draw samples from a conditional distribution? 
t,h,a ∼ P(T, H, A | C = c)

5. How do we compute conditional marginal probabilities?
P(H | C = c) = …

23

Can we 
use 

samples
?


