

10-418 / 10-618 Machine Learning for Structured Data

Machine Learning Department School of Computer Science Carnegie Mellon University

Neural Potential Functions

Matt Gormley Lecture 11 Oct. 2, 2019

Reminders

- Homework 2: BP for Syntax Trees
 - Out: Sat, Sep. 28
 - Due: Sat, Oct. 12 at 11:59pm
- Last chance to switch between 10-418 / 10-618 is October 7th (drop deadline)

BACKPROPAGATION AND BELIEF PROPAGATION

Whiteboard:

- Gradient of MRF log-likelihood with respect to log potentials
- Gradient of MRF log-likelihood with respect to potentials

Factor Derivatives

Log-probability:

$$\log p(\mathbf{y}) = \left[\sum_{\alpha} \log \psi_{\alpha}(\mathbf{y}_{\alpha})\right] - \log \sum_{\mathbf{y}' \in \mathcal{Y}} \prod_{\alpha} \psi_{\alpha}(\mathbf{y}'_{\alpha})$$
(1)

Derivatives:

$$\frac{\partial \log p(\mathbf{y})}{\partial \log \psi_{\alpha}(\mathbf{y}'_{\alpha})} = \mathbb{1}(\mathbf{y}_{\alpha} = \mathbf{y}'_{\alpha}) - p(\mathbf{y}'_{\alpha})$$
(2)
$$\frac{\partial \log p(\mathbf{y})}{\partial \psi_{\alpha}(\mathbf{y}'_{\alpha})} = \frac{\mathbb{1}(\mathbf{y}_{\alpha} = \mathbf{y}'_{\alpha}) - p(\mathbf{y}'_{\alpha})}{\psi_{\alpha}(\mathbf{y}'_{\alpha})}$$
(3)

Outline of Examples

• Hybrid NN + HMM

- Model: neural net for emissions
- Learning: backprop for end-to-end training
- Experiments: phoneme recognition (Bengio et al., 1992)

• Hybrid RNN + HMM

- Model: neural net for emissions
- Experiments: phoneme recognition (Graves et al., 2013)

• Hybrid CNN + CRF

- Model: neural net for factors
- Experiments: natural language tasks (Collobert & Weston, 2011)
- Experiments: pose estimation
- Tricks of the Trade

HYBRID: NEURAL NETWORK + HMM

Markov Random Field (MRF)

Joint distribution over tags Y_i and words X_i The individual factors aren't *necessarily* probabilities.

11

Hidden Markov Model

But sometimes we choose to make them probabilities. Constrain each row of a factor to sum to one. Now Z = 1.

(Bengio et al., 1992) Hybrid: NN + HMM Discrete HMM state: $S_t \in \{/p/, /t/, /k/, /b/, /d/, ..., /g/\}$ Continuous HMM emission: $Y_t \in \mathcal{R}^K$ HMM: $p(\mathbf{Y}, \mathbf{S}) = \prod p(Y_t | S_t) p(S_t | S_{t-1})$ Gaussian emission: t=1 $p(Y_t|S_t = i) = b_{i,t} = \sum_k \frac{Z_k}{((2\pi)^n \mid \Sigma_k \mid)^{1/2}} \exp(-\frac{1}{2}(Y_t - \mu_k)\Sigma_k^{-1}(Y_t - \mu_k)^T)$ Y_5 Y_{Λ} **a**_D an

Discrete HMM state: $S_t \in \{/p/, /t/, /k/, /b/, /d/, ..., /a/\}$ Lots of oddities to this picture:

a

a_D

(Bengio et al., 1992)

- **Clashing visual notations** (graphical model vs. neural net)
- HMM generates data topdown, NN generates **bottom-up** and they meet in the middle.
- The "observations" of the HMM are not actually observed (i.e. x's appear in NN only)

So what are we missing?

$a_{i,j} = p(S_t = i | S_{t-1} = j)$ $b_{i,t} = p(Y_t | S_t = i)$ Hybrid: NN + HMM

Forward-backward algorithm: a "feed-forward" algorithm for computing alpha-beta probabilities.

$$\alpha_{i,t} = P(Y_1^t \text{ and } S_t = i \mid model) = b_{i,t} \sum_j a_{ji} \alpha_{j,t-1}$$

$$\beta_{i,t} = P(Y_{t+1}^T \mid S_t = i \text{ and } model) = \sum_j a_{ij} b_{j,t+1} \beta_{j,t+1}$$

$$\gamma_{i,t} = P(S_t = i \mid Y_1^t \text{ and } model) = \alpha_{i,t} \beta_{i,t}$$

Log-likelihood: a "feed-forward" objective function.

$$\log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END}, T}$$

Training Backpropagation

X M

•••

What does this picture actually mean? Output Hidden Layer

X₃

X2

X₁

Input

18

Training Backpropagation

Case 2: Neural Network

$$J = y^* \log q + (1 - y^*) \log(1)$$
$$q = \frac{1}{1 + \exp(-b)}$$
$$b = \sum_{j=0}^{D} \beta_j z_j$$
$$z_j = \frac{1}{1 + \exp(-a_j)}$$
$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Forward

Backward

-q)

$$\begin{aligned} \frac{dJ}{dq} &= \frac{y^*}{q} + \frac{(1-y^*)}{q-1} \\ \frac{dJ}{db} &= \frac{dJ}{dy}\frac{dy}{db}, \frac{dy}{db} = \frac{\exp(b)}{(\exp(b)+1)^2} \\ \frac{dJ}{d\beta_j} &= \frac{dJ}{db}\frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j \\ \frac{dJ}{dz_j} &= \frac{dJ}{db}\frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j \\ \frac{dJ}{da_j} &= \frac{dJ}{dz_j}\frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(a_j)}{(\exp(a_j)+1)^2} \\ \frac{dJ}{d\alpha_{ji}} &= \frac{dJ}{da_j}\frac{da_j}{d\alpha_{ji}}, \frac{da_j}{d\alpha_{ji}} = x_i \\ \frac{dJ}{dx_i} &= \frac{dJ}{da_j}\frac{da_j}{dx_i}, \frac{da_j}{dx_i} = \sum_{j=0}^D \alpha_{ji} \end{aligned}$$

Computing the Gradient: $abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i),oldsymbol{y}_i)$

Forward computation

 $\log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END}, T}$ $\alpha_{i,t} = \dots$ (forward prob) $\beta_{i,t} = \dots$ (backward prop) $\gamma_{i,t} = \dots$ (marginals) $a_{i,j} = \dots$ (transitions) $b_{i,t} = \dots$ (emissions) $y_{tk} = rac{1}{1 + \exp(-b)}$ $b = \sum^{D} \beta_j z_j$ i=0 $z_j = \frac{1}{1 + \exp(-a_j)}$ $a_j = \sum \alpha_{ji} x_i$ i=0

Computing the Gradient: $abla \ell(f_{m{ heta}}(m{x}_i),m{y}_i)$

Forward computation

$$J = \log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\text{END},T}$$

$$\alpha_{i,t} = \dots \text{(forward prob)}$$

$$\beta_{i,t} = \dots \text{(backward prop)}$$

$$\gamma_{i,t} = \dots \text{(marginals)}$$

$$a_{i,j} = \dots \text{(transitions)}$$

$$b_{i,t} = \dots \text{(emissions)}$$

$$y_{tk} = \frac{1}{1 + \exp(-b)}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$a_j = \frac{1}{1 + \exp(-a_j)}$$

$$x_j$$

Computing the Gradient: $abla \ell(f_{m{ heta}}(m{x}_i),m{y}_i)$

Forward computation

$$J = \log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\text{END},T}$$
$$\alpha_{i,t} = \dots \text{(forward prob)}$$
$$\beta_{i,t} = \dots \text{(backward prop)}$$
$$\gamma_{i,t} = \dots \text{(marginals)}$$
$$a_{i,j} = \dots \text{(transitions)}$$
$$b_{i,t} = \dots \text{(emissions)}$$
$$y_{tk} = \frac{1}{1 + \exp(-b)}$$
$$b = \sum_{j=0}^{D} \beta_j z_j$$
$$z_j = \frac{1}{1 + \exp(-a_j)}$$
$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Backward computation

$$\frac{dJ}{db_{i,t}} = \frac{\partial \alpha_{F_{model},T}}{\partial \alpha_{i,t}} \frac{\partial \alpha_{i,t}}{\partial b_{i,t}} = \left(\sum_{j} \frac{\partial \alpha_{j,t+1}}{\partial \alpha_{i,t}} \frac{\partial L_{model}}{\partial \alpha_{j,t+1}}\right) \left(\sum_{j} a_{ji}\alpha_{j,t-1}\right)$$
$$= \left(\sum_{j} b_{j,t+1} a_{ji} \frac{\partial \alpha_{F_{model},T}}{\partial \alpha_{j,t+1}}\right) \left(\sum_{j} a_{ji}\alpha_{j,t-1}\right) = \beta_{i,t} \frac{\alpha_{i,t}}{b_{i,t}} = \frac{\gamma_{i,t}}{b_{i,t}}$$

Computing the Gradient: $abla \ell(f_{m{ heta}}(m{x}_i),m{y}_i)$

Forward computation

$$J = \log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\text{END}, T}$$

$$\alpha_{i,t} = \dots \text{(forward prob)}$$

$$\beta_{i,t} = \dots \text{(backward prop)}$$

$$\gamma_{i,t} = \dots \text{(marginals)}$$

$$a_{i,j} = \dots \text{(transitions)}$$

$$b_{i,t} = \dots \text{(emissions)}$$

$$y_{tk} = \frac{1}{1 + \exp(-b)}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$

$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Backward computation $\frac{dJ}{db_{i,t}} = \frac{\gamma_{i,t}}{b_{i,t}}$ $\frac{dJ}{dy_{t,k}} = \sum_{k} \frac{dJ}{db_{i,t}} \frac{db_{i,t}}{dy_{t,k}}$ $-\frac{\partial b_{i,t}}{\partial Y_{jt}} = \sum_{i} \frac{Z_k}{((2\pi)^n \mid \Sigma_k \mid)^{1/2}} (\sum_{i} d_{k,lj} (\mu_{kl} - Y_{lt})) \exp(-\frac{1}{2} (Y_t - \mu_k) \Sigma_k^{-1} (Y_t - \mu_k)^T)$ $\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \ \frac{dy}{db} = \frac{\exp(b)}{(\exp(b)+1)^2}$ $\frac{dJ}{d\beta_i} = \frac{dJ}{db}\frac{db}{d\beta_i}, \ \frac{db}{d\beta_i} = z_j$ $\frac{dJ}{dz_i} = \frac{dJ}{db}\frac{db}{dz_i}, \ \frac{db}{dz_i} = \beta_j$ $\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \ \frac{dz_j}{da_j} = \frac{\exp(a_j)}{(\exp(a_j) + 1)^2}$ $\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \ \frac{da_j}{d\alpha_{ji}} = x_i$

Computing the Gradient: $abla \ell(f_{m{ heta}}(m{x}_i),m{y}_i)$

Forward computation

$$J = \log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\text{END},T}$$

$$\alpha_{i,t} = \dots \text{(forward prob)}$$

$$\beta_{i,t} = \dots \text{(backward prop)}$$

$$\gamma_{i,t} = \dots \text{(marginals)}$$

The derivative of the log-likelihood with respect to the neural network parameters!

$$a_j = \sum_{i=0}^M \alpha_{ji} x_i$$

Backward computation $\frac{dJ}{db_{i,t}} = \frac{\gamma_{i,t}}{b_{i,t}}$ $\frac{dJ}{dy_{t,k}} = \sum_{k} \frac{dJ}{db_{i,t}} \frac{db_{i,t}}{dy_{t,k}}$ $-\frac{\partial b_{i,t}}{\partial Y_{jt}} = \sum_{i} \frac{Z_k}{((2\pi)^n \mid \Sigma_k \mid)^{1/2}} (\sum_{i} d_{k,lj} (\mu_{kl} - Y_{lt})) \exp(-\frac{1}{2} (Y_t - \mu_k) \Sigma_k^{-1} (Y_t - \mu_k)^T)$ $\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \ \frac{dy}{db} = \frac{\exp(b)}{(\exp(b)+1)^2}$ $\frac{dJ}{d\beta_i} = \frac{dJ}{db}\frac{db}{d\beta_i}, \ \frac{db}{d\beta_i} = z_j$ $\frac{dJ}{dz_i} = \frac{dJ}{db}\frac{db}{dz_i}, \ \frac{db}{dz_i} = \beta_j$ $\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \ \frac{dz_j}{da_j} = \frac{\exp(a_j)}{(\exp(a_j) + 1)^2}$ $\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \ \frac{da_j}{d\alpha_{ji}} = x_i$

Experimental Setup:

(Bengio et al., 1992)

- **Task:** Phoneme Recognition (aka. speaker independent recognition of plosive sounds)
- Eight output labels:
 - /p/, /t/, /k/, /b/, /d/, /g/, /dx/, /all other phonemes/
 - These are the HMM hidden states
- Metric: Accuracy
- 3 Models:
 - 1. NN only
 - NN + HMM (trained independently)
 - NN + HMM (jointly trained)

HYBRID: RNN + HMM

The model, inference, and learning can be **analogous** to our NN + HMM hybrid

- **Objective:** log-likelihood
- **Model:** HMM/Gaussian emissions
- Inference: forwardbackward algorithm
- Learning: SGD with gradient by backpropagation

Experimental Setup:

- Task: Phoneme Recognition
- Dataset: TIMIT
- **Metric:** Phoneme Error Rate
- Two classes of models:
 - 1. Neural Net only
 - 2. NN + HMM hybrids

TRAINING METHOD	TEST PER
CTC	21.57 ± 0.25
CTC (NOISE)	18.63 ± 0.16
TRANSDUCER	$\textbf{18.07} \pm \textbf{0.24}$

1. Neural Net only

NETWORK	DEV PER				
	TEST PER				
DBRNN	19.91 ± 0.22				
	21.92 ± 0.35				
DBLSTM	17.44 ± 0.156				
	19.34 ± 0.15				
DBLSTM	16.11 ± 0.15				
(NOISE)	$\textbf{17.99} \pm \textbf{0.13}$				

2. NN + HMM hybrids

HYBRID: CNN + CRF

Markov Random Field (MRF)

Joint distribution over tags Y_i and words X_i

Conditional Random Field (CRF)

Conditional distribution over tags Y_i given words x_i . The factors and Z are now specific to the sentence x.

Hybrid: Neural Net + CRF

- In a standard CRF, each of the factor cells is a parameter (e.g. transition or emission)
- In the hybrid model, these values are computed by a neural network with its own parameters

Hybrid: Neural Net + CRF

Forward computation

- For computer vision,
 Convolutional
 Neural Networks are in 2-dimensions
- For natural language, the CNN is 1-dimensional

Figure from (Collobert & Weston, 2011)

"NN + SLL"

- Model: Convolutional Neural Network (CNN) with linearchain CRF
- Training objective: maximize sentencelevel likelihood (SLL)

 S_{I}

Feature K	$^{9}adding$	w_1^K	w_2^K				w_N^K	adding			
Lookup Table $LT_{W^1} \checkmark \rightarrow$											
\vdots $LT_{W^K} \longrightarrow$											
Convolution	<u> </u>	Ţ	×			J		****			
	(······································			1 hu			
Max Over Time			1			Caracter					
$\max(\cdot)$ \longrightarrow			Ļ	r	111	¥ →					
Linear $M^2 \times 0 \longrightarrow$											
HardTanh		+	•	n_{f}^{2}	111		⇒ 		•		
Linear									•		
$M^3 \times \circ \longrightarrow$,	n ³ _{bu} =	#tags	\longrightarrow					
				nu							

. . .

 S_4

 S_2

 S_5

"NN + WLL"

- Model: Convolutional Neural Network (CNN) with logistic regression
- Training objective: maximize word-level likelihood (WLL)

 S_{I}

Input Sentence			
Text	The cat sat on the r	mat	
Feature 1	$v_1 w_1^1 w_2^1 \dots$	w_N^1 P	
	ddin K K	sd din	
Feature K	$w_1^2 w_2^2 \dots$		
Lookup Table			
$LT_{W^1} \longrightarrow$			
:		d	
$LT_{W^K} \longrightarrow$			
Convolution			
	$M^1 \times .$		
		· · ·	
		n_{hu}^1	
	· · · · · · · · · · · · · · · · · · ·		
Max Over Time			
$\max(\cdot)$ \longrightarrow	\xrightarrow{i}		
Linear	- in a second		
		1	
141 × 0 · • • • • •	n_{hu}^2		
HardTanh		*	
	· · · · · · · · · · · · · · · · · · ·]	
Linear			
$M^3 \times \stackrel{\checkmark}{\odot} \longrightarrow$			
	$n_{hu}^3 = \#$ tags		
			\frown
		S_4	S_5
		\bigcirc	\smile
		, I	L

 S_2

Experimental Setup:

- Tasks:
 - Part-of-speech tagging (POS),
 - Noun-phrase and Verb-phrase Chunking,
 - Named-entity recognition (NER)
 - Semantic Role Labeling (SRL)
- **Datasets / Metrics:** Standard setups from NLP literature (higher PWA/F1 is better)
- Models:
 - Benchmark systems are typical non-neural network systems
 - NN+WLL: hybrid CNN with logistic regression
 - NN+SLL: hybrid CNN with linear-chain CRF

Approach	POS	Chunking	NER	\mathbf{SRL}	
	(PWA)	(F1)	(F1)	(F1)	
Benchmark Systems	97.24	94.29	89.31	77.92	
NN+WLL	96.31	89.13	79.53	55.40	
NN+SLL	96.37	90.33	81.47	70.99	

Experimental Setup:

- Task: pose estimation
- **Model:** Deep CNN + MRF

TRICKS OF THE TRADE

Backprop in Practice

- Use ReLU non-linearities (tanh and logistic are falling out of favor)
- Use cross-entropy loss for classification
- Use Stochastic Gradient Descent on minibatches
- Shuffle the training samples
- Normalize the input variables (zero mean, unit variance)
- Schedule to decrease the learning rate
- Use a bit of L1 or L2 regularization on the weights (or a combination)
 But it's best to turn it on after a couple of epochs
- Use "dropout" for regularization
 - Hinton et al 2012 http://arxiv.org/abs/1207.0580
- Lots more in [LeCun et al. "Efficient Backprop" 1998]
- Lots, lots more in "Neural Networks, Tricks of the Trade" (2012 edition) edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

Deep Learning Tricks of the Trade

- Y. Bengio (2012), "Practical Recommendations for Gradient-Based Training of Deep Architectures"
 - Unsupervised pre-training

- Stochastic gradient descent and setting learning rates
- Main hyper-parameters
 - Learning rate schedule & early stopping
 - Minibatches
 - Parameter initialization
 - Number of hidden units
 - L1 or L2 weight decay
 - Sparsity regularization
- Debugging \rightarrow use finite difference gradient checks
- How to efficiently search for hyper-parameter configurations

Tricks of the Trade

• Lots of them:

- Pre-training helps (but isn't always necessary)
- Train with adaptive gradient variants of SGD (e.g. Adam)
- Use max-margin loss function (i.e. hinge loss) though only sub-differentiable it often gives better results
- A few years back, they were considered "poorly documented" and "requiring great expertise"
- Now there are lots of **good tutorials** that describe (very important) specific implementation details
- Many of them also apply to training graphical models!

SUMMARY

Summary: Hybrid Models

Graphical models let you encode domain knowledge

Neural nets are really good at fitting the data discriminatively to make good predictions

Could we define a neural net that incorporates domain knowledge?

Key idea: Use a NN to learn features for a GM, then train the entire model by backprop

MBR DECODING

Minimum Bayes Risk Decoding

- Suppose we given a loss function *l(y', y)* and are asked for a single tagging
- How should we choose just one from our probability distribution p(y|x)?
- A minimum Bayes risk (MBR) decoder *h(x)* returns the variable assignment with minimum **expected** loss under the model's distribution

$$egin{aligned} h_{m{ heta}}(m{x}) &= rgmin_{\hat{m{y}}} & \mathbb{E}_{m{y} \sim p_{m{ heta}}(\cdot \mid m{x})}[\ell(\hat{m{y}},m{y})] \ &= rgmin_{\hat{m{y}}} & \sum_{m{y}} p_{m{ heta}}(m{y} \mid m{x})\ell(\hat{m{y}},m{y}) \end{aligned}$$

Minimum Bayes Risk Decoding

 $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \operatorname*{argmin}_{\hat{\boldsymbol{y}}} \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot | \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]$

Consider some example loss functions:

The **Hamming loss** corresponds to accuracy and returns the number of incorrect variable assignments:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \sum_{i=1}^{V} (1 - \mathbb{I}(\hat{y}_i, y_i))$$

The MBR decoder is:

$$\hat{y}_i = h_{\boldsymbol{\theta}}(\boldsymbol{x})_i = \underset{\hat{y}_i}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{y}_i \mid \boldsymbol{x})$$

This decomposes across variables and requires the variable marginals.

Minimum Bayes Risk Decoding

 $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \operatorname*{argmin}_{\hat{\boldsymbol{y}}} \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot | \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]$

Consider some example loss functions:

The *0-1* loss function returns *1* only if the two assignments are identical and *0* otherwise:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = 1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})$$

The MBR decoder is:

$$h_{\theta}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\theta}(\boldsymbol{y} \mid \boldsymbol{x})(1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y}))$$
$$= \underset{\hat{\boldsymbol{y}}}{\operatorname{argmax}} p_{\theta}(\hat{\boldsymbol{y}} \mid \boldsymbol{x})$$

which is exactly the MAP inference problem!