10-418 / 10-618 Machine Learning for Structured Data
Machine Learning Department
School of Computer Science
Carnegie Mellon University DEPARTMENT

Neural Potential Functions

Matt Gormley Lecture 11
Oct. 2, 2019

Reminders

- Homework 2: BP for Syntax Trees
- Out: Sat, Sep. 28
- Due: Sat, Oct. 12 at 11:59pm
- Last chance to switch between 10-418 / 10618 is October 7th (drop deadline)

BACKPROPAGATION AND BELIEF PROPAGATION

Whiteboard:

- Gradient of MRF log-likelihood with respect to log potentials
- Gradient of MRF log-likelihood with respect to potentials

Factor Derivatives

Log-probability:

$$
\begin{equation*}
\log p(\mathbf{y})=\left[\sum_{\alpha} \log \psi_{\alpha}\left(\mathbf{y}_{\alpha}\right)\right]-\log \sum_{\mathbf{y}^{\prime} \in \mathcal{Y}} \prod_{\alpha} \psi_{\alpha}\left(\mathbf{y}_{\alpha}^{\prime}\right) \tag{1}
\end{equation*}
$$

Derivatives:

$$
\begin{align*}
\frac{\partial \log p(\mathbf{y})}{\partial \log \psi_{\alpha}\left(\mathbf{y}_{\alpha}^{\prime}\right)} & =\mathbb{1}\left(\mathbf{y}_{\alpha}=\mathbf{y}_{\alpha}^{\prime}\right)-p\left(\mathbf{y}_{\alpha}^{\prime}\right) \tag{2}\\
\frac{\partial \log p(\mathbf{y})}{\partial \psi_{\alpha}\left(\mathbf{y}_{\alpha}^{\prime}\right)} & =\frac{\mathbb{1}\left(\mathbf{y}_{\alpha}=\mathbf{y}_{\alpha}^{\prime}\right)-p\left(\mathbf{y}_{\alpha}^{\prime}\right)}{\psi_{\alpha}\left(\mathbf{y}_{\alpha}^{\prime}\right)} \tag{3}
\end{align*}
$$

Outline of Examples

- Hybrid NN + HMM
- Model: neural net for emissions
- Learning: backprop for end-to-end training
- Experiments: phoneme recognition (Bengio et al., 1992)
- Hybrid RNN + HMM
- Model: neural net for emissions
- Experiments: phoneme recognition (Graves et al., 2013)
- Hybrid CNN + CRF
- Model: neural net for factors
- Experiments: natural language tasks (Collobert \& Weston, 2011)
- Experiments: pose estimation
- Tricks of the Trade

HYBRID: NEURAL NETWORK + HMM

Markov Random Field (MRF)

Joint distribution over tags Y_{i} and words X_{i}
The individual factors aren't necessarily probabilities.
$p(\mathrm{n}, \mathrm{v}, \mathrm{p}, \mathrm{d}, \mathrm{n}$, time, flies, like, an, arrow $)=\frac{1}{Z}(4 * 8 * 5 * 3 * \ldots)$

	v	n	p	d		v	n	p	d
v	1	6	3	4	v	1	6	3	4
n	8	4	2	0.1	n	8	4	2	0.1
p	1	3	1	3	p	1	3	1	3
d	0.1	8	0	0	d	0.1	8	0	0

Hidden Markov Model

But sometimes we choose to make them probabilities. Constrain each row of a factor to sum to one. Now $Z=1$.

$$
p(\mathrm{n}, \mathrm{v}, \mathrm{p}, \mathrm{~d}, \mathrm{n}, \text { time, flies, like, an, arrow })=\frac{1}{/}(.3 * .8 * .2 * \cdot 5 * \ldots)
$$

	v	n	p	d						
v	.1	.4	.2	.3						
n	.8	.1	.1	o						
p	.2	.3	.2	.3						
d	.2	.8	0	o	\quad		v	n	p	d
:---:	:---:	:---:	:---:	:---:						
v	.1	.4	.2	.3						
n	.8	.1	.1	0						
p	.2	.3	.2	.3						
d	.2	.8	0	0						

Hybrid: NN + HMM

Discrete HMM state: $S_{t} \in\{/ p /, / t /, / k /, / b /, / d /, \ldots, / g /\}$

Continuous HMM emission: $Y_{t} \in \mathcal{R}^{K}$
HMM: $p(\mathbf{Y}, \mathbf{S})=\prod_{t=1}^{T} p\left(Y_{t} \mid S_{t}\right) p\left(S_{t} \mid S_{t-1}\right)$
Gaussian emission:
$p\left(Y_{t} \mid S_{t}=i\right)=b_{i, t}=\sum_{k} \frac{Z_{k}}{\left((2 \pi)^{n}\left|\Sigma_{k}\right|\right)^{1 / 2}} \exp \left(-\frac{1}{2}\left(Y_{t}-\mu_{k}\right) \Sigma_{k}^{-1}\left(Y_{t}-\mu_{k}\right)^{T}\right)$

Hybrid: NN + HMM

Discrete HMM state: $S_{t} \in\{/ p /, / t /, / k / . / b / . / d / \ldots \ldots / a /\}$ Continuous HMM emission: $Y_{t} \in \mathcal{R}^{K}$

Lots of oddities to this picture:

HMM: $p(\mathbf{Y}, \mathbf{S})=\prod_{t=1}^{T} p\left(Y_{t} \mid S_{t}\right) p\left(S_{t} \mid S_{t-1}\right)$

- Clashing visual notations (graphical model vs. neural net)
- HMM generates data topdown, NN generates bottom-up and they meet in the middle.
- The "observations" of the HMM are not actually observed (i.e. x's appear in NN only)

Hybrid: NN + HMM

$$
a_{i, j}=p\left(S_{t}=i \mid S_{t-1}=j\right)
$$
 $$
b_{i t}=p\left(Y_{1} \mid S_{i}=i\right) \quad \text { Hybrid: } \mathrm{NN}+\mathrm{HMM}
$$

Forward-backward algorithm: a "feed-forward" algorithm for computing alpha-beta probabilities.

$$
\begin{array}{cl}
\alpha_{i, t}=P\left(Y_{1}^{t} \text { and } S_{t}=i \mid \text { model }\right) & =b_{i, t} \sum_{j} a_{j i} \alpha_{j, t-1} \\
\beta_{i, t}=P\left(Y_{t+1}^{T} \mid S_{t}=i \text { and model }\right) & =\sum_{j} a_{i j} b_{j, t+1} \beta_{j, t+1} \\
\gamma_{i, t}=P\left(S_{t}=i \mid Y_{1}^{t} \text { and model }\right) & =\alpha_{i, t} \beta_{i, t}
\end{array}
$$

Log-likelihood: a "feed-forward" objective function.

$$
\log p(\mathbf{S}, \mathbf{Y})=\alpha_{\mathrm{END}, T}
$$

A Recipe for
 Graphical Mandola
 Decision / Loss Function for Hybrid NN + HMM

1. Given training data:

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}
$$

2. Choose each of res

- Decision fl zion
$\hat{\boldsymbol{y}}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)$
- Loss function
$\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{I}$ How do we compute $-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)$ the gradient?

Training

Backpropagation

Graphical Model and Log-likelihood

 NetworkBackpropagation is just repeated application of the

$$
\boldsymbol{y}=g(\boldsymbol{u}) \text { and } \boldsymbol{u}=h(\boldsymbol{x}) .
$$ chain rule from Calculus 101.

How to compute these partial derivatives?

Chain Rule:

Training

Backpropagation

What does this picture actually mean?

Training

Backpropagation

Case 2:
Neural
Network

Forward
$J=y^{*} \log q+\left(1-y^{*}\right) \log (1-q)$
$q=\frac{1}{1+\exp (-b)}$
$b=\sum_{j=0}^{D} \beta_{j} z_{j}$
$z_{j}=\frac{1}{1+\exp \left(-a_{j}\right)}$
$a_{j}=\sum_{i=0}^{M} \alpha_{j i} x_{i}$

Backward
$\frac{d J}{d q}=\frac{y^{*}}{q}+\frac{\left(1-y^{*}\right)}{q-1}$
$\frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b}, \frac{d y}{d b}=\frac{\exp (b)}{(\exp (b)+1)^{2}}$
$\frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d b}{d \beta_{j}}, \frac{d b}{d \beta_{j}}=z_{j}$
$\frac{d J}{d z_{j}}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d z_{j}}=\beta_{j}$
$\frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}}, \frac{d z_{j}}{d a_{j}}=\frac{\exp \left(a_{j}\right)}{\left(\exp \left(a_{j}\right)+1\right)^{2}}$
$\frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i}$
$\frac{d J}{d x_{i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\sum_{j=0}^{D} \alpha_{j i}$

Hybrid: NN + HMM

Computing the Gradient: $\nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)$
Forward computation

$$
\begin{aligned}
& \log p(\mathbf{S}, \mathbf{Y})=\alpha_{\mathrm{END}, T} \\
& \alpha_{i, t}=\ldots \text { (forward prob) } \\
& \beta_{i, t}=\ldots \text { (backward prop) } \\
& \gamma_{i, t}=\ldots \text { (marginals) } \\
& a_{i, j}=\ldots \text { (transitions) } \\
& b_{i, t}=\ldots \text { (emissions) } \\
& y_{t k}=\frac{1}{1+\exp (-b)} \\
& b=\sum_{j=0}^{D} \beta_{j} z_{j} \\
& z_{j}=\frac{1}{1+\exp \left(-a_{j}\right)} \\
& a_{j}=\sum_{i=0}^{M} \alpha_{j i} x_{i}
\end{aligned}
$$

Hybrid: NN + HMM

Computing the Gradient: $\nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)$
Forward computation

$$
\begin{aligned}
& J=\log p(\mathbf{S}, \mathbf{Y})=\alpha_{\mathrm{END}, T} \\
& \alpha_{i, t}=\ldots \text { (forward prob) } \\
& \beta_{i, t}=\ldots \text { (backward prop) } \\
& \gamma_{i, t}=\ldots \text { (marginals) } \\
& a_{i, j}=\ldots \text { (transitions) } \\
& b_{i, t}=\ldots \text { (emissions) } \\
& y_{t k}=\frac{1}{1+\exp (-b)} \\
& b=\sum_{j=0}^{D} \beta_{j} z_{j} \\
& z_{j}=\frac{1}{1+\exp \left(-a_{j}\right)} \\
& a_{j}=\sum_{i=0}^{M} \alpha_{j i} x_{i}
\end{aligned}
$$

Hybrid: NN + HMM

Computing the Gradient: $\nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)$

Forward computation

$$
\begin{aligned}
J=\log p & p \mathbf{S}, \mathbf{Y})=\alpha_{\mathrm{END}, T} \\
\alpha_{i, t} & =\ldots \text { (forward prob) } \\
\beta_{i, t} & =\ldots \text { (backward prop) } \\
\gamma_{i, t} & =\ldots \text { (marginals) } \\
a_{i, j} & =\ldots \text { (transitions) } \\
b_{i, t} & =\ldots \text { (emissions) } \\
y_{t k} & =\frac{1}{1+\exp (-b)} \\
b & =\sum_{j=0}^{D} \beta_{j} z_{j} \\
z_{j} & =\frac{1}{1+\exp \left(-a_{j}\right)} \\
a_{j} & =\sum_{i=0}^{M} \alpha_{j i} x_{i}
\end{aligned}
$$

Backward computation

$$
\begin{aligned}
\frac{d J}{d b_{i, t}} & =\frac{\partial \alpha_{p_{\text {moatet }}, T}}{\partial \alpha_{i, t}} \frac{\partial \alpha_{i, t}}{\partial b_{i, t}}=\left(\sum_{j} \frac{\partial \alpha_{j, t+1}}{\partial \alpha_{i, t}} \frac{\partial L_{\text {model }}}{\partial \alpha_{j, t 1}}\right)\left(\sum_{j} a_{j i} \alpha_{j, t-1}\right) \\
& =\left(\sum_{j} b_{j, t+1} a_{j i} \frac{\partial \alpha_{p_{\text {moatet }}, \tau}}{\partial \alpha_{j, t+1}}\right)\left(\sum_{j} a_{j i} \alpha_{j, t-1}\right)=\beta_{i, t}, \frac{\alpha_{i, t}}{b_{i, t}}=\frac{\gamma_{i, t}}{b_{i, t}}
\end{aligned}
$$

Hybrid: NN + HMM

Computing the Gradient: $\nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)$

Forward computation

$$
\begin{aligned}
& J=\log p(\mathbf{S}, \mathbf{Y})=\alpha_{\mathrm{END}, T} \\
& \alpha_{i, t}=\ldots \text { (forward prob) } \\
& \beta_{i, t}=\ldots \text { (backward prop) } \\
& \gamma_{i, t}=\ldots \text { (marginals) } \\
& a_{i, j}=\ldots \text { (transitions) } \\
& b_{i, t}=\ldots \text { (emissions) } \\
& y_{t k}=\frac{1}{1+\exp (-b)} \\
& b=\sum_{j=0}^{D} \beta_{j} z_{j} \\
& z_{j}=\frac{1}{1+\exp \left(-a_{j}\right)} \\
& a_{j}=\sum_{i=0}^{M} \alpha_{j i} x_{i}
\end{aligned}
$$

Backward computation

$$
\begin{aligned}
\frac{d J}{d b_{i, t}} & =\frac{\gamma_{i, t}}{b_{i, t}} \\
\frac{d J}{d y_{t, k}} & =\sum_{b_{i, t}} \frac{d J}{d b_{i, t}} \frac{d b_{i, t}}{d y_{t, k}} \\
\frac{\partial b_{i, t}}{\partial Y_{t, t}} & \left.\left.=\sum_{k} \frac{Z_{k}}{\left((2 \pi)^{n}\right.} \right\rvert\, \Sigma_{k}\right)^{1 / 2}\left(\sum_{l} d_{k, l, j}\left(\mu_{k l}-Y_{t h}\right)\right) \exp \left(-\frac{1}{2}\left(Y_{t}-\mu_{k}\right) \Sigma_{k}^{-1}\left(Y_{t}-\mu_{k}\right)^{T}\right)
\end{aligned}
$$

$$
\frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b}, \frac{d y}{d b}=\frac{\exp (b)}{(\exp (b)+1)^{2}}
$$

$$
\frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d b}{d \beta_{j}}, \frac{d b}{d \beta_{j}}=z_{j}
$$

$$
\frac{d J}{d z_{j}}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d z_{j}}=\beta_{j}
$$

$$
\frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}}, \frac{d z_{j}}{d a_{j}}=\frac{\exp \left(a_{j}\right)}{\left(\exp \left(a_{j}\right)+1\right)^{2}}
$$

$$
\frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i}
$$

Hybrid: NN + HMM

Computing the Gradient: $\nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)$

Forward computation

$$
\begin{gathered}
J=\log p(\mathbf{S}, \mathbf{Y})=\alpha_{\mathrm{END}, T} \\
\alpha_{i, t}=\ldots \text { (forward prob) } \\
\beta_{\beta_{i, t}=\ldots \text { (backward prop) }}^{\gamma_{i, t}=\ldots \text { (marginals) }} \\
\hline \text { The derivative of } \\
\text { the log-likelihood } \\
\text { with respect to the } \\
\text { neural network } \\
\text { parameters! }
\end{gathered}
$$

$$
a_{j}=\sum_{i=0}^{M} \alpha_{j i} x_{i}
$$

Backward computation

$$
\begin{aligned}
\frac{d J}{d b_{i, t}} & =\frac{\gamma_{i, t}}{b_{i, t}} \\
\frac{d J}{d y_{t, k}} & =\sum_{b_{i, t}} \frac{d J}{d b_{i, t}} \frac{d b_{i, t}}{d y_{t, k}}
\end{aligned}
$$

$$
\frac{\partial b_{i, t}}{\partial Y_{j t}}=\sum_{k} \frac{Z_{k}}{\left((2 \pi)^{n} \mid \Sigma_{k}\right)^{1 / 2}}\left(\sum_{l} d_{k, i j}\left(\mu_{k t}-Y_{t t}\right)\right) \exp \left(-\frac{1}{2}\left(Y_{t}-\mu_{k}\right) \Sigma_{k}^{-1}\left(Y_{t}-\mu_{k}\right)^{T}\right)
$$

$$
\frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b}, \frac{d y}{d b}=\frac{\exp (b)}{(\exp (b)+1)^{2}}
$$

$$
\frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d b}{d \beta_{j}}, \frac{d b}{d \beta_{j}}=z_{j}
$$

$$
\frac{d J}{d z_{j}}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d z_{j}}=\beta_{j}
$$

$$
\frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}}, \frac{d z_{j}}{d a_{j}}=\frac{\exp \left(a_{j}\right)}{\left(\exp \left(a_{j}\right)+1\right)^{2}}
$$

$$
\frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i}
$$

Hybrid: NN + HMM

Experimental Setup:

- Task: Phoneme Recognition (aka. speaker independent recognition of plosive sounds)
- Eight output labels:
- |p/, |t/, |k/, |b|, |d/, |g|, |dx|, /all other phonemes/
- These are the HMM hidden states
- Metric: Accuracy
- 3 Models:

1. NN only
2. $\mathrm{NN}+\mathrm{HMM}$
(trained independently)
3. $\mathrm{NN}+\mathrm{HMM}$
(jointly trained)

HYBRID: RNN + HMM

Hybrid: RNN + HMM

Hybrid: RNN + HMM

The model, inference, and learning can be analogous to our NN + HMM hybrid

- Objective: log-likelihood
- Model: HMM/Gaussian emissions
- Inference: forwardbackward algorithm
- Learning: SGD with
 gradient by backpropagation

Hybrid: RNN + HMM

Experimental Setup:

- Task: Phoneme Recognition
- Dataset: TIMIT
- Metric: Phoneme Error Rate
- Two classes of models:

1. Neural Net only
2. $\mathrm{NN}+\mathrm{HMM}$ hybrids

NETWORK	DEV PER TEST PER
DBRNN	19.91 ± 0.22 21.92 ± 0.35
DBLSTM	17.44 ± 0.156 DBLSTM (NOISE)
19.34 ± 0.15 $\mathbf{1 7 . 9 9} \pm 0.15$	

1. Neural Net only
2. $\mathrm{NN}+\mathrm{HMM}$ hybrids

HYBRID: CNN + CRF

Markov Random Field (MRF)

Joint distribution over tags Y_{i} and words X_{i}

$p(\mathrm{n}, \mathrm{v}, \mathrm{p}, \mathrm{d}, \mathrm{n}$, time, flies, like, an, arrow $)=\frac{1}{Z}(4 * 8 * 5 * 3 * \ldots)$

| | \mathbf{v} | \mathbf{n} | \mathbf{p} | \mathbf{d} | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \mathbf{v} | 1 | 6 | 3 | 4 | | | |
| \mathbf{n} | 8 | 4 | 2 | 0.1 | | | |
| \mathbf{p} | 1 | 3 | 1 | 3 | | | |
| \mathbf{d} | 0.1 | 8 | 0 | \mathbf{v} | \mathbf{n} | \mathbf{p} | \mathbf{d} |
| \mathbf{v} | 1 | 6 | 3 | 4 | | | |
| \mathbf{n} | 8 | 4 | 2 | 0.1 | | | |
| \mathbf{p} | 1 | 3 | 1 | 3 | | | |
| \mathbf{d} | 0.1 | 8 | 0 | 0 | | | |

Conditional Random Field (CRF)

Conditional distribution over tags Y_{i} given words x_{i}. The factors and Z are now specific to the sentence \boldsymbol{x}.
$p(\mathrm{n}, \mathrm{v}, \mathrm{p}, \mathrm{d}, \mathrm{n} \mid$ time, flies, like, an, arrow $)=\frac{1}{Z}(4 * 8 * 5 * 3 * \ldots)$

| | \mathbf{v} | \mathbf{n} | \mathbf{p} | \mathbf{d} | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \mathbf{v} | 1 | 6 | 3 | 4 | | | |
| \mathbf{n} | 8 | 4 | 2 | 0.1 | | | |
| \mathbf{p} | 1 | 3 | 1 | 3 | | | |
| \mathbf{d} | 0.1 | 8 | 0 | \mathbf{v} | \mathbf{n} | \mathbf{p} | \mathbf{d} |
| \mathbf{v} | 1 | 6 | 3 | 4 | | | |
| \mathbf{n} | 8 | 4 | 2 | 0.1 | | | |
| \mathbf{p} | 1 | 3 | 1 | 3 | | | |
| \mathbf{d} | 0.1 | 8 | 0 | 0 | | | |

Hybrid: Neural Net + CRF

- In a standard CRF, each of the factor cells is a parameter (e.g. transition or emission)
- In the hybrid model, these values are computed by a neural network with its own parameters

Hybrid: Neural Net + CRF

Forward computation

Hybrid: CNN + CRF

- For computer vision, Convolutional Neural Networks are in 2-dimensions
- For natural language, the CNN is 1-dimensional

Hybrid: CNN + CRF

"NN + SLL"

- Model: Convolutional Neural Network (CNN) with linearchain CRF
- Training objective: maximize sentencelevel likelihood (SLL)

Hybrid: CNN + CRF

"NN + WLL"

- Model: Convolutional Neural Network (CNN) with logistic regression
- Training objective: maximize word-level likelihood (WLL)

Hybrid: CNN + CRF

Experimental Setup:

- Tasks:
- Part-of-speech tagging (POS),
- Noun-phrase and Verb-phrase Chunking,
- Named-entity recognition (NER)
- Semantic Role Labeling (SRL)
- Datasets / Metrics: Standard setups from NLP literature (higher PWA/F1 is better)
- Models:
- Benchmark systems are typical - non-neural network systems
- NN+WLL: hybrid CNN with logistic regression
- NN+SLL: hybrid CNN with linear-chain CRF

Approach	POS (PWA)	Chunking (F1)	NER (F1)	SRL (F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+WLL	96.31	89.13	79.53	55.40
NN+SLL	96.37	90.33	81.47	70.99

Hybrid: CNN + MRF

Experimental Setup:

- Task: pose estimation
- Model: Deep CNN + MRF

TRICKS OF THE TRADE

Backprop in Practice

$\$$ Use ReLU non-linearities (tanh and logistic are falling out of favor)
Use cross-entropy loss for classification
3 Use Stochastic Gradient Descent on minibatches
Δ Shuffle the training samples
Normalize the input variables (zero mean, unit variance)
Schedule to decrease the learning rate
Δ Use a bit of L1 or L2 regularization on the weights (or a combination)
B But it's best to turn it on after a couple of epochs
Δ Use "dropout" for regularization

- Hinton et al 2012 http://arxiv.org/abs/1207.0580

Lots more in [LeCun et al. "Efficient Backprop" 1998]
Δ Lots, lots more in "Neural Networks, Tricks of the Trade" (2012 edition) edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

Deep Learning Tricks of the Trade

- Y. Bengio (2012), "Practical Recommendations for GradientBased Training of Deep Architectures"
- Unsupervised pre-training

- Stochastic gradient descent and setting learning rates
- Main hyper-parameters
- Learning rate schedule \& early stopping
- Minibatches
- Parameter initialization
- Number of hidden units
- L1 or L2 weight decay
- Sparsity regularization
- Debugging \rightarrow use finite difference gradient checks
- How to efficiently search for hyper-parameter configurations

Tricks of the Trade

- Lots of them:
- Pre-training helps (but isn't always necessary)
- Train with adaptive gradient variants of SGD (e.g. Adam)
- Use max-margin loss function (i.e. hinge loss) - though only sub-differentiable it often gives better results
- ...
- A few years back, they were considered "poorly documented" and "requiring great expertise"
- Now there are lots of good tutorials that describe (very important) specific implementation details
- Many of them also apply to training graphical models!

SUMMARY

Summary: Hybrid Models

Graphical models let you encode domain knowledge

Neural nets are really good at fitting the data discriminatively to make good predictions

Could we define a neural net that incorporates domain knowledge?

Summary:

 Hybrid ModelsKey idea: Use a NN to learn features for a GM, then train the entire model by backprop

MBR DECODING

Minimum Bayes Risk Decoding

- Suppose we given a loss function $l\left(y^{\prime}, \boldsymbol{y}\right)$ and are asked for a single tagging
- How should we choose just one from our probability distribution $p(\boldsymbol{y} \mid \boldsymbol{x})$?
- A minimum Bayes risk (MBR) decoder $h(\boldsymbol{x})$ returns the variable assignment with minimum expected loss under the model's distribution

$$
\begin{aligned}
h_{\boldsymbol{\theta}}(\boldsymbol{x}) & =\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})] \\
& =\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) \ell(\hat{\boldsymbol{y}}, \boldsymbol{y})
\end{aligned}
$$

Minimum Bayes Risk Decoding

$$
h_{\boldsymbol{\theta}}(\boldsymbol{x})=\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]
$$

Consider some example loss functions:
The Hamming loss corresponds to accuracy and returns the number of incorrect variable assignments:

$$
\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})=\sum_{i=1}^{V}\left(1-\mathbb{I}\left(\hat{y}_{i}, y_{i}\right)\right)
$$

The MBR decoder is:

$$
\hat{y}_{i}=h_{\boldsymbol{\theta}}(\boldsymbol{x})_{i}=\underset{\hat{y}_{i}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}\left(\hat{y}_{i} \mid \boldsymbol{x}\right)
$$

This decomposes across variables and requires the variable marginals.

Minimum Bayes Risk Decoding

$$
h_{\boldsymbol{\theta}}(\boldsymbol{x})=\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]
$$

Consider some example loss functions:
The 0-1 loss function returns 1 only if the two assignments are identical and 0 otherwise:

$$
\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})=1-\mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})
$$

The MBR decoder is:

$$
\begin{aligned}
h_{\boldsymbol{\theta}}(\boldsymbol{x}) & =\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x})(1-\mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})) \\
& =\underset{\hat{\boldsymbol{y}}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{\boldsymbol{y}} \mid \boldsymbol{x})
\end{aligned}
$$

which is exactly the MAP inference problem!

