Satisfiability Modulo Counting:
A New Approach for Analyzing Privacy Properties

Matthew Fredrikson

Somesh Jha

University of Wisconsin, Madison

{mfredrik, jha}@cs.wisc.edu

Abstract

Applications increasingly derive functionality from sensitive per-
sonal information, forcing developers who wish to preserve some
notion of privacy or confidentiality to reason about partial informa-
tion leakage. New definitions of privacy and confidentiality, such
as differential privacy, address this by offering precise statements
of acceptable disclosure that are useful in common settings. How-
ever, several recent published accounts of flawed implementations
have surfaced, highlighting the need for verification techniques.

In this paper, we pose the problem of model-counting satisfi-
ability, and show that a diverse set of privacy and confidentiality
verification problems can be reduced to instances of it. In this prob-
lem, constraints are placed on the outcome of model-counting op-
erations, which occur over formulas containing parameters. The
object is to find an assignment to the parameters that satisfies the
model-counting constraints, or to demonstrate unsatisfiability.

We present a logic for expressing these problems, and an ab-
stract decision procedure for model-counting satisfiability prob-
lems fashioned after CDCL-based SMT procedures, encapsulating
functionality specific to the underlying logic in which counting oc-
curs in a small set of black-box routines similar to those required of
theory solvers in SMT. We describe an implementation of this pro-
cedure for linear-integer arithmetic, as well as an effective strategy
for generating lemmas. We conclude by applying our decision pro-
cedure to the verification of privacy properties over programs taken
from a well-known privacy-preserving compiler, demonstrating its
ability to find flaws or prove correctness sometimes in a matter of
seconds.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Logics of programs; D.4.5
[Security and Protection]: Verification

General Terms Security, Verification, Theory

1. Introduction

The trend towards personal data-driven applications has changed
the way in which both consumers and developers of applications
think about privacy and confidentiality. Whether an application re-

[Copyright notice will appear here once ’preprint’ option is removed.]

quests one’s location to provide relevant suggestions for restaurants
and entertainment, or permission to use one’s medical records as
part of a large-scale data mining operation, we are compelled to
think of these properties in terms of a trade-off: are the benefits pro-
vided by this application worth the risk of disclosing some amount
of personal information? Recent reports suggest that in many cases
the risks surpass consumers’ initial expectations [[1, 19,43, but this
has not slowed the acceptance and widespread use of these applica-
tions, as they provide utility that cannot be readily weighed against
such risks.

This has led to a set of privacy and confidentiality defini-
tions [11L 18, 20l 35, 140 42} i46] that give precise notions of
acceptable disclosure or partial information leakage. Whereas
non-interference [17|] specifies the strict absence of an informa-
tion channel, these definitions answer questions such as, how
likely is it that this computation will reveal my contribution to
the dataset? Developers can use these definitions to provide guar-
antees of privacy or confidentiality in their applications, while
still deriving functionality from sensitive personal information.
However, implementing programs that satisfy these definitions is
notoriously difficult, as information leaks may arise from unex-
pected sources [26l 36]]: exceptional control flow, the granularity
of floating-point numbers, and even the decision not to publish
a result can give an adversary enough information to infer more
than intended by the privacy definition. Given the subtlety of these
problems and growing need for such guarantees, the importance of
verifying programs against them is immediate.

Recent work [5,[27H30] has established the connection between
partial information leakage and model counting. This approach
views leakage in terms of a relation that characterizes which inputs
are indistinguishable on observing a program’s output: two inputs
are related if it is not possible to distinguish which was used to pro-
duce a given output. These relations are often expressed as logical
formulas over pairs of a program’s input variables, so the number of
models in each equivalence class of the relation provides a measure
of the degree to which privacy and confidentiality are preserved by
a program. If the input space is partitioned into singleton classes,
then the program leaks complete information, whereas if the rela-
tion corresponds to a single class then no information is leaked.
However, because each class must be individually counted, these
techniques remain limited to settings where either the relevant in-
put class is fixed, or the number of input classes is small and can be
exhaustively enumerated. Some properties, such as differential pri-
vacy [20], are thus not readily modeled in this way (see Section 2).

In this paper, we describe an extension to counting-based ap-
proaches that is based on the satisfiability of parameters in formu-
las with model-counting operations. Parameters appear as variables
in model-counting operations that take a fixed interpretation when
the primitive is evaluated. Thus, each such operation is effectively
a function from its parameters to the natural numbers. Parameters

2014/7/15

allow us to reason about families of related model-counting op-
erations symbolically, opening the application of model-counting
techniques to the difficult cases described above. We define a the-
ory of model counting satisfiability that is agnostic to the logic over
which counting operations are defined, and can be applied to a di-
verse set of privacy and confidentiality properties. To summarize,
we make the following contributions:

e We introduce and formalize the problem of model-counting sat-
isfiability, defining a new logic L4 (L) for expressing instances
of the problem. We present an abstract CDCL-based decision
procedure for solving it.

e We present countersat, an instance of our model-counting sat-
isfiability decision procedure over linear-integer arithmetic.
Our procedure uses Barvinok’s theory of polyhedral lattice
points [7] to evaluate potential solutions and generate lemmas.

e We apply countersat to the verification of a set of programs
from the Fairplay secure compiler project [8]. We are able to
verify six out of our eleven benchmarks in under ten seconds.

The rest of this paper is organized as follows: section [2] gives
an overview of our approach; section [3] defines our logic and its
semantics; section[z_f]describes the abstract decision procedure, and
section [3] its linear-integer instantiation; section [f] describes our
evaluation; section [7]discusses related work.

2. An Illustrative Example

We begin by illustrating a reduction from the verification of differ-
ential privacy to model-counting satisfiablity. Our goal is to demon-
strate how counting primitives, with parameters and additional con-
straints on them, can be used to encode the essential components
of differential privacy; similar encodings exist for many other no-
tions of partial information leakage, and are briefly discussed in
Section

Consider a simple deterministic routine addnoise, which takes
an integer input x and a uniform-random integer input r, and
adds pseudo-random noise derived from r to x via the function
noisegen. This is a common construction in programs that attempt
differential privacy, due to the popularity of the Laplace and Geo-
metric mechanisms [20]. Differential privacy states that for any two
inputs satisfying a neighbor relation, the ratio of the probabilities
of producing a given output starting from each neighboring input
does not exceed the pre-defined bound exp(€), where ¢ is taken to
be a constant privacy parameter.

For the purposes of this discussion, let us assume that the neigh-
bor relation for our program noisegen holds for all pairs of in-
puts x1, xo whose absolute difference is less than some constant
S. We are now in a position to state differential privacy as it ap-
plies to noisegen: for all x1, %2, s, and any r1,r2 drawn uniform-
randomly,

Pr[addnoise(x1,11) = s]

—S<x—x<S—> < exp(e)

Pr[addnoise(x2,r2) = s]
Recall that we assume addnoise is deterministic, so the probabil-
ities are defined over the random choice of inputs r; and ra.
Because we draw r; and rz uniform-randomly, if we assume
that each variable has a finite domain, then we can equate each of
these probabilities with the ratio of assignments satisfying the given
condition:

count(r1,addnoise(x1,r1) = s)

Pr|addnoise(xi,r1) = s8] =
[(x1,11)] Size of r1’s domain

Here we assume that x; and s are given a fixed interpretation, so

the only free variable in the condition is r1, which is the variable

whose satisfying assignments are counted. In words, we can say

that the probability of the event addnoise(x1,r1) = s, for a given
choice of x; and s, is equivalent to the fraction of values of r;
that cause addnoise to return s when given x; and ry. Again, this
follows from our assumption that r; is chosen uniform-randomly
from its domain. This gives us a way of expressing differential
privacy in terms of a formula characterizing the number of models
of the input/output relation of our computation.

In the interest of making the example more concrete, sup-
pose we instantiate noisegen with a trivial function that takes
the uniform-random input r, and converts it to a uniform-random
integer in the range (—B, B), for some constant B. While this
function can indeed provide differential privacy for large enough
B, it does not provide much utility; we use it here for illustrative
purposes only, as a function that encodes a useful differentially-
private noise generator would be so large as to distract from the
main point of this discussion. This gives us a simple input/out-
put semantics for addnoise in terms of the relation ®(x,r,s):
®(x,r,s) = (s =x+r A —B < r < B). We can now write
a verification condition for noisegen in terms of model-counting
operations:

count(ri, ®(x1,r1,s))

—S<x1—x2<SA
X — X count(rz, ®(x2,r2,s))

> exp(€)

Note that we have negated the original formula to encode a sat-
isfiability problem whose models correspond to counterexamples,
so that we can either prove or disprove the differential privacy of
addnoise by reasoning about the assignments to x1, x2, and s. For
example, if we choose S = 10, B = 5, ¢ = 1, then addnoise does
not satisfy the property; under these constants, we see that x; = 1,
x2 = 6, s = 1 implies that there is a single solution to r; and no
solutions to rs.

A few characteristics of this example illustrate the need for a
notion of model-counting satisfiability. First, notice that we are not
pre-supposing any constant bound on the result of the counting op-
erations, so a propositional encoding of counting that asserts the ex-
istence of a set number of distinct values for r1 and ro that satisfy
the remaining constraints, will not suffice here; we would need to
enumerate all possible ratios of counting solutions in a monolithic
disjunction, which would become immediately intractible. Second,
recalling that x1, x2, and s are assumed to take a fixed interpreta-
tion in each counting operation, we have actually encoded a collec-
tion of counting problems in this formula: one for each valuation of
these variables. It is clear that the approach of expanding this for-
mula into a large disjunction of distinct counting operations, one for
each valuation of the above variables, and applying model counting
as it has been used in previous work [S 127, [29], is also intractible.
Finally, while existing parametric model counting techniques [44]
help address many of these problems by returning analytic expres-
sions that characterize model counts in terms of parameters, these
expressions alone do not allow us to answer the question needed
to verify the example: do there exist values for x1, x2, and s that
violate differential privacy? A technique for answering this type of
question is the focus of this paper.

In this paper, we describe the problem of model-counting sat-
isfiability, and a logic L4 (L) for expressing its instances. L4 (L)
allows us to treat x1, X2, and s as counting parameters whose val-
ues are constrained by both the neighbor and input/output relations
in the reduction shown in our example. Each parameter is free in
the formula outside of any counting operation, but assumes a fixed
value when interpreting the counting operations that mention it. We
then describe a decision procedure for this problem, which uses
Barvinok’s theory of polyhedral lattice points [7] to prove or dis-
prove the existence of parameter values that satisfy the verification
condition, without resorting to the intractible case-splitting proce-
dures described above.

2014/7/15

3. A Logic for Model-Counting Satisfiability

In this section, we define a logic L4 (L) to embody our theory of
model counting satisfiability. £ (L) is parameterized by a base
logic L that contains the formulas whose models are counted, i.e.,
the targets of counting operations. To define £ (L) for a particular
L, we assume two fundamental primitives: a satisfiablity oracle
Osat, and a model counting oracle Ocnt, both for the logic L. The
satisfiability oracle Osat(¢) is a function from a formula ¢ € L to
{true, false} that returns true iff ¢ is satisfiable in L. The model
counting oracle Ocn(V, @) is a function from a formula ¢ € L
and a set of variables V' appearing in ¢, and returns the number
of distinct models of V' that satisfy ¢, i.e., such that Oss¢(Pp[v1 —
Vi,...,Un — Vy]) returns true.

A key aspect of L4 (L) is support for counting parameters, or
variables that appear in a counted base logic formula and have two
additional properties: (/) they are free in the formula outside of
any counting terms, and (2) when interpreting a counting term,
they are assumed to take a specific value. We often call counting
parameters shared variables to reflect the fact that they are shared
between counting operations over L and constraints in L4 (L). For
example, if we assume that the variable y° is a parameter (or
shared, denoted by the superscript s) in the linear-integer formula
0 < y® < 5Acount(z,1 <z < y°) < 2, then the formula
describes all values for the parameter y° that lie in the interval
[0, 5] and result in at most two solutions for the variable when
1 < z < y*. The meaning of a L4 (L) formula is defined by
the set of models taken by counting parameters. The presence of
parameters in a L4 (L) formula prevents counting terms from being
reduced to constants by Ocnt, and is the key challenge in reasoning
about L4 (L).

In what follows, we use V' to refer to a set of variables, and
V(¢) to the set of variables in a given formula ¢. We use the
symbol « to define an interpretation of the variables in a formula,
i.e., a mapping from V' (¢) to constants. Abusing notation, we will
often apply a mapping « to a formula, with the understanding that
each variable in the domain of « is replaced with its image in the
resulting formula. Given a formula ¢, we indicate that it has free
variables exclusively in the set V' by writing ¢(V).

Syntax. Figure[T|shows the syntax for our logic. To avoid confusion
between the parts of L4 (L) that refer to counting and those that
are targets of counting statements (i.e., the formulas whose mod-
els are counted), we partition the syntax into three parts: the base
component, counting component, and outer component. The base
component contains only formulas that are the target of counting
operations, and resides exclusively in L. The counting component
contains functions and predicates for reasoning about the number
of satisfying solutions to formulas in L: a count term for count-
ing operations, arithmetic over counting operations and reals, as
well as the usual relational operators (<, <, =) between numeric
terms. The outer component contains formulas from L that spec-
ify constraints on counting parameters, as well as the usual propo-
sitional connectives. Similarly, we separate the variables appear-
ing in a formula from £4(L) into two groups: base (Vpase) and
shared (Vinare). Base variables appear only in base logic subfor-
mulas, whereas shared variables appear in both counting opera-
tions and formulas from L in the outer component (i.e., instances of
SharedFmla). Unless it is clear from the context, shared variables
are given the superscript s, e.g. z°. Note that base logic formulas
used in counting operations can contain variables that are neither
shared nor counted; our definition of O treats these as “don’t
care” variables that are existentially quantified out of the base logic
formula when such a counting operation is interpreted. For exam-
ple, Ocne gives count(z,0 < z,y < 3Ax +y = 5) the same
interpretation as count(x,Jy : 0 < z,y <3 Az +y =5).

E BaseFmla = ¢(Vznare, Vbase) € L
Const = cfrom R
%D Term = Const | Term {+, x} Term
s | count(vo, ..., vn, BaseFmla)
2 where vg, . .., Un C Vhase in BaseFmla
© | Atom = Term {<, <, =} Term
« | SharedFmla ::= ¢(Vihare) € L
§ Fmla = Atom | (SharedFmla) | (Fmla) | =Fmla
o | Fmla A Fmla
Figure 1. L4 (L) grammar.
[—e](a) = —[e](a)
[er © e2](a) — [er](a) ® [e2](c)
[[¢SharedleaH (Oé) — Osat(a(¢5haredlea))
[count(vi,...,vn, ®) (@) = Owmie({v1,...,vn}, a(d))
(a) Semantic denotation operator [[-](c).
1 Replace 2 Reduce 3 Reduce

SharedFmla
subformulas

shared variables
with constants

a Ocnt Osat

counting terms

No Final
QF_NRA

parameters

(b) Denotational transformation to QF_NRA.

Figure 2. Semantics of L4 (L).

Semantics. We define the semantics by giving a denotational trans-
lation [[-] () from L4 (L) formulas and variable mappings to sen-
tences in the quantifier-free fragment of non-linear arithmetic over
the reals (QF_NRA). Because the semantics of QF_NRA is well-
understood, we can define the satisfiability of a formula ¢ in £4 (L)
in terms of the existence of a variable mapping « that results in a
satisfiable QF_NRA formula [[¢] ().

In order to ensure compatibility between our denotation opera-
tor and QF_NRA, which does not encode co, we define semantics
only for formulas whose count terms refer to base logic formu-
las with a finite set of models, called finite-base formulas (Defini-
tion[I). A formula is finite-base iff each count term is given a finite
interpretation by Ocnt for any assignment to its parameters.

Definition 1. (Finite-base formula). A formula ¢y € L (L) is
finite-base iff for each instance of

,xn}7¢|_(l'1,. A 7x7lzyi7 e 7yfn))

appearing in ¢, for all assignments « to the parameters y7i, . . ., y5,,
Ocnt({z1,- .-, 2n}, a(¢r)) is finite.

The denotational translation [-J(a) on which our semantics is
based works in three phases as shown in Figure [2(b)] When given
a total mapping « from the shared variables in ¢ to constants from
L, all variables in Vinare () are first replaced by their image un-
der a. The count({z1,...,zn},) terms are then replaced with
constants from QF_NRA, using the oracle Ocnt ({21, ...,Zn}, P).
Lastly, each SharedFmla subformula is reduced to a Boolean
constant using Os,¢. The final step is always possible because

count({z1,...

2014/7/15

SharedFmla subformulas contain free variables only from Vipare,
which were replaced with constants in the first step. The result is a
QF _NRA sentence ¢’ that we define to be equivalent to ().

A full definition of the denotational tranformation operator [-]
is given by the set of reduction rules shown in Figure We
use [-](«) to define the satisfiability of a L4 (L)-formula, given in
Definition[2}

Definition 2. (Satisfiability of formulas in L4(L)). A finite-base
L4 (L) formula ¢ is satisfiable in £ (L) iff there exists a mapping
a such that [¢] () is valid in QF_NRA.

In general, when we place no restrictions on L, £x(L) is not
decidable (Theorem E]) However, £4(L) is decidable in several
important cases, as discussed in Sections 4 and 3]

Theorem 1. L4 (QF_LIA) is undecidable.

4. An Abstract Decision Procedure for £ (L)

In this section, we give an abstract decision procedure called sat™
for satisfiability of formulas in £4(L). We call the procedure ab-
stract because we do not make specific assumptions about L, in-
stead giving a small set of general requirements in the form of three
black-box interface functions needed to make the decision proce-
dure work: genparam (Definition [3), explain (Definition [)), and
reduce (Definition 5.

sat? takes after CDCL satisfiability and SMT solvers [38],
and borrows concepts from the model-constructing satisfiability
calculus of de Moura and Jovanovic [37]]. Problems are posed
as sets of CNF clauses, and facts about a potential solution are
iteratively decided. Unit propagation or counting-theory specific
reasoning are used throughout for inference, continuing until either
all clauses are satisfied, or a conflict arises. On encountering a
conflict, the procedure backtracks to a previous decision point and
learns a lemma to avoid similar conflicts in the future, either using
resolution or counting-theory lemmas. If the procedure determines
that the clause set is not satisfied in the current context, and there
are no decisions on which to backtrack, it terminates with unsat.

Why is sat? different from other CDCL solvers? The procedure
differs from traditional CDCL SMT procedures in a few key as-
pects:

1) It does not assume the ability to decide the satisfiability of
an arbitrary conjunction of L4 (L) literals. The main primitive,
Ocnt, counts formulas without parameters, leaving no clear way
of deciding conjunctions with count terms. As such, satisfiability
and conflict detection on partial solutions almost always requires
a partial model assignment. To cope with this, sat? incrementally
constructs models, and aggressively learns counting theory lemmas
for hypothetical assignments.

2) It allows lemmas containing base logic literals not appearing in
the original problem statement. This is a necessary condition for
sat? in light of the previous condition.

3) It can generate base logic literals not appearing in the origi-
nal problem statement in the form of non-interactive advice to the
model generator. This is not needed for correctness, but for effi-
ciency it helps to incorporate specialized counting-theory reasoning
that optimistically narrows the model space, but does not necessar-
ily entail a valid counting theory deduction.

In this section, we describe a set of transition rules that addresses
each of these issues.

4.1 Abstract Procedure

We describe sat? as a transition system in the style of de Moura
and Jovanovi¢ [37)] and Nieuwenhuis er al. [38]. Following [37],

the states in the transition system are of the form (M, C), where
M is a sequence of trail elements and C'is a set of clauses. M
is referred to as the trail, and reflects a series of decisions and
inferences. Trail elements consist of decided literals (appearing
simply as [in the trail, for a given literal [), model assignments
(appearing as x +—> v), and propagated literals (appearing as ¢ — [,
for a clause c and literal /). Decided literals and model assignments
are facts assumed to be true at a given point in a trail, whereas
propagated literals are the result of inference carried out in a given
context. We write M to denote the set of clauses consisting of the
base-logic literals decided or implied on M.

The set of model assignments on a trail M induce an inter-
pretation aps of shared variables, i.e., if x +— v appears on M,
then aas(z) = v. Similarly, a trail M induces an interpreta-
tion of literals appearing in the clause set C. Following again de
Moura and Jovanovi¢ [37], we define two functions valuey (I, M)
and value. (I, M). value, (I, M) corresponds to the value of I given
the decided literals (i.e., the Boolean interpretation) on the trail M,
whereas value. (I, M) corresponds to the value of [given the model
assignments on M and the resulting interpretation of [under the se-
mantics of L. The semantics of these functions is straightforward:
valuey (I, M) = true (resp. false) if it is decided or implied true
(resp false) on the trail M, and value(I, M) = true (resp. false)
if the semantics of the literal [(Figure reduce to true (resp.
false) under the interpretation c:ps. Both are undefined (undef) oth-
erwise. The full definition of these functions is given in Figure[3(c)}

M is consistent if value. (I, M) # false whenever values (1, M)
= true. For consistent trails, we define a unified version of value,
given in Figure We extend this function to clauses in the
natural way, so value(c, M) = true if at least one literal in ¢
evaluates to true, false if all literals in ¢ evaluate to false, and
undef otherwise. If value(c, M) = true, then c is satisfied by M,
denoted satisfied(c, M). We extend the definition of satisfied to
a set of clauses C': satisfied(C, M) = true if value (I, M) =
valuey (I, M) for all literals on M, and satisfied(c, M) = true
for each clause ¢ € C'. If there exists a clause ¢ € C such that
value(c, M) = false, or a set of literals l1, ..., [, asserted on M
such that = Ot (ans (1) A - - A anr (1)), then we say that C'is in
conflict under M, denoted conflict(C, M).

We are now in a position to define the three black-box functions
required by sat”: genparam (Definition , explain (Definition 4)),
and reduce (Definition [3). Each of these functions assumes com-
putable versions of the oracles Ocnt and Os,e introduced in Sec-
tion genparam builds partial assignments for £ (L) models that
satisfy a given set of clauses in the base logic. Its role is to guide
sat? towards satisfying solutions, or solutions that quickly lead to
conflicts, using the base logic facts and counting lemmas available
in the context.

Definition 3. genparam(C,). Given a set C of clauses from L,
C = {c1,...,¢n}, and a variable x € Vipare, genparam(C,)
returns a value v from the constants in L such that Osse(c1 A -+ - A
cn AT =) is true.

explain produces counting theory lemmas from a trail and a literal
implied by the trail. Clauses returned from explain must always
be valid counting theory deductions, following from Ocn and the
base-logic semantics.

Definition 4. explain(l, M). Given a consistent trail M and a
literal [implied by M, explain(l, M) returns a L4 (L) clause ¢ =
l1 V-V, VI such that value(l;, M) = false forall ; and I" — 1.

Finally, reduce(M, 1) is a bridge between the oracles and sat™.
Intuitively, it applies Ocne to each count term in its input literal, or
Os.t whenever [is a base-logic literal. When the model assignments
on the trail are total over the shared variables in [/, this amounts to

2014/7/15

DECIDE

C-DECIDE

[appears in C'
(M, C) — ([M,I'],C) if I'=1lorl =~

value(l, M) = undef
PROPAGATE

=0 V...VIyVvl) el
(M, C) — (M, —1],C) if value(l;, M) = false
value(l, M) = undef
SAT

2 € Vehare(C') not decided in M
C'={c1,...,cn}

Ciy- oy Cn € L(Vahare)

C' N My N C is maximal

v = genparam(C’,)
consistent([M, z — v])

(M, C) — ([M,z — v],C) if

C-PROPAGATE

(M, C) > sat if satisfied(C, M)
UNSAT

1 € C,valuey(l, M) = undef
(M,CY = ([M,c—1],C) if conflict(C, [M, —1])

¢ = explain(l, M)
C-MODEL-DECIDE

conflict(C, M)
(M, C) ~ unsat if explain(false, M) = false
M has no decided literals

x is not decided in M

—consistent([M, z + v])
(M,C) — ([M,1],C) if ¢ = explain(false, [M, z = v])

c=L V-V VI

value(l, M) = undef
C-LEARN

conflict(C, M)

(M,C) = (M,C U {c}) it explain(false, M)

C-BACKJUMP

LEARN
conflict(C, M)
. CEce=LV - Vi,
(M, C) — (M,CU{c}) if I1,... 1 appearin C
value(c, M) = false
FORGET
.. ¢ € C and cis learned
(M, C) = (M, C\{c}) it Conflict(C, M)
BACKIUMP

conflict(C, [M, N])
CEce=LV---ViyVl
e li,...,1, appearin C'
([M,N],C) —{([M,c—1],C) if value(ls, M) — false
value(l, M) = undef
N starts with a decision

conflict(C, [M, N1)

explain(false, [M, N]) = ¢
([M,N],C) = ([M,c—=1],C) if c=LV---VI,VI

value(l;, M) = false

value(l, M) = undef
C-BACKJUMP-DECIDE

conflict(C, [M, z — v, N])
explain(false, [M,z +— v,N]) = ¢

(M, v,N],C) > ([M,1],C) if c=1 V- Vi, Vi
3l;.value(l;, M) = undef
value(l, M) = undef

(a) Traditional clausal rules.

true, lorc—1le M true,

undef, otherwise

reduce(M,) = true
valuey(l, M) = « false, —lorc— —l € M value.(I, M) = { false, reduce(M,l) = false value(l, M) =
undef, otherwise

(b) Counting theory rules.

valuey (I, M), valuey (I, M) # undef
valuec (I, M), otherwise

(c) Auxiliary functions

Figure 3. Transition rules for sat™.

simple evaluation of terms. When the assignments are not total,
reduce uses Os,t to determine the feasability of base-logic literal
[in the current trail: [is infeasible if it cannot be satisfied in the
current trail, so reduce assigns it the value false. If [is feasible,
it is given the value undef, as future decisions might make it
unsatisfiable.

Definition 5. reduce(M,[). Given a trail M and a literal [,
reduce(M, 1) returns a new literal !’ derived from [by applying
two changes:

1. If I contains a count({v1,...,vn}, @) term such that aps is
total over Vahare (¢), reduce replaces it with Ocne ({v1, ..., vn},
an(¢)) and simplifies any resulting QF_NRA sentences to
Boolean constants.

2.If I € L and an is total over Vznare(l), reduce replaces [
with Osat(anr(1)). If aar is not total over Vihare(l), reduce
replaces it with false when Osat(ans(l) A M) is false, and
undef otherwise.

Transition Rules. Given a set of clauses Cp, sat” begins in the

state ([], Co). Rules from Figures and[3(b)|are applied with the
goal of entering either the sat or unsat state. Figure[3(a)[shows the

clausal search and conflict rules, which are similar to those used by

traditional CDCL solvers, and are taken with minor modifications
from [37].

The DECIDE rule assigns a Boolean value to a literal [from the
clause set C, as long as [does not already have a value assigned to
it in the current trail. PROPAGATE performs unit propagation. SAT
replaces the current state with the terminal state sat whenever the
trail M implies that each clause in C is satisfied. UNSAT enters the
terminal state unsat whenever the trail implies that a clause in C'
is false, and there are no further decisions in the trail on which to
backtrack. LEARN supports clausal lemma learning when a conflict
exists in the trail: if the clause c is a valid deduction containing
only literals appearing in the current clause set, and it is false in the
current context, it can be added to the clause set. FORGET allows
the procedure to remove a previously-learned clause from the set,
as long as the trail is not in conflict. Lastly, BACKJUMP supports
backtracking whenever a conflict arises. After backtracking, the
new trail is a prefix of the current one, with a new inference ¢ — {
appended.

Figure 3(b)| shows the rules specific to £ (L). C-DECIDE uses
genparam to assign a value to a shared variable that does not al-
ready contain an assignment in the current context. The assignment
must be consistent with the trail, in order to ensure that value re-
mains well-defined. The clause set C’ passed to genparam can con-

2014/7/15

tain literals from outside of C'; they can be arbitrary clauses from L,
although C’ must always contain all base logic literals on the trail,
as well as any pure L clauses from the original set. This allows sat™
to pass information to genparam that might yield correct values
with higher probability, while simultaneously forcing it to commu-
nicate all relevant constraints in the current context. For example,
given the trail [count({z,y},0 < 2,y < ¢°) = 121], sat” might
pass the clause set C’ = {6 < p < 12} to genparam. There are no
base logic literals asserted on the trail and no additional constraints
on y°, so genparam might generate many incorrect values leading
to a large number of lemmas, before finding the correct value. To
avoid this, sat™ passed the advice 6 < p < 12, which drastically
narrows the solution space (y* = 10 is a satisfying value). sat” can
obtain this sort of information through theory-specific mechanisms
or approximation methods; an example is given in Section[3}

C-PROPAGATE supports propagation specific to the semantics
of L£4(L). C-MODEL-DECIDE adds a derived assumption to the
trail that explains the infeasability of a hypothetical model assign-
ment. This is sometimes necessary to ensure progress from C-
DECIDE. Because C-DECIDE prevents assignments that result in
conflicting states, it may not be able to produce an assignment to
a variable if the trail is infeasible and there are no opportunities
for backtracking. For example, if we modify the previous example
slightly and assume the trail [— count({z,y},0 < z,y < ¢°) =
120], where the literal has been propagated. The procedure can-
not continue unless explain concludes that y* is unsatisfiable. This
may not be possible because Lcnt(QF-LIA) is undecidable, but if
it can use a hypothetical assignment y° +— 9 to give a lemma that
implies y¥° > 9, and subsequently produce a similar assignment-
driven lemma implying y° < 10, then it can stop in unsat. This is
how our explain for QF_LIA works, as we show in Section [5} C-
MODEL-DECIDE incorporates these facts when they are needed.

The counting theory-specific learning rule, C-LEARN, behaves
like clausal LEARN, but instead using explain to produce a lemma.
There are two backtracking rules specific to the counting theory.
The first, C-BACKJUMP, is similar to the clausal BACKJUMP but
uses counting theory-specific reasoning to explain the conflict. Fi-
nally, C-BACKJUMP-DECIDE allows the procedure to recover from
a conflict involving a model assignment z — v, where the normal
C-BACKIJUMP rule does not apply because multiple literals in the
explanation become undef when the model assignment is removed.
Because an inference cannot be placed on the trace in this situation,
a decision literal is extracted from the explanation instead. This
rule is borrowed from the model-constructing satisfiability calcu-
lus [37]).

Properties. Given the undecidability of £ (L) in the general case,
it should come as no surprise that sat” is not generally sound and
complete. However, it is always sound, as shown in Theorem 2}

Theorem 2. (Soundness) Given an initial clause set Co, sat™
({[l, Co)) enters the terminal sat (respectively, unsat) state only
if Cy is satisfiable (respectively, unsatisfiable), whenever explain
and reduce are sound with respect to L.

There are certain cases where sat™ is complete as well. As long as
the explain function can only return a finite number of clauses, then
sat? will always terminate. Borrowing from a similar argument of
de Moura and Jovanovic [37], we can show this by imposing an
order on the states entered by sat?, and reasoning that the set of
such states in any run progresses monotonicially. When the space
of possible lemmas is finite, this order has a maximal element, and
completeness follows.

Theorem 3. (Completeness) Given an initial clause set Cp, if ex-
plain returns clauses from a finite set, then sat™ ([], Co) terminates
in a finite number of steps.

5. A Linear-Integer Instantiation of sat?

We describe an implementation of sat® for Lcn:(QF_LIA) called
countersat. It is based on Barvinok’s algorithm [7] for counting the
lattice points in convex polyhedra, and uses mesh-based black-box
optimization to provide advice to the model construction process.
countersat is implemented in 22,297 lines of C and C++ on top of
Z3 [16], 1libbarvinok [44], the Nomad optimization library [2],
and Mathematica.

5.1 Barvinok’s Theory of Polyhedral Lattice Points

Barvinok presented a constructive proof that the number of lattice
points in a convex rational polyhedron can be counted in polyno-
mial time, when the dimension of the polyhedron is fixed in ad-
vance [7]]. His proof is based on generating functions of polyhedral
lattice points and the algebra of polyhedra, which takes as its ba-
sis the space of polyhedral lattice point indicator functions. Def-
inition /| gives the lattice-point generating function for a rational
polyhedron (Definition [6).

Definition 6. (Rational polyhedron). A rational polyhedron P C
R? is the set of solutions of a finite system of linear inequalities
with integer coefficients:

P={zeR?: Ax+ B>~}
where A, B, and -y are constants.

Definition 7. (Lattice-point generating function [7]). Let P C R?
be a rational polyhedron. With the set of lattice points P N Z%
in P, we associate the generating function in d complex variables
X = (Il,...7$d),

f(Pix) = Z x™, where x™ = 2" - - z]?

mePNZd

Note that f(P,[1,...,1]) = |P N Z%, so the generating function
provides a way to count the number of lattice points in P. The
details of Barvinok’s proof are beyond the scope of this work, but
we present his main result in Theorem 4]

Theorem 4. (A. Barvinok [|7]) There is a polynomial-time algo-
rithm which, for each rational polyhedron P C R?, produces a ra-
tional function f(P;x) in d complex variables x = (z1,...,Zn)
with the following properties:

1. f is a valuation: if P, ..., P, are rational polyhedra whose
indicator functions F'p, satisfy a linear relation, then the rational
functions satisfy the same relation.

2. If m + P is a translation of P by an integer vector m, then
f(m+ Pix) =x"f(P;x)

3. f(P;x) matches the generating function for P on any x such
that the series converges absolutely: f(P;x) = > prza X"

4. If P contains a straight line then f(P;x) = 0.

Property (3) of Theorem[d]is perhaps the most important takeaway:
in polynomial time for fixed dimension, we can compute the gen-
erating function of a rational polyhedron.

To support certain types of deduction over Lcnt(QF_-LIA), we
make use of an extension to Barvinok’s original theory over ratio-
nal parametric polyhedra [44].

Definition 8. (Rational Parametric Polyhedron). A rational para-
metric polyhedron P is the set of solutions to a set of linear in-
equalities with integer coefficients of the form

Py ={x€R?: Ax+ Bp >~}

/. .
where p € Z¢ is the parameter set and is a constant vector.

2014/7/15

Verdoolaege et al. give a polynomial-time algorithm (again, for
fixed dimension) for computing valuations fp(Pp;X) over ratio-
nal parametric polytopes, and evaluating them at x = 1 [44].
The result is a parametric enumerator, which is a piecewise quasi-
polynomial over the variables in p to integers, representing the
number of lattice points in Py for a given configuation of p. A
quasi-polynomial differs from a traditional polynomial in that its
coefficients correspond to periodic functions with integral period.
For the purposes of this work, the fact that the parametric enumer-
ator returns a piecewise quasi-polynomial is not important, as we
can use tools that operate over traditional polynomials where nec-
essary by making appropriate modifications to the expression [39].

5.2 countersat: sat™ for Lc,:(QF_LIA)

Using Barvinok’s algorithm, we implemented sat? for counting
over quantifier-free linear-integer arithmetic. In this section, we
discuss a few of the most important components of countersat:
a realization of reduce (Definition [3)), explain (Definition), and
genparam (Definition [3) using Barvinok’s algorithm and Z3. We
describe these components in the context of an example formula:

s1=s3 Acount({z,y},0 <z <sTA0<y<s5) =120

This formula specifies a square with 120 lattice points; such a
square does not exist, so the formula is unsatisfiable. In the fol-
lowing, we refer to the two atoms in this formula by the following
symbols:

Iy
l2

s] = s§
count({z,y},0 <z <sT A0 <y <s3) =120

Implementing reduce. Our implementation of reduce relies
heavily on libbarvinok, which supports parametric counting
of Presburger formulas containing existential quantifiers. Notice
that these features allow non-polyhedral and even non-convex
sets, so 1libbarvinok converts formulas into disjoint disjunctive-
normal form and projects out existentially-quantified variables
before applying Barvinok’s theory. These operations may be ex-
pensive, so the use of these features in Lcnt(QF_LIA) formulas
should be minimized. Our example uses neither of these fea-
tures, so applying libbarvinok to counting the base formula
0 <z < siA0 <y < s yields a parametric enumerator
with two chambers, the first corresponding to the positive quadrant
of the plane:

FlsS,83) = 1+s]+s5+siss ifs]>0As5>0
152) =9 ¢ ifs5<0Vs3<0

When called on a formula containing l2, reduce caches this answer.
If the trail passed to reduce contains values for s§ and s3, it simply
evaluates f on the given values and sends the result to Z3 for
evaluation. For example, invoking reduce(lz, [s] — 5,55 — 5])
activates the first chamber, and yields the invalid formula 1+ (5) +
(5) 4+ (5)(5) = 120. As there are no shared variables remaining in
this formula, we ask Z3 for validity, and return the answer false.

Implementing explain. Our implementation of explain produces
two types of lemmas: those arising from QF_LIA not involving
counting theory, and those arising due to counting theory conflicts.
To illustrate the first type, suppose that that explain is given a trail
resulting from the unit-propagation of /; and /2, and the following
constraints on shared variables:

explain(s3 # 5,[— l1, = l2, s — 3])

Recall that the first argument given to explain is implied by the trail,
so its negation is conflicting. In this case, the conflict arises from
the assignment of 3 to sf, the assertion s5 = 5, and the QF_LIA
literal ;. explain detects this by using Z3 to check the satisfiability

of each assignment, all QF _LIA literals asserted on the trail, and the
negation of the conflicting literal s5 # 5:

s1=3As]=s5A8=5

73 tells us that this formula is unsatsfiable, and returns the entire
clause set as an unsatisfiable core, which is passed on by explain as
its final result: s§ # 3V =(s = s5) V s§ # 5.

If the conflict arises due to some fact implied by counting
theory, then explain takes a different approach. Often, the trail
implies an upper- or lower-bound on shared variables. For example,
suppose that we have the following call to explain: explain(s3 #
10, [— l1,— l2,s§ — 10]). Recalling again that the negation of
s5 # 10 is in conflict with the trail, we see that the conflict does
not come from [;. Rather, it arises due to the count term, as

reduce(ls, [s] — 10, s5 = 10]) yields (120 = 121)

explain can always return the naive-but-valid lemma —lz V s7 #
10 Vv s5 # 10, however this often leads to non-terminating behav-
ior, as sat® may continue to request lemmas of this type with an
unbounded number of values for sj and s3. Instead, explain ex-
ploits that fact that the right-hand-side of l2 is a constant, while the
left-hand-side varies positively in s} and s5, and derives bounding
conditions on these variables. Chamber polynomials always have
bounded degree, so they can be decomposed into a finite set of
monotonic regions with respect to each shared variable. Depending
on which region the current assignment to a shared variable re-
sides, and whether the current value for the count term is greater-
or less-than its constant constraint, valid solutions to a given shared
variable must be bounded from above or below its current value.

To make this more concrete, let us derive bounding conditions
for the current example. We see that the current assignment applies
to the first chamber polynomial and constraint,

p(si,s5) =1+s7+s5+s7s5, d=s1>0A83>0

We start with s, attempting to find its monotone regions in p. To
do so, we apply cylindrical algebraic decomposition [15] (CAD) to
the partial derivative D3 p(si, s3) of p over s1, which produces a
set of regions over which D p(s1, s3) is sign-invariant. Care must
be taken before applying CAD, as any floor terms in the quasi-
polynomial must first be removed by adding fresh existentially-
quantified variables [39]. We restrict the decomposition to the re-
gion specified by the chamber constraint ¢, further simplifying the
solution and propagating bounds when necessary. Our implemen-
tation uses Mathematica’s CAD routine, which has a simple API
for accomplishing this restriction. This operation tells us that p is
monotonic in s] whenever s > 0. Similarly, p is monotonic in s5
whenever s5 > 0. From this, we conclude that any satisfying solu-
tion to these variables will be bounded from above by the current
assignment, for at least one variable. explain returns the lemma:

Sl Vol V(s 2 0) V(s >0) Vst <10V s; <10

Notice that the nearest solution that satisfies all QF_LIA constraints,
as well as this lemma, is s — 9,s5 +— 9, which by the same
reasoning causes explain to return the lemma:

Sl Vol V(s >0) V(s >0) Vs >9Vs; >9

This quickly leads to termination with unsat.

Note that in some cases, CAD returns a region specified by
non-linear constraints, or non-integer constants. In the latter case,
we simply round to the nearest appropriate integer. In the former,
we must specialize the chamber polynomial, replacing variables
with constants from the current assignment until CAD returns a
linear region; in the worst case, this occurs when the polynomial
is one-dimensional. Specialization yields weaker lemmas. explain
is complete on a practical fragment of Lcne(QF-LIA), termed the

2014/7/15

monotone fragment (Definition [J). All but one of our benchmarks
(diffpriv) are monotone.

Definition 9. Monotone Fragment. A Lt (QF _LIA) formula is in
the monotone fragment (or simply monotone) if it is equivalent
to a formula that satisfies the following conditions: /) Any atom
containing a binary relation has parametric count terms on only
one side of the relation, and each shared variable appears in at most
one such term in the atom. 2) The coefficients of all parametric
count terms in a given atom have matching signs. 3) The chamber
polynomials of each count term are all monotonic in every shared
variable, within their corresponding chamber constraints.

Theorem 5. Given a monotone clause set from Lecount(QF-LIA),
countersat terminates in finite steps.

Implementing genparam. Implementing genparam(C, z) is pos-
sible using Z3’s built-in support for linear-integer arithmetic: sim-
ply pass the clauses C' to Z3, and collect a model for z. countersat
generates advice for genparam(C,) using mesh-based black-box
optimization [2]. Black-box optimization assumes nothing about
the structure of its objective function, instead relying on a module
to compute its value on candidate points, making it ideal in this set-
ting. We construct an objective function g over the shared variables
that operates as a penalty function on models, mirroring the penalty
methods [32] used in constrained optimization. We use black-box
optimization over this objective, applying Barvinok’s algorithm as
needed to evaluate count terms, in an attempt to find a (nearly)
satisfying assignment for . When the procedure completes, typi-
cally after a timeout, the best solution is used to construct an advice
clause for genparam that specifies a region surrounding this value
of x. The region is subsequently expanded until either a valid as-
signment is found, or a threshold is reached.

Continuing with the current example, countersat will derive the
following objective function:

g(si,3) = (s1 = 3)” + (b(s1, 53) — 120)”

b(st, s5) corresponds to the parametric enumerator for the count
term in l2, which is evaluated on-demand. The procedure will
pass advice to genparam that suggests solutions in this vicinity:
7 < si,s5 < 13. The size of the vicinity is heuristic; our imple-
mentation uses a region of size 7 in each dimension.

6. Evaluation

We evaluated the performance of countersat on a set of bench-
marks derived from privacy and confidentiality verification tasks.
We sought to answer the following questions:

e Can countersat be brought to bear on verifying privacy-
preserving computations?

e Are the CAD-based lemmas generated by explain necessary, or
do simpler schemes suffice in most cases?

e [s the use of CAD in explain practical, or is the double-
exponential complexity an issue in common instances?

e [s advice for genparam useful, or does it tend to get in the way?

Summarizing, we found that countersat was able to verify the
privacy properties of several programs written for secure multi-
party computation [8]], oftentimes in a few seconds. We found that
in many cases CAD-based lemmas are needed for termination, and
often increase performance by orders of magnitude. Additionally,
the average time spent in CAD over all benchmarks was small (1.3
seconds). We found that our optimization-based advice routine for
genparam was essential to performance in a few cases, offering as
much as a 118 performance increase, while in others causing a
modest slow-down.

6.1 Benchmarks

We evaluated countersat on eleven benchmarks; the details of most
are given in Figure fi(a)] Two correspond to geometry problems
(hypercube and a3), and nine to privacy verification problems.
Of the nine verification benchmarks, two correspond to programs
written by us (editdist and diffpriv), and the remaining were dis-
tributed as part of the Fairplay secure multi-party compiler [8].
Fairplay compiles programs written in Secure Function Definition
Language (SFDL), which resembles a subset of C with bounded
loops, into a Boolean circuit. Each of the verification benchmarks
suffixed with -circ was generated directly from the Boolean circuit
compiled by Fairplay. Observing that Boolean satisfiability is re-
ducible to linear-integer programming, we achieve this translation
by converting CNF clauses into 0-1 linear-integer constraints. The
remaining verification benchmarks were translated from Fairplay
by hand, without being first reduced to Boolean operations.

The privacy properties we verified relate to how much of one
party’s input another party is able to learn, given their input and the
output of the computation. Writing the verification conditions for
these properties follows in a similar vein to the running example
given in Section 2] For example, to verify the voting program, we
want to demonstrate that any observer who knows fewer than | % |
parties’ votes, and the output of the program, cannot learn any
of the other parties’ votes. Supposing there are six parties and m
candidates, we select two parties’ inputs v1,v2 and the output o
as known observations, and establish that if only these values are
known to an observer, then the remaining inputs can still take their
full range of values: we make v1,v2, and o shared variables, and
assert the negation of our goal:

count(vs,...) <mV---Vcount(vs,...) < m

A satisfying assignment on v1, v2 and o to this formula corresponds
to a set of votes for the two known parties, and an outcome for the
election, that allows one to learn more than intended about the other
parties’ votes.

6.2 Results

All experiments were performed on a MacBook Pro with 8 GB of
memory and a 4-core 2.2 GHz Intel Core i7 running OS X 10.8.
Each benchmark was given a 30-minute time limit. The results are
displayed in Figure[(b)] For each benchmark, we give performance
characteristics for three configurations: using optimization-based
advice for genparam and CAD-based lemmas (“With advice”), us-
ing no advice with CAD-based lemmas (“No adv.”), and using no
advice and no CAD-based lemmas (“No CAD”). We also evalu-
ate the ability of Z3’s non-linear integer solver to directly solve the
problems, given the chamber polynomials produced by libbarvinok
(“NLSAT”). For each configuration, we give the total runtime in
seconds. For the first configuration (using advice with CAD lem-
mas), we also give the amount of time spent model counting in
libbarvinok (which is invariant across configurations) and the
amount of time spent generating advice.

countersat was able to complete each of the benchmarks, tak-
ing anywhere from a few seconds to several minutes to finish. As
previously mentioned, the programs from which these benchmarks
were derived were small. Even so, when editdist, diffpriv, and me-
dian were translated into Boolean circuits, countersat timed out
in the model counting phase. We addressed this by translating the
code into Lcnt(QF_LIA) by hand, treating integers as single vari-
ables rather than a set of binary digits. In this form, countersat was
able to complete verification. Notice the speedup from auction-
circ to auction; this suggests that the Boolean encoding introduces
a significant overhead in counting. In future work we will explore
approximation methods, as well as formula decomposition strate-

2014/7/15

Name Description

Two-party edit distance. Result should not leak contents of a

editdist full character from party’s string.
diffpriv Differentially-private set cardinality.
median Median of two par_lies’ ;ists: Verify that one party cannot cause
the other to leak his entire list.
. Vickrey auction. Verify that the result does not leak more of a
auction

player’s bid than implied by the winning price.
auction-circ Same as above, but translated directly from circuit.
Millionaire’s problem.

Multi-party variant of above.

mill-circ

manymill-circ

keydb-dirc Keyed dgtabase lookup. Result should leak no
information about unselected rows.

Simple majority voting circuit. A coalition of fewer than half

voting-circ . s
g minus one should not learn another party’s vote.

(a) Privacy verification benchmarks.

With advice Noadv. No CAD NLSAT
count advice total total total total
hypercube 0.01 047 0.5 65.03 - NA
a3 0.01 2.66 5.83 663.81 - NA
editdist 042 0.57 2091 20.19 - NA
diffpriv 476 141 69.41 55.89 - NA
median 020 1.57 17.60 34.81 - NA
auction 0.03 0.01 0.57 0.56 - NA
auction-circ 50.69 0.78 12542 125.63 126.73 125.87
mill-cire 0.33 040 0.90 0.51 0.45 0.45

manymill-circ 093 0.01 245 2.46 0.24 0.23
keydb-circ 29.26 0.66 240.81 23524 23647 125.27
voting-circ 094 0.01 246 245 241 2.40

(b) Performance characteristics for countersat. All times are measured in
seconds. — signifies timeout, NA signifies that the solver returned “unknown”.

Figure 4. countersat evaluation benchmarks and results.

gies that utilize the inclusion-exclusion principle, to mitigate this
bottleneck on larger benchmarks.

The results indicate that in a few cases, advice for genparam is
helpful, at times yielding improvements two orders of magnitude
faster than without. In most cases, it neither helped performance
nor hurt it significantly, although in the worst case added an addi-
tional fourteen seconds to the total (diffpriv). The discrepancy can
be explained by the structure of the parametric enumerator’s cham-
ber space: whenever the chambers encompass a large area of the
parameter space and there is substantial variation in the chamber
polynomial, advice is generally useful. This property tends to hold
for geometric problems, as well as verification problems without
many constraints on parameters (e.g., median). When this prop-
erty does not hold, a chamber is usually dispatched as not feasible
before advice is even generated; in the few cases it is, it tends to
produce no useful information at a slight cost.

The results also indicate that CAD-based lemmas are necessary
in all but the circuit-based benchmarks. This is due to the fact that
the parameters in the circuit benchmarks each take Boolean val-
ues, so the bounds produced by CAD lemmas are of little value. In
other cases, without CAD lemmas countersat tends to exhaust each
chamber before ruling it out, which quickly becomes intractible.
Finally, the approach of translating libbarvinok’s chamber polyno-
mials into nonlinear-integer constraints and solving directly using
Z3’s engine worked only for the circuit benchmarks — Z3 returned
“unknown” on all other benchmarks. We suspect that this result
follows from the same condition that allowed non-CAD solving
to succeed: in circuit benchmarks, parameters correspond to binary
values, whereas in the other benchmarks the values are arbitrary in-
tegers and the chamber polynomials are often complex non-linear
polynomials.

7. Related Work

Model Counting. Logicians have studied the expressive power and
other properties of various first-order and fixed-point logics ex-
tended with counting quantifiers [9} 241 125} 131]; see [23] for an
overview. The syntax and semantics of our logic are inspired by
these early works, but given our specific focus on the application of
L4 (L) to verification, it differs in a few aspects. First, we do not al-
low nested counting terms. This makes the logic less expressive, but
in our experience does not seem to affect its application to privacy
properties. Second, we parameterize both the syntax and seman-
tics on a base logic, effectively making £ (L) a logic schema that
can be instantiated over many different base logics. Lastly, we ex-
plicitly consider the problem of satisfiability over parameters and

develop an algorithm for its decision problem, while these works
focused on expressiveness and complexity.

Modal logics have been extended with counting operators, in-
cluding corresponding satisfiability procedures [3|4]. In these set-
tings, counting terms may be compared against constants. Many
have explored the problem of counting quantifier-free propositional
models (called #SAT); see Gomes et al. [22]] for a survey. To the
best of our knowledge, parametric counting has not been explored
in this context. Feifei et al. extend the problem to SMT [34], sup-
porting volume computation by counting solutions to linear-integer
atoms and summing over all valid Boolean combinations, but they
do not consider parameters or a corresponding notion of satisfi-
ability. In the artificial intelligence community, some have pro-
posed [13} 41] reducing Bayesian inference problems to weighted
#SAT, but parameters are not used. Luu et al. studied the problem
of counting models over string domains [33], and applied their al-
gorithm to quantifying information flow in programs that operate
over encrypted data. We will explore the possibility of incorporat-
ing their technique as a solver for base logics that use string values.
Closely related to our procedure is the work on counting linear-
integer models [7, [12 [14} [39} 144]. Our decision procedure makes
heavy use of this work, defining a useful notion of satisfiability over
the parametric counting procedures.

Privacy and Confidentiality Verification. There is a large body
of work related to verifying programs against privacy and confi-
dentiality properties. Partial information flows must be handled us-
ing declassifiers, which can leak unintended information. Sabelfeld
and Myers proposed a model of delimited release, where accept-
able disclosure is specified syntactically in the program text as an
expression. It may be possible to use L4 (L) to provide assurance
that a delimited release prevents unintended leakage. Others have
explored quantitative information flow 5, 127, 28l 135 145] as a re-
laxation of non-interference, wherein various information theoretic
concepts are used to impose bounds on the “amount” of informa-
tion leaked by a program. Model counting is intimately related to
this line of research, and has well-documented [5] applications to
its verification problem. Klebanov recognized the potential of para-
metric model counting when applied to quantitative information
flow [28]], but did not further develop the notion of satisfiability
necessary for automated reasoning, or consider applying the prim-
itive to other privacy and confidentiality properties.

Gaobardi et al. [21] gave a linear-dependent type system capa-
ble of verifying differential privacy in functional programs. How-
ever, it is not able to verify programs that achieve differential pri-
vacy using “non-standard” techniques. This is not an issue with
the strategy outlined here, which establishes the needed privacy

2014/7/15

property from lower-level semantics. Others have studied relational
variants of the Hoare logic [10] with applications to information
flow analysis. Barthe ez al. [6] extended this reasoning to approxi-
mate relations over probablistic programs, with the immediate ap-
plication to verifying differential privacy. This framework was im-
plemented alongside the Coq proof assistant, and used to produce
machine-verified proofs of differential privacy for several interest-
ing programs. We see a deep connection between their work and
ours, and plan to explore complementary verification strategies as
immediate next steps in future work.

8. Conclusion

In this paper, we introduced the problem of model-counting satis-
fiability and its application to verifying notions of privacy. We in-
troduced a new logic for expressing instances of this problem, de-
veloped an abstract decision procedure for it, and instantiated it on
linear-integer arithmetic. We described an effective routine for pro-
ducing counting theory lemmas over this logic, that is complete on
a useful fragment. We applied our procedure to the verification of
several privacy-preserving programs, and showed that it often com-
pletes in a matter of seconds. In the future we will attempt to verify
larger programs, which will undoubtedly involve incorporating our
decision procedure into a more sophisticated program analysis and
abstraction framework. We will also study approximation and de-
composition strategies that help mitigate the worst-case complexity
of linear-integer model counting in practice.

References

[1] Insurance data: Very personal finance. The Economist, June 2012.

[2] M. Abramson, C. Audet, G. Couture, J. Dennis, Jr., S. Le Digabel, and
C. Tribes. The NOMAD project. http://www.gerad.ca/nomad.

[3] C. Areces, G. Hoffmann, and A. Denis. Modal logics with counting.
In Logic, language, information and computation, 2010.

[4] F. Baader, M. Buchheit, and B. Hollunder. Cardinality restrictions on
concepts. In Advances in Artificial Intelligence. 1994.

[5] M. Backes, B. Kopf, and A. Rybalchenko. Automatic discovery and
quantification of information leaks. In Oakland, 2009.

[6] G. Barthe, B. Kopf, F. Olmedo, and S. Zanella Béguelin. Probabilistic
relational reasoning for differential privacy. In POPL, 2012.

[7] A. L. Barvinok. A polynomial-time algorithm for counting integral
points in polyhedra when the dimension is fixed. Mathematical Oper-
ations Research, Nov. 1994,

[8] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a system for
secure multi-party computation. In CCS, 2008.

[9] M. Benedikt and H. J. Keisler. Expressive power of unary counters. In
Database Theory, 1997.

[10] N. Benton. Simple relational correctness proofs for static analyses and
program transformations. In POPL, 2004.

[11] R. Bhaskar, A. Bhowmick, V. Goyal, S. Laxman, and A. G. Thakurta.
Noiseless database privacy. In Asiacrypt, 2011.

[12] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. Exact analysis
of the cache behavior of nested loops. In PLDI, 2001.

[13] M. Chavira and A. Darwiche. On probabilistic inference by weighted
model counting. Artificial Intelligence, Apr. 2008.

[14] P. Clauss and V. Loechner. Parametric analysis of polyhedral iteration
spaces. VLSI Signal Process. Syst., July 1998.

[15] G. E. Collins. Quantifier elimination for real closed fields by cylin-
drical algebraic decompostion. In Automata Theory and Formal Lan-
guages, 1975.

[16] L. De Moura and N. Bjgrner. Z3: an efficient SMT solver. In TACAS,
2008.

[17] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. CACM, July 1977.

[18] A. Di Pierro, C. Hankin, and H. Wiklicky. = Approximate non-
interference. Journal of Computer Security, Jan. 2004.

[19] C. Duhigg. How companies learn your secrets. New York Times.

February 16, 2012.

[20] C. Dwork. Differential privacy: a survey of results. In Theory and
applications of models of computation, 2008.

[21] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C. Pierce.
Linear dependent types for differential privacy. In POPL, 2013.

[22] C. P. Gomes, A. Sabharwal, and B. Selman.
Handbook of Satisfiability. 2009.

[23] E. Gridel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y.
Vardi, Y. Venema, and S. Weinstein. Finite Model Theory and Its
Applications. Springer-Verlag New York, Inc., 2005.

[24] E. Gridel and M. Otto. Inductive definability with counting on finite
structures. In Workshop on Computer Science Logic, 1993.

[25] S. Grumbach and C. Tollu. On the expressive power of counting.
Theoretical Computer Science, 1995.

Model counting. In

[26] A.Haeberlen, B. C. Pierce, and A. Narayan. Differential privacy under
fire. In USENIX Security, 2011.

[27] J. Heusser and P. Malacaria. Quantifying information leaks in soft-
ware. In ACSAC, 2010.

[28] V. Klebanov. Precise quantitative information flow analysis using
symbolic model counting. In Workshop on Quantitative Aspects in
Security Assurance, 2012.

[29] V. Klebanov, N. Manthey, and C. Muise. SAT-based analysis and
quantification of information flow in programs. In Quantitative Eval-
uation of Systems, 2013.

[30] B. Kopf, L. Mauborgne, and M. Ochoa. Automatic quantification of
cache side-channels. In CAV, 2012.

[31] L. Libkin. Logics with counting, auxiliary relations, and lower bounds
for invariant queries. In LICS, 1999.

[32] D. Luenberger and Y. Ye. Linear and Nonlinear Programming. 2008.

[33] L. Luu, S. Shinde, P. Saxena, and B. Demsky. A model counter for
constraints over unbounded strings. In PLDI, 2014.

[34] F. Ma, S. Liu, and J. Zhang. Volume computation for Boolean combi-
nation of linear arithmetic constraints. In CADE. 2009.

[35] S. McCamant and M. D. Ernst. Quantitative information flow as
network flow capacity. In PLDI, 2008.

[36] 1. Mironov. On significance of the least significant bits for differential
privacy. In CCS, 2012.

[37] L. Moura and D. Jovanovi¢. A model-constructing satisfiability calcu-
lus. In VMCAL. 2013.

[38] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and
SAT Modulo Theories: From an abstract Davis—Putnam—Logemann—
Loveland procedure to DPLL(T). Joural of the ACM, Nov. 2006.

[39] W. Pugh. Counting solutions to Presburger formulas: how and why. In
PLDI, 1994.

[40] A. Sabelfeld and A. C. Myers. A model for delimited information
release. In Software Security — Theories and Systems. 2004.

[41] T. Sang, P. Beame, and H. Kautz. Solving Bayesian networks by
weighted model counting. In AAAIZ, 2005.

[42] L. Sweeney. k-anonymity: a model for protecting privacy. Journal on
Uncertainty and Fuzziness in Knowledge-Based Systems, Oct. 2002.

[43] J. Valentino-Devries, J. Singer-Vine, and A. Soltani. Websites vary
prices, deals based on users’ information. Wall Street Journal. De-
cember 24, 2012.

[44] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe.
Counting integer points in parametric polytopes using Barvinok’s ra-
tional functions. Algorithmica, Mar. 2007.

[45] D. Volpano and G. Smith. Verifying secrets and relative secrecy. In
POPL, 2000.

[46] S.Zdancewic and A. C. Myers. Robust declassification. In CSF, 2001.

2014/7/15

http://www.gerad.ca/nomad

A. Proof of Theorem/I]

We begin with a brief sketch. We show that the problem of deter-
mining whether an integer solution to a Diophantine equation ex-
ists can be reduced to determining the satisfiability of a formula in
L4 (QF_LIA). A Diophantine equation is of the form:

azP 4+ ... Fepxir =0

where each a; and ¢; is an integer. It is known that the problem
of determining the existence of integer solutions to x1, . .., z, for
an arbitrary Diophantine equation is undecidable (viz. the negative
solution to Hilbert’s tenth problem). The key to the reduction is
that a variable x in a Diophantine equation can be replaced with
the expression

count(z,0 < x < x°)

For any assignment to x®, this expression will take the same value.

Let p(z1,...,%,) be a Diophantine equation. Assume wlog.
that we restrict the solutions of p to non-negative integers. This sim-
plifies the proof, as count expressions cannot return negative val-
ues. We show how to obtain a L4 (QF_LIA) formula ¢(z3, . .., z},)
that is satisfiable if and only if p has a solution in the integers. The
transformation from p to ¢ proceeds in two steps:

1. “Unroll” each exponent appearing in p, so that

z? becomes x X --- X
———
q times

Note that while this transformation increases the size of the
formula exponentially, this is not a concern, as we only consider
decidability.

2. Replace each instance of each variable with a counting opera-
tion corresponding to its value in p. In other words,

x becomes count(z,0 < z < z¥)

First notice that ¢ is actually in L4 (QF_LIA). Each term in p con-
sists of a multiplication and an exponentiation. Step 1 transforms
the exponentiation into a sequence of multiplications, so each indi-
vidual term is in £ (QF_LIA). The terms are combined with addi-
tion, and the only other operation is an equality comparison, both
of which are in £ (QF_LIA). Each count term added in step 2 op-
erates over two conjoined inequality comparisons (i.e., 0 < z and
< 2%),and 0 < & Az < z® is in QF_LIA. Lastly, these terms
are also finite-base, because any substitution of z° with an integer
yields a bounded value for the term. As such, the count terms have
well-defined semantics in L4 (QF_LIA).

Now observe that any satisfying assignment « to ¢(z5, . .
corresponds via the identity mapping to a solution for p(x1, . .
First, a(x$) is an integer for all i. Next, notice that the left-hand
side of p(a(z}), ..., a(z},)) evaluates to the same value as that in
pla(zl), ..., a(z})). We can see this on a term-by-term basis:

S Th)

1. In ¢, each count(z,0 < < z°) evaluates to a(z®). In p, each
occurrence of x also evaluates to a(z®).

2. Via the previous step, replacing count(z,0 < z < z°) —
a(z®) in ¢ and z — «(x®) in p, we see that the terms in ¢
evaluate identically to those in p:

cia(@i) x - xa(x}) = ca(z])?

q; times

Thus, p has a solution in the integers whenever ¢ is satisfiable. The
same result holds in the opposite direction by identical reasoning,
so it follows that reduction to L4 (QF_LIA) satisfiability yields a
procedure for solving Diophantine equations. [J

 yTn).

B. Proof of Theorem

First, notice that the only terminal states are SAT and UNSAT.
Showing this amounts to demonstrating that at least one rule applies
whenever the following condition holds:

(—satisfied(C, M) A —conflict(C, M))
vV (—satisfied(C, M) A explain(false, M) # false)
V (—satisfied(C, M) A M has a decided literal)

This condition corresponds to the negation of the conjoined pre-
conditions for the SAT and UNSAT rules. In the following, to make
our explanations as simple as possible we assume that each case
is mutually-exclusive. For example, the first bullet corresponds to
the case where C' is not satisfied by M, there is not a conflict be-
tween C and M, explain(false, M') = false, and M has no decided
literals:

e (—satisfied(C, M) A—conflict(C, M)) implies that at least one
shared variable is not assigned in M or a literal from the C' has
not been decided or propagated. In this case, either DECIDE, C-
DECIDE, PROPAGATE, C-PROPAGATE, or C-MODEL-DECIDE
applies.

(—satisfied(C, M) A explain(false, M) # false) implies that
the current trail is conflicting and a non-trivial explanation
exists. Thus, because explain does not return false, one of the
backjump and clause learning rules can be applied to add a new
non-trivial clause to C.

(—satisfied(C, M) A M has a decided literal) implies that ei-
ther a literal appearing in C' has not yet been decided, a variable
has not been assigned, or the current trail is conflicting. In the
first two cases, DECIDE or C-DECIDE can be applied. In the
third case, one of the backjump rules can be applied.

The above reasoning shows that whenever the preconditions for
SAT and UNSAT do not hold, another rule can be applied. Thus, the
procedure will not terminate in any state outside of SAT or UNSAT.

Now, suppose that sat™ enters SAT. The precondition for this
state is simply: satisfied(C, M). Then at least one literal from each
clause in C evaluates to true, and value (I, M) = true for all such
literals. The first condition implies that C' is satisfiable clausally,
i.e., it does not contain any contradictions on a purely Boolean
level. The second condition implies that the values of shared vari-
ables given by the model assignments in M do not invalidate the
Boolean satisfiability, i.e., the semantics of £ (L)applied to C' un-
der the assignments in M agree with the clausal satisfiability. To
see why, consider the definition of value.(l, M) (Figure). For
any [such that value, (I, M) = true, the first condition implies that
reduce(M, 1) = true. This implies that aas is total over Vihare (1),
and that Os,t (s (1)) = true. This, in turn, implies that C is satis-
fiable as a QF_NRA formula, so by Deﬁnition C'is satisfiable.

On the other hand, if sat” enters UNSAT, then three conditions
must hold:

1. conflict(C, M) = true
2. explain(false, M) = false

3. M has no decided literals, i.e., further backtracking is not pos-
sible.

We list the causes that can result in these conditions holding simul-
taneously, and explain how each implies that C' is not satisfiable.

® (Model space exhaustion). The model as causes one of the
clauses to evaluate to false, thus causing the conflict on C, M.
Additionally, explain returns false, so there are no other valid
model assignments to try. To see why, suppose that the trail
consists of assignments [z} — vi,...,25 +— vi] and a
formula ¢. Then because explain returns a valid theory lemma,

2014/7/15

we see that 27 # v1 V -+ -V x§, # v, V —¢ I false. It follows
that no satisfying assignment to the shared variables exists, and
C is unsatisfiable.

(Conflicting lemmas and inferences). PROPAGATE and C-
PROPAGATE have inferred a set of literals that causes one of
the clauses to evaluate to false, and there are no model as-
signments on the trail. M contains no decided literals, so each
propagation is implied by the original clause set and the lemmas
added by LEARN, C-MODEL-PROPAGATE, C-LEARN, and the
backjump rules. In each case, the lemma must be a valid propo-
sitional or counting theory deduction, so the inferences on the
trail are all valid consequences of the original clause set. C
must be unsatisfiable.

(Mixed model-based and base logic reason). PROPAGATE and
C-PROPAGATE have inferred a set of literals that, along with
the model assignments on the trail, causes one of the clauses to
evaluate to false. explain returns false, so there are no other
assignments to shared variables that agree with the inferred
literals, for if there were then explain would have returned
¢ — I, where I — x° # anr(z®), for some ¢ and z*° assigned
on M. It follows that C' is unsatisfiable.

We conclude that when sat™ enters UNSAT, C is unsatisfiable. [J

C. Proof of Theorem[3

We begin with a brief sketch. This proof proceeds along the lines of
that of Theorem 1 in [37)]. We define a lexicographic partial order
on states, and show that the transition rules in Figure [3| produce a
monotonicially-increasing sequence of states. One might think that
C-DECIDE causes termination problems due to its freedom in gen-
erating literals from L. However, these literals are only passed to
genparam, which can only affect the trail through model assign-
ments, which are given smaller weight in the ordering. Similarly,
one might expect C-MODEL-DECIDE to cause issues from its use
of explain outside of a conflicting state; because the explanation
is added directly to the trail, rather than the set of clauses, sat”
avoids a non-terminating sequence of FORGET and C-MODEL-
PROPAGATE applications. We give details of the proof below.

Following the termination proof of de Moura and Jovanovié [37]],
we define a lexicographic partial order on sat? states. It is based
on a weight assignment w for trail elements:

w(model assignment) = 0
w(decided literal) = 1
w(propagated literal) = 2

Propagated literals are given the most weight, followed by decided
literals, and finally model assignments. This ensures that when
decisions made by the procedure are replaced with propagations
implied by the current state, the new state is ranked higher than its
predecessor. Similarly, when model assignments are replaced with
decided literals, the resulting state is given a higher rank.

Now we define the partial order < by five rules, making use of
a secondary ordering [over trail assignments:

) [lcM i M %]

2) [a, M) C [b, M) if w(a) < w(b)

3) [a, M) C [b, M) if w(a)=w(b)AM C M
4) M1,Cl> < <M2,CQ> if M, C M,

(
5) <M1,Cl> < <M2,CQ> if M;=MsA ‘01| > |C2|

Notice that < is covariant in the lexicographic order over trail
weights, and contravariant in the cardinality of the clause set.

Our assumption that explain returns clauses from a finite set
Cluniv implies minimal and maximal elements for a given applica-
tion of sat™ ([], Co): ([], Cuniv) is minimal, and any state contain-
ing a trail with |Cuniv| propagations and a total model assignment,

with clause set Cp is maximal among those that will ever appear
in a given application of the procedure. We have now to show that
any valid sequence of applications is monotonic in < after a finite
number of steps. We proceed by cases:

e We can ignore the rules SAT and UNSAT, as their resulting
states cause sat™ to terminate immediately.

Any rule that adds an element to the trail is immediately mono-
tonic, as (M, C1) < ([M,al], C2) by rules 1 and 3. This cov-
ers DECIDE, PROPAGATE, C-DECIDE, C-PROPAGATE, and C-
MODEL-DECIDE.

Any rule that removes a clause from C' is monotonic by rule 5,
so the result holds for FORGET.

If BACKJUMP or C-BACKJUMP is applied, then the state will
transition from My = [M, [, N] to M> = [M,c — I]. Recall
that w(l) < w(c —1'), so by rules 1 and 3 M; < M.

If C-BACKJUMP-DECIDE is applied, then the state will tran-
sition from My = [M,z° — v,N|to M2 = [M,c — ['].
Similar reasoning holds as with BACKUMP and C-BACKJUMP:
w(@® — v) < w(c — '), sorules 1 and 3 imply that
My < Mo.

At first blush, LEARN and C-LEARN seem to pose a problem,
as they result in larger clause sets, and < is contravariant in
the cardinality of the clause set. However, they must eventu-
ally transition to either unsat, or a greater state with a non-
conflicting trail in a finite number of steps. Observe that in the
“worst” case, all possible clauses from Ciniy are learned, and
the the clause set will reach its minimal configuration. When
this occurs, LEARN and C-LEARN are no longer applicable, so
a different rule must apply. Notice that the state cannot change
without raising the rank of the trail M on [, as the only way
to do so would be FORGET, which cannot be applied on con-
flicting trails, and the presence of a conflict is a necessary pre-
condition for LEARN and C-LEARN). Thus, the only rules that
can apply are UNSAT (which we can ignore, as it leads to im-
mediate termination), one of the backjump rules, or one of the
propagate rules. When this happens, the resulting state will be
ranked higher than the current regardless of the size of the new
clause set (rule 4). Finally, because none of the rules move from
(Mq,Ch) to (M2, C>) with My = M, this move to higher
ranks is permanent.

To summarize, all rules except LEARN, C-LEARN, and FORGET
transition the trail to higher ranks over [, and are thus monotonic
on <. Because < is contravariant on the cardinality of the clause
set, FORGET is monotonic. The only rules are are not immediately
monotonic over single transitions are LEARN and C-LEARN; how-
ever, because only a finite number of clauses can be learned, these
rules cannot be repeated infinitely, and must eventually transition
to a higher-ranked state via an application of a backjump, propa-
gation, or terminal UNSAT rule. Thus, the eventual monotonicity
of the transitions, and the existence of a maximally-ranked state
implies that the procedure must terminate after a finite number of
transitions. [J

D. Proof sketch of Theorem[3

Utilizing Theorem [3] we show that explain returns lemmas from a
finite set on monotone problems. In the case of one shared variable
x°, we can assume without loss of generality that each atom con-
taining a count term is of the form ¢1 X count(z®, ¢) < ¢ for
some constants ¢; and ¢z (see condition 1 of Definition 0. There
are only finitely many points between any conflicting value of z®
and a value that satisfies the constraint (condition 3). If no such
value exists, then the chamber space for this count term is finite,

2014/7/15

and cannot cause explain to generate an infinite sequence of lem-
mas. This reasoning extends to multiple variables without much
effort. This is due to condition 1, which stipulates that count terms
appearing in a given atom cannot depend on the same shared vari-
able, and condition 2, which disallows subtraction of count terms.
These assumptions let explain work monotonically towards a sat-
isfying solution or a conflict. Any conflict that does not result in
termination will initiate another finite sequence of lemmas. Condi-
tions 1 and 2 together imply bounds on each shared variable, so this
process will eventually terminate. [

2014/7/15

	Introduction
	An Illustrative Example
	A Logic for Model-Counting Satisfiability
	An Abstract Decision Procedure for L#(L)
	Abstract Procedure

	A Linear-Integer Instantiation of sat#
	Barvinok's Theory of Polyhedral Lattice Points
	countersat : sat# for Lcnt(QF_LIA)

	Evaluation
	Benchmarks
	Results

	Related Work
	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof sketch of Theorem 5

