Automated Program Verification and Testing
15414/15614 Fall 2016
Lecture 24:
Symbolic Model Checking 2, Spin

Matt Fredrikson
mfredrik@cs.cmu.edu

November 29, 2016
Symbolic Transition Systems (Recap)

We’ll represent states by their atomic propositions:

We’ll represent states by their atomic propositions:
We’ll represent states by their atomic propositions:

- Need to assume that states are uniquely determined by their propositions

If ϕ is a formula over atomic propositions, then ϕ refers to the set $\{s \in S | s = \phi\}$.

Recall: this is similar to how we treated assertions in Hoare logic.
Symbolic Transition Systems (Recap)

We’ll represent states by their atomic propositions:

- Need to assume that states are uniquely determined by their propositions
- I.e., for any $s, s' \in S$ where $s \neq s'$, $L(s) \neq L(s')$
We’ll represent states by their atomic propositions:

- Need to assume that states are uniquely determined by their propositions
- I.e., for any \(s, s' \in S \) where \(s \neq s' \), \(L(s) \neq L(s') \)
- Then if \(L(s) = p_1, \ldots, p_n \), we’ll refer to \(s \) by writing:
 \[
p_1 \land \cdots \land p_n
 \]
We’ll represent states by their atomic propositions:

- Need to assume that states are uniquely determined by their propositions
- I.e., for any $s, s' \in S$ where $s \neq s'$, $L(s) \neq L(s')$
- Then if $L(s) = p_1, \ldots, p_n$, we’ll refer to s by writing:

$$p_1 \wedge \cdots \wedge p_n$$

- If ϕ is a formula over atomic propositions, then

ϕ refers to the set $\{s \in S \mid s \models \phi\}$
Symbolic Transition Systems (Recap)

We’ll represent states by their atomic propositions:

- Need to assume that states are uniquely determined by their propositions
- I.e., for any \(s, s' \in S \) where \(s \neq s' \), \(L(s) \neq L(s') \)
- Then if \(L(s) = p_1, \ldots, p_n \), we’ll refer to \(s \) by writing:
 \[
 p_1 \land \cdots \land p_n
 \]
- If \(\phi \) is a formula over atomic propositions, then
 \(\phi \) refers to the set \(\{ s \in S \mid s \models \phi \} \)

Recall: this is similar to how we treated assertions in Hoare logic
We also represent transitions as predicates
We also represent transitions as predicates

Transitions reference **ordered pairs** of states \((s, s')\)
We also represent transitions as predicates

Transitions reference **ordered pairs** of states \((s, s')\)

The transition relation is just a set of these pairs, so as a predicate,

\[
R(s, s') = 1 \iff (s, s') \in R
\]
Symbolic Transition Systems (Recap)

We also represent transitions as predicates

Transitions reference **ordered pairs** of states \((s, s')\)

The transition relation is just a set of these pairs, so as a predicate,

\[
R(s, s') = 1 \iff (s, s') \in R
\]

We’ll represent transition predicates using atomic propositions:
We also represent transitions as predicates

Transitions reference **ordered pairs** of states \((s, s')\)

The transition relation is just a set of these pairs, so as a predicate,

\[
R(s, s') = 1 \iff (s, s') \in R
\]

We’ll represent transition predicates using atomic propositions:

- To refer to “next state”, prime the proposition symbols
We also represent transitions as predicates

Transitions reference **ordered pairs** of states \((s, s')\)

The transition relation is just a set of these pairs, so as a predicate,

\[
R(s, s') = 1 \iff (s, s') \in R
\]

We’ll represent transition predicates using atomic propositions:

- To refer to “next state”, prime the proposition symbols
- So the predicate \((p_1 \land \neg p_2) \land (p'_1 \land p'_2)\):
We also represent transitions as predicates

Transitions reference **ordered pairs** of states \((s, s')\)

The transition relation is just a set of these pairs, so as a predicate,

\[
R(s, s') = 1 \iff (s, s') \in R
\]

We’ll represent transition predicates using atomic propositions:

- To refer to “next state”, prime the proposition symbols
- So the predicate \((p_1 \land \neg p_2) \land (p'_1 \land p'_2)\):
 1. Begins in the state where \(p_1\) is true and \(p_2\) is false
We also represent transitions as predicates

Transitions reference **ordered pairs** of states \((s, s')\)

The transition relation is just a set of these pairs, so as a predicate,

\[
R(s, s') = 1 \iff (s, s') \in R
\]

We’ll represent transition predicates using atomic propositions:

- To refer to “next state”, prime the proposition symbols
- So the predicate \((p_1 \land \neg p_2) \land (p_1' \land p_2')\):
 1. Begins in the state where \(p_1\) is true and \(p_2\) is false
 2. Ends in the state where both \(p_1\) and \(p_2\) are true
Symbolic transitions:

\[
\begin{align*}
(v_0 = 0 \land v_1 = 0 \land v'_0 = 0 \land v'_1 = 1) \\
\lor (v_0 = 0 \land v_1 = 1 \land v'_0 = 1 \land v'_1 = 0) \\
\lor (v_0 = 1 \land v_1 = 0 \land v'_0 = 1 \land v'_1 = 1) \\
\lor (v_0 = 1 \land v_1 = 1 \land v'_0 = 0 \land v'_1 = 0)
\end{align*}
\]

Initial state: \(v_0 = 0 \land v_0 = 1 \)

The transitions are a predicate

\[\psi_R(v_0, v_1, v'_0, v'_1)\]
Example: Symbolic Representation

Symbolic transitions:

\[(v_0 = 0 \land v_1 = 0 \land v'_0 = 0 \land v'_1 = 1) \]
\[\lor (v_0 = 0 \land v_1 = 1 \land v'_0 = 1 \land v'_1 = 0) \]
\[\lor (v_0 = 1 \land v_1 = 0 \land v'_0 = 1 \land v'_1 = 1) \]
\[\lor (v_0 = 1 \land v_1 = 1 \land v'_0 = 0 \land v'_1 = 0) \]

Initial state: \(v_0 = 0 \land v_0 = 1 \)

The transitions are a predicate

\[\psi_R(v_0, v_1, v'_0, v'_1) \]

- Over four Boolean \(\{0, 1\} \) variables
Example: Symbolic Representation

Symbolic transitions:

\[
\begin{align*}
(v_0 = 0 & v_1 = 0 & v'_0 = 0 & v'_1 = 1) \\
\lor (v_0 = 0 & v_1 = 1 & v'_0 = 1 & v'_1 = 0) \\
\lor (v_0 = 1 & v_1 = 0 & v'_0 = 0 & v'_1 = 1) \\
\lor (v_0 = 1 & v_1 = 1 & v'_0 = 0 & v'_1 = 0)
\end{align*}
\]

Initial state: \(v_0 = 0 \land v_0 = 1\)

The transitions are a predicate

\[\psi_R(v_0, v_1, v'_0, v'_1)\]

- Over four Boolean \(\{0, 1\}\) variables
- Variables completely determine state of system

Same for the initial state: \(\psi_I(v_0, v_1)\)
Let $\tau : 2^S \mapsto 2^S$ be a predicate transformer

- τ is **monotonic** iff $P \subseteq Q$ implies $\tau(P) \subseteq \tau(Q)$

- A **fixpoint** of τ is a predicate (set) Z where $\tau(Z) = Z$

- A **least fixpoint** of τ, written $\mu Z. \tau(Z)$, is:
 1. A fixpoint of τ, so $\tau(\mu Z. \tau(Z)) = Z$
 2. A subset of any other fixpoint

- A **greatest fixpoint** of τ, written $\nu Z. \tau(Z)$, is:
 1. A fixpoint of τ, so $\tau(\nu Z. \tau(Z)) = Z$
 2. A superset of any other fixpoint
We have a simple algorithm that gives us fixpoints
We have a simple algorithm that gives us fixpoints

```
function lfp(τ) {
    Q := false;
    Q′ := τ(Q);
    while (Q ≠ Q′) {
        Q := Q′;
        Q′ := τ(Q′);
    }
    return Q;
}
```
We have a simple algorithm that gives us fixpoints

\begin{align*}
\textbf{function } \text{lfp}(\tau) \{ \\
Q &:= \text{false} \\
Q' &:= \tau(Q) \\
\textbf{while} (Q \neq Q') \{ \\
Q &:= Q' \\
Q &:= \tau(Q') \\
\} \\
\textbf{return } Q; \\
\}
\end{align*}

\begin{align*}
\textbf{function } \text{gfp}(\tau) \{ \\
Q &:= \text{true} \\
Q' &:= \tau(Q) \\
\textbf{while} (Q \neq Q') \{ \\
Q &:= Q' \\
Q &:= \tau(Q') \\
\} \\
\textbf{return } Q; \\
\}
\end{align*}
We can define the semantics of CTL in terms of fixpoints and predicate transformers.

- Least fixpoints correspond to eventualities
- Greatest fixpoints correspond to global assertions

Identify a CTL formula \(f \) with the predicate:

\[
\begin{align*}
\text{EX} \phi & = \exists v' : \phi (v') \wedge R(v; v') \\
\text{EG} \phi & = \exists Z : \phi (Z) \wedge \text{EX} Z \\
\text{E} (\phi_1 U \phi_2) & = \exists Z : \phi_2 (Z) \wedge (\phi_1 \wedge \text{EX} Z)
\end{align*}
\]
We can define the semantics of CTL in terms of fixpoints and predicate transformers

- Least fixpoints correspond to *eventualities*
We can define the semantics of CTL in terms of fixpoints and predicate transformers

- Least fixpoints correspond to **eventualities**
- Greatest fixpoints correspond to **global assertions**
Fixpoint Semantics of CTL

We can define the semantics of CTL in terms of fixpoints and predicate transformers

➤ Least fixpoints correspond to *eventualities*
➤ Greatest fixpoints correspond to *global assertions*

Identify a CTL formula f with the predicate $\{ s \in S \mid M, s \models f \}$
We can define the semantics of CTL in terms of fixpoints and predicate transformers

- Least fixpoints correspond to \textit{eventualities}
- Greatest fixpoints correspond to \textit{global assertions}

Identify a CTL formula f with the predicate $\{ s \in S \mid \mathcal{M}, s \models f \}$

Our “base” operator is $\mathbf{EX} \phi$, given by the predicate transformer:

$$\tau(v) = \exists v'. \phi(v') \land R(v, v')$$
We can define the semantics of CTL in terms of fixpoints and predicate transformers

- Least fixpoints correspond to **eventualities**
- Greatest fixpoints correspond to **global assertions**

Identify a CTL formula f with the predicate \(\{ s \in S \mid M, s \models f \} \)

Our “base” operator is $\mathbf{EX} \phi$, given by the predicate transformer:

$$
\tau(v) = \exists v'. \phi(v') \land R(v, v')
$$

Then we define a sufficient set of operators using fixpoints:
Fixpoint Semantics of CTL

We can define the semantics of CTL in terms of fixpoints and predicate transformers

- Least fixpoints correspond to **eventualities**
- Greatest fixpoints correspond to **global assertions**

Identify a CTL formula f with the predicate $\{s \in S \mid M, s \models f\}$

Our “base” operator is $\text{EX} \phi$, given by the predicate transformer:

$$\tau(v) = \exists v'.\phi(v') \land R(v, v')$$

Then we define a sufficient set of operators using fixpoints:

- $\text{EG} \phi = \nu Z.\phi \land \text{EX} Z$
Fixpoint Semantics of CTL

We can define the semantics of CTL in terms of fixpoints and predicate transformers

- Least fixpoints correspond to **eventualities**
- Greatest fixpoints correspond to **global assertions**

Identify a CTL formula f with the predicate $\{ s \in S \mid \mathcal{M}, s \models f \}$

Our “base” operator is $\textbf{EX} \phi$, given by the predicate transformer:

$$\tau(v) = \exists v'. \phi(v') \land R(v, v')$$

Then we define a sufficient set of operators using fixpoints:

- $\textbf{EG} \phi = \nu Z. \phi \land \textbf{EX} Z$
- $\textbf{E} (\phi_1 \textbf{ U } \phi_2) = \mu Z. \phi_2 \lor (\phi_1 \land \textbf{EX} Z)$
Example: $E(p U q)$

$$\tau(Z) = q \lor (p \land EX Z)$$
Example: $E (p \ U \ q)$

First compute $\tau (false) = \tau (\emptyset)$
Example: $E (p \mathbf{U} q)$

$$\tau(Z) = q \lor (p \land \mathbf{EX} Z)$$

Then $\tau^1(\text{false}) = \tau(\{s_2\})$
Example: $E(p \ U \ q)$

$$
\tau(Z) = q \lor (p \land \mathbf{EX} \ Z)
$$

\begin{itemize}
\item \(s_0\) \(\{p\} \rightarrow \{q\} \rightarrow \{p\} \rightarrow \{q\}\)
\item \(s_1\) \(\{p\} \rightarrow \{q\}\)
\item \(s_2\) \(\{q\} \rightarrow \{p\}\)
\item \(s_3\) \(\{\} \rightarrow \{\}\)
\end{itemize}

Then \(\tau^2(\text{false}) = \tau(\{s_1, s_2\})\)
Example: $E(p \ U \ q)$

$$\tau(Z) = q \lor (p \land \textbf{EX} \ Z)$$

Then $\tau^3(\text{false}) = \tau(\{s_0, s_1, s_2\})$
Example: \(E (p U q) \)

\[
\tau(Z) = q \vee (p \land \textbf{EX} Z)
\]

\[
\begin{array}{c}
\{p\} \quad s_1 \\
\downarrow \\
\{p\} \\
\end{array}
\begin{array}{c}
s_0 \\
\uparrow \\
\{p\} \\
\end{array}
\begin{array}{c}
s_2 \\
\downarrow \\
\{q\} \\
\end{array}
\begin{array}{c}
s_3 \\
\uparrow \\
\{\} \\
\end{array}
\]

Then \(\tau^4(\text{false}) = \tau(\{s_0, s_1, s_2\}) = \tau^3(\text{false}) \)
Example: $E (p \mathbf{U} q)$

\[
\tau(Z) = q \vee (p \land \text{EX } Z)
\]

\[
\begin{align*}
\{p\} & \quad s_1 & \quad \{q\} \\
\{p\} & \quad s_0 & \quad \{\} \\
\{\} & \quad s_2 & \quad \{q\}
\end{align*}
\]

Then \(\tau^4(\text{false}) = \tau(\{s_0, s_1, s_2\}) = \tau^3(\text{false})\)

We’ve reached the fixpoint \(\mu Z.\tau(Z)\)
Checking $\textbf{EX} \; \phi$ is fairly straightforward
Checking $\textbf{EX}\ \phi$ is fairly straightforward

Recall: We want to know if an initial state I satisfies $\textbf{EX}\ \phi$
Symbolic Model Checking (EX)

Checking $\text{EX } \phi$ is fairly straightforward

Recall: We want to know if an initial state I satisfies $\text{EX } \phi$

Our predicate transformer was: $\exists v'. \phi(v') \land R(v, v')$
Checking $\textbf{EX } \phi$ is fairly straightforward

Recall: We want to know if an initial state I satisfies $\textbf{EX } \phi$

Our predicate transformer was: $\exists v'. \phi(v') \land R(v, v')$

Then we check that the following formula is satisfiable:

$$\psi_I(v) \land (\exists v'. \phi(v') \land R(v, v'))$$
Checking $\textbf{EX } \phi$ is fairly straightforward.

Recall: We want to know if an initial state I satisfies $\textbf{EX } \phi$.

Our predicate transformer was: $\exists v'. \phi(v') \land R(v, v')$.

Then we check that the following formula is satisfiable:

$$\psi_I(v) \land (\exists v'. \phi(v') \land R(v, v'))$$

If it is, then the corresponding set is non-empty, and ϕ holds.
Symbolic Model Checking (\(\mathbf{EX} \)): Example

Suppose we want to check \(\mathbf{EX} \) \(v_0 = 1 \)

\[
\psi_I(v_0, v_1) \iff v_0 = 0 \land v_1 = 0
\]

\[
\psi_R(v_0, v_1, v'_0, v'_1) \iff
\begin{align*}
(v_0 = 0 \land v_1 = 0) \land v'_0 = 0 & \land v'_1 = 1 \\
\lor (v_0 = 0 \land v_1 = 1) \land v'_0 = 1 & \land v'_1 = 0 \\
\lor (v_0 = 1 \land v_1 = 0) \land v'_0 = 1 & \land v'_1 = 1 \\
\lor (v_0 = 1 \land v_1 = 1) \land v'_0 = 0 & \land v'_1 = 0
\end{align*}
\]
Symbolic Model Checking (\(\text{EX}\)): Example

Suppose we want to check \(\text{EX} \, v_0 = 1\)

We apply the transformer for \(\text{EX}\):

\[
\psi_I(v_0, v_1) \iff v_0 = 0 \land v_1 = 0
\]

\[
\psi_R(v_0, v_1, v_0', v_1') \iff
\begin{align*}
(v_0 = 0 \land v_1 = 0 \land v_0' = 0 \land v_1' = 1) \\
\lor (v_0 = 0 \land v_1 = 1 \land v_0' = 1 \land v_1' = 0) \\
\lor (v_0 = 1 \land v_1 = 0 \land v_0' = 1 \land v_1' = 1) \\
\lor (v_0 = 1 \land v_1 = 1 \land v_0' = 0 \land v_1' = 0)
\end{align*}
\]
Symbolic Model Checking (EX): Example

Suppose we want to check \(\text{EX} \ v_0 = 1 \)

We apply the transformer for EX:

\[
\exists v'_0, v'_1. v'_0 = 1 \land \psi_R(v_0, v_1, v'_0, v'_1)
\]

\[
\psi_I(v_0, v_1) \iff v_0 = 0 \land v_1 = 0
\]

\[
\psi_R(v_0, v_1, v'_0, v'_1) \iff
\begin{align*}
(v_0 = 0 \land v_1 = 0 & \land v'_0 = 0 \land v'_1 = 1) \\
\lor (v_0 = 0 \land v_1 = 1 \land v'_0 = 1 \land v'_1 = 0) \\
\lor (v_0 = 1 \land v_1 = 0 \land v'_0 = 1 \land v'_1 = 1) \\
\lor (v_0 = 1 \land v_1 = 1 \land v'_0 = 0 \land v'_1 = 0)
\end{align*}
\]
Symbolic Model Checking (\(\text{EX}\)): Example

Suppose we want to check \(\text{EX} \ v_0 = 1\)

We apply the transformer for \(\text{EX}\):

\[
\exists v'_0, v'_1. v'_0 = 1 \land \psi_R(v_0, v_1, v'_0, v'_1)
\]

Then conjoin the initial states:

\[
v_0 = 0 \land v_1 = 0 \land \\
\exists v'_0, v'_1. v'_0 = 1 \land \psi_R(v_0, v_1, v'_0, v'_1)
\]
Symbolic Model Checking (EX): Example

\[\psi_I(v_0, v_1) \iff v_0 = 0 \land v_1 = 0 \]

\[\psi_R(v_0, v_1, v'_0, v'_1) \iff \\
\quad (v_0 = 0 \land v_1 = 0 \land v'_0 = 0 \land v'_1 = 1) \\
\quad \lor (v_0 = 0 \land v_1 = 1 \land v'_0 = 1 \land v'_1 = 0) \\
\quad \lor (v_0 = 1 \land v_1 = 0 \land v'_0 = 1 \land v'_1 = 1) \\
\quad \lor (v_0 = 1 \land v_1 = 1 \land v'_0 = 0 \land v'_1 = 0) \]

Suppose we want to check \(\text{EX} \ v_0 = 1 \)

We apply the transformer for \(\text{EX} \):

\[\exists v'_0, v'_1. v'_0 = 1 \land \psi_R(v_0, v_1, v'_0, v'_1) \]

Then conjoin the initial states:

\[v_0 = 0 \land v_1 = 0 \land \\
\exists v'_0, v'_1. v'_0 = 1 \land \psi_R(v_0, v_1, v'_0, v'_1) \]

This formula is \text{false}, so there are no states that satisfy
Symbolic Model Checking (\textbf{EG})

We have that $\textbf{EG} \phi = \nu Z.\phi \land \textbf{EX} Z$
We have that $\text{EG } \phi = \nu Z.\phi \land \text{EX } Z$

So to check $\text{EG } \phi$:

1. Find the fixpoint of $\nu Z.\phi \land \text{EX } Z$
2. Conjoin I
3. Check for satisfiability

We know that we can compute greatest fixpoints by:
1. Applying the predicate transformer to true
2. Repeating, until the predicate doesn't change

But before we can do this, must show $\nu Z.\phi \land \text{EX } Z$ is monotonic
We have that $\textbf{EG } \phi = \nu Z.\phi \land \textbf{EX } Z$

So to check $\textbf{EG } \phi$:

1. Find the fixpoint of $\tau = \nu Z.\phi \land \textbf{EX } Z$
We have that $\textbf{EG} \, \phi = \nu Z. \phi \land \textbf{EX} \, Z$

So to check $\textbf{EG} \, \phi$:

1. Find the fixpoint of $\tau = \nu Z. \phi \land \textbf{EX} \, Z$

2. Conjoin ψ_I
We have that $\text{EG } \phi = \nu Z.\phi \land \text{EX } Z$

So to check $\text{EG } \phi$:

1. Find the fixpoint of $\tau = \nu Z.\phi \land \text{EX } Z$
2. Conjoin ψ_I
3. Check for satisfiability
Symbolic Model Checking (EG)

We have that $\text{EG } \phi = \nu Z.\phi \land \text{EX } Z$

So to check $\text{EG } \phi$:

1. Find the fixpoint of $\tau = \nu Z.\phi \land \text{EX } Z$
2. Conjoin ψ_I
3. Check for satisfiability

We know that we can compute greatest fixpoints by:
We have that $\text{EG } \phi = \nu Z.\phi \land \text{EX } Z$

So to check $\text{EG } \phi$:

1. Find the fixpoint of $\tau = \nu Z.\phi \land \text{EX } Z$
2. Conjoin ψ_I
3. Check for satisfiability

We know that we can compute greatest fixpoints by:

1. Applying the predicate transformer to $true$
We have that $\text{EG } \phi = \nu Z.\phi \land \text{EX } Z$

So to check $\text{EG } \phi$:
1. Find the fixpoint of $\tau = \nu Z.\phi \land \text{EX } Z$
2. Conjoin ψ_I
3. Check for satisfiability

We know that we can compute greatest fixpoints by:
1. Applying the predicate transformer to $true$
2. Repeating, until the predicate doesn’t change
We have that $\text{EG } \phi = \nu Z.\phi \land \text{EX } Z$

So to check $\text{EG } \phi$:
1. Find the fixpoint of $\tau = \nu Z.\phi \land \text{EX } Z$
2. Conjoin ψ_I
3. Check for satisfiability

We know that we can compute greatest fixpoints by:
1. Applying the predicate transformer to $true$
2. Repeating, until the predicate doesn’t change

But before we can do this, must show $\nu Z.\phi \land \text{EX } Z$ is monotonic
We have that $E (\phi_1 \mathbf{U} \phi_2) = \mu Z . \phi_2 \lor (\phi_1 \land EX Z)$
Symbolic Model Checking \((E (\phi_1 U \phi_2)) \)

We have that \(E (\phi_1 U \phi_2) = \mu Z . \phi_2 \lor (\phi_1 \land EX Z) \)

We proceed exactly as we did for \(EG \), but compute \(lfp \) instead.
We have that $E (\phi_1 U \phi_2) = \mu Z.\phi_2 \lor (\phi_1 \land EX Z)$

We proceed exactly as we did for EG, but compute lfp instead

Notice: this algorithm is very similar to the explicit-state one
We have that $E (\phi_1 U \phi_2) = \mu Z. \phi_2 \lor (\phi_1 \land EX Z)$

We proceed exactly as we did for EG, but compute lfp instead.

Notice: this algorithm is very similar to the explicit-state one.

1. Compute the set of states satisfying the CTL formula.
We have that $E (\phi_1 U \phi_2) = \mu Z.\phi_2 \lor (\phi_1 \land EX Z)$

We proceed exactly as we did for EG, but compute lfp instead.

Notice: this algorithm is very similar to the explicit-state one.

1. Compute the set of states satisfying the CTL formula
2. Check that an initial state is in the result
We have that $E (\phi_1 U \phi_2) = \mu Z.\phi_2 \lor (\phi_1 \land EX Z)$

We proceed exactly as we did for EG, but compute lfp instead.

Notice: this algorithm is very similar to the explicit-state one.

1. Compute the set of states satisfying the CTL formula.
2. Check that an initial state is in the result.

But what have we gained by doing it this way?
Given a predicate $\phi(x_1, \ldots, x_n) \mapsto \{0, 1\}$
Given a predicate $\phi(x_1, \ldots, x_n) \mapsto \{0, 1\}$

An **ordered binary decision tree** consists of:
Given a predicate $\phi(x_1, \ldots, x_n) \mapsto \{0, 1\}$

An **ordered binary decision tree** consists of:

- Internal nodes corresponding to variables x_1, \ldots, x_n
Given a predicate $\phi(x_1, \ldots, x_n) \mapsto \{0, 1\}$

An **ordered binary decision tree** consists of:

- Internal nodes corresponding to variables x_1, \ldots, x_n
- Leaf nodes corresponding to Boolean values of $\phi(x_1, \ldots, x_n)$
Given a predicate $\phi(x_1, \ldots, x_n) \mapsto \{0, 1\}$

An **ordered binary decision tree** consists of:

- Internal nodes corresponding to variables x_1, \ldots, x_n
- Leaf nodes corresponding to Boolean values of $\phi(x_1, \ldots, x_n)$
- Edges corresponding to Boolean values of x_i
Given a predicate $\phi(x_1, \ldots, x_n) \mapsto \{0, 1\}$

An **ordered binary decision tree** consists of:

- Internal nodes corresponding to variables x_1, \ldots, x_n
- Leaf nodes corresponding to Boolean values of $\phi(x_1, \ldots, x_n)$
- Edges corresponding to Boolean values of x_i

Given a fixed ordering of x_1, \ldots, x_n, these are **canonical**
Efficient Propositional Encodings

Given a predicate $\phi(x_1, \ldots, x_n) \mapsto \{0, 1\}$

An ordered binary decision tree consists of:
- Internal nodes corresponding to variables x_1, \ldots, x_n
- Leaf nodes corresponding to Boolean values of $\phi(x_1, \ldots, x_n)$
- Edges corresponding to Boolean values of x_i

Given a fixed ordering of x_1, \ldots, x_n, these are canonical
- Isomorphic trees $T_1, T_2 \implies$ Equivalent predicates ϕ_1, ϕ_2
Given a predicate $\phi(x_1, \ldots, x_n) \mapsto \{0, 1\}$

An ordered binary decision tree consists of:

- Internal nodes corresponding to variables x_1, \ldots, x_n
- Leaf nodes corresponding to Boolean values of $\phi(x_1, \ldots, x_n)$
- Edges corresponding to Boolean values of x_i

Given a fixed ordering of x_1, \ldots, x_n, these are canonical

- Isomorphic trees $T_1, T_2 \iff$ Equivalent predicates ϕ_1, ϕ_2

This gives us an easy way to test fixpoints
Consider the two-bit comparator:

$$\phi(x_1, x_2, y_1, y_2) = (x_1 \leftrightarrow y_1) \land (x_2 \leftrightarrow y_2)$$
Consider the two-bit comparator:

\[\phi(x_1, x_2, y_1, y_2) = (x_1 \leftrightarrow y_1) \land (x_2 \leftrightarrow y_2) \]
Ordered binary trees are canonical, but as large as truth tables
Ordered binary trees are canonical, but as large as truth tables

Idea: remove redundant information
Ordered binary trees are canonical, but as large as truth tables

Idea: remove redundant information

- Merge duplicate leaves: only one terminal with each label

These are called Ordered Binary Decision Diagrams (OBDDs)
Ordered binary trees are canonical, but as large as truth tables

Idea: remove redundant information

- Merge duplicate leaves: only one terminal with each label
- Eliminate redundant internal nodes: if both edges give same result, redirect incoming edges to successors

These are called Ordered Binary Decision Diagrams (OBDDs).
Ordered binary trees are canonical, but as large as truth tables

Idea: remove redundant information

- Merge duplicate leaves: only one terminal with each label
- Eliminate redundant internal nodes: if both edges give same result, redirect incoming edges to successors
- Remove duplicate internal nodes: two nodes for same variable, whose successors give same result

These are called Ordered Binary Decision Diagrams (OBDDs)
More efficient representations

Ordered binary trees are canonical, but as large as truth tables

Idea: remove redundant information

- Merge duplicate leaves: only one terminal with each label
- Eliminate redundant internal nodes: if both edges give same result, redirect incoming edges to successors
- Remove duplicate internal nodes: two nodes for same variable, whose successors give same result

The result is no longer a tree, but a DAG
Ordered binary trees are canonical, but as large as truth tables

Idea: remove redundant information

- Merge duplicate leaves: only one terminal with each label
- Eliminate redundant internal nodes: if both edges give same result, redirect incoming edges to successors
- Remove duplicate internal nodes: two nodes for same variable, whose successors give same result

The result is no longer a tree, but a DAG

These are called Ordered Binary Decision Diagrams (OBDDs)
Ordered Binary Decision Trees

\[x_1 \]

\[y_1 \]

\[x_2 \]

\[y_2 \]

\[1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \]
Ordered Binary Decision Trees

\[x_1 \]

\[y_1 \]

\[x_2 \]

\[y_2 \]

\[1 \ 0 \ 0 \ 1 \]

\[x_1 \]

\[y_1 \]

\[x_2 \]

\[y_2 \]

\[0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \]
Ordered Binary Decision Trees

\[x_1 \]

\[y_1 \]

\[x_2 \]

\[y_2 \]

\[1 \ 0 \ 0 \ 1 \]

\[y_2 \]

\[1 \ 0 \ 0 \ 1 \]
Ordered Binary Decision Trees
Ordered Binary Decision Trees
Ordered Binary Decision Diagrams
OBDDs and Ordering

Variable ordering matters for OBDD size
Variable ordering matters for OBDD size

For an n-bit comparator:
OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:

- $x_1, y_1, \ldots, x_n, y_n$: $3n + 2$ vertices

Some predicates have exponential size for any ordering.
OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:

- $x_1, y_1, \ldots, x_n, y_n$: $3n + 2$ vertices
- $x_1, x_2, \ldots, y_{n-1}, y_n$: $3 \times 2^n - 1$ vertices
Variable ordering matters for OBDD size

For an n-bit comparator:

- $x_1, y_1, \ldots, x_n, y_n$: $3n + 2$ vertices
- $x_1, x_2, \ldots, y_{n-1}, y_n$: $3 \times 2^n - 1$ vertices

Some predicates have exponential size for any ordering
Variable ordering matters for OBDD size

For an n-bit comparator:

- $x_1, y_1, \ldots, x_n, y_n$: $3n + 2$ vertices
- $x_1, x_2, \ldots, y_{n-1}, y_n$: $3 \times 2^n - 1$ vertices

Some predicates have exponential size for any ordering

OBDDs typically introduce drastic savings on time and space
Variable ordering matters for OBDD size

For an n-bit comparator:

- $x_1, y_1, \ldots, x_n, y_n$: $3n + 2$ vertices
- $x_1, x_2, \ldots, y_{n-1}, y_n$: $3 \times 2^n - 1$ vertices

Some predicates have exponential size for any ordering

OBDDs typically introduce drastic savings on time and space

- \sim order of magnitude savings on many real examples
Spin is a prominent model checking tool & simulator
Spin is a prominent model checking tool & simulator

- **Simple Promela Interpreter**
Spin is a prominent model checking tool & simulator

- **Simple Promela Interpreter**
- Gerard Holzmann at Bell Labs’ Unix group, starting c. 1980
Spin is a prominent model checking tool & simulator

- Simple Promela Interpreter
- Gerard Holzmann at Bell Labs’ Unix group, starting c. 1980
- Applied to Mars Rovers, Deep Impact, Cassini, Toyota control software, medical devices, …
Spin is a prominent model checking tool & simulator

- **Simple Promela Interpreter**
- Gerard Holzmann at Bell Labs’ Unix group, starting c. 1980
- Applied to Mars Rovers, Deep Impact, Cassini, Toyota control software, medical devices, …
- Accepts LTL, converts to Buchi automata
Spin is a prominent model checking tool & simulator

- **Simple Promela Interpreter**
- Gerard Holzmann at Bell Labs’ Unix group, starting c. 1980
- Applied to Mars Rovers, Deep Impact, Cassini, Toyota control software, medical devices, …
- Accepts LTL, converts to Buchi automata
- Implements partial order reduction, on-the-fly checking, state compression, BDD-like representations
Spin is a prominent model checking tool & simulator

- **Simple Promela Interpreter**
- Gerard Holzmann at Bell Labs’ Unix group, starting c. 1980
- Applied to Mars Rovers, Deep Impact, Cassini, Toyota control software, medical devices, …
- Accepts LTL, converts to Buchi automata
- Implements partial order reduction, on-the-fly checking, state compression, BDD-like representations

Tool you’ll use for the final homework
Why Spin?

Mature implementation

1. Under development since 1980, freely-available since 1991
2. Winner of ACM Software Systems Award (others include Unix, TCP/IP, GCC, LLVM, make, …)
3. Lots of real applications and successes (see previous slide)
4. Several projects extend Spin with frontends and other utilities
5. Based on concepts we’ve covered: ω-automata and LTL
Mature implementation
1. Under development since 1980, freely-available since 1991
2. Winner of ACM Software Systems Award (others include Unix, TCP/IP, GCC, LLVM, make, …)
3. Lots of real applications and successes (see previous slide)
4. Several projects extend Spin with frontends and other utilities
5. Based on concepts we’ve covered: \(\omega \)-automata and LTL

Good documentation
1. Several books (see Holzmann 2003, Ben-Ari 2008)
2. Annual workshops since 1995
3. Used extensively in other courses
4. Google turns up many hits when looking for specific info
Spin

Image credit: Bernhard Beckert and Vladimir Klebanov
Promela

Process Meta Language

- Modeling language used by Spin
- Just a few statement types
- Multi-threaded interleaving semantics
- Synchronization and message passing facilities
- Support for finite data structures
- Not an implementation language
- No libraries
- No pointers
- No standard input
- ...
Process Meta Language

Modeling language used by Spin
Promela

Process Meta Language

Modeling language used by Spin

- Just a few statement types
Process Meta Language

Modeling language used by Spin

- Just a few statement types
- Multi-threaded interleaving semantics
Process Meta Language

Modeling language used by Spin

- Just a few statement types
- Multi-threaded interleaving semantics
- Synchronization and message passing facilities
Process Meta Language

Modeling language used by Spin

- Just a few statement types
- Multi-threaded interleaving semantics
- Synchronization and message passing facilities
- Support for finite data structures
Process Meta Language

Modeling language used by Spin
- Just a few statement types
- Multi-threaded interleaving semantics
- Synchronization and message passing facilities
- Support for finite data structures

Not an implementation language
- No libraries
- No pointers
- No standard input
- ...
active proctype P() {
 printf("Hello world!");
}

active proctype P() {
 printf("Hello world!");
}

1. proctype declares a new process named P
<table>
<thead>
<tr>
<th>active proctype P() {</th>
</tr>
</thead>
<tbody>
<tr>
<td>printf("Hello world!");</td>
</tr>
<tr>
<td>}</td>
</tr>
</tbody>
</table>

1. `proctype` declares a new process named `P`
2. Promela programs consist of a finite set of concurrent processes
active proctype P() {
 printf("Hello world!");
}

1. proctype declares a new process named P
2. Promela programs consist of a finite set of concurrent processes
3. active denotes that P is run immediately
Promela: Hello World

```
active proctype P() {
    printf("Hello world!");
}
```

1. `proctype` declares a new process named `P`
2. Promela programs consist of a finite set of concurrent processes
3. `active` denotes that `P` is run immediately
4. C-like `printf` for debugging
active proctype P() {
 printf("Hello world!");
}

1. proctype declares a new process named P
2. Promela programs consist of a finite set of concurrent processes
3. active denotes that P is run immediately
4. C-like printf for debugging

To run:

 > spin hellow.pml
 Hello world!
Data types

- **bit** \(\{0, 1\} \)
- **bool** \(\{0, 1\} \)
- **byte** \([0..255]\)
- **short** \([-2^{15}..2^{15}-1]\)
- **int** \([-2^{31}..2^{31}-1]\)

```c
#define N 10
byte array[N];
array[0] = array[1];

typedef Msg {
    byte header[16];
    int payload;
} Msg;  
Msg x;
x.payload = 1;
```
Data types

```
bit   {0,1}
bool  {0,1}
byte  [0..255]
short [-2^15..2^15-1]
int   [-2^31..2^31-1]

#define N 10
byte array[N];
array[0] = array[1];

typedef Msg {
    byte header[16];
    int payload;
}
Msg x;
x.payload = 1;
```
Data types

Basic types

C-style preprocessor directives

```c
#define N 10
byte array[N];
array[0] = array[1];

typedef Msg {
    byte header[16];
    int payload;
}
Msg x;
x.payload = 1;
```
Data types

Basic types

C-style preprocessor directives
array declarations

typedef Msg {
 byte header[16];
 int payload;
}
Msg x;
x.payload = 1;
Data types

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit</td>
<td>{0,1}</td>
</tr>
<tr>
<td>bool</td>
<td>{0,1}</td>
</tr>
<tr>
<td>byte</td>
<td>[0..255]</td>
</tr>
<tr>
<td>short</td>
<td>[-2^15..2^15-1]</td>
</tr>
<tr>
<td>int</td>
<td>[-2^31..2^31-1]</td>
</tr>
</tbody>
</table>

#define N 10
byte array[N];
array[0] = array[1];

typedef Msg {
 byte header[16];
 int payload;
}
Msg x;
x.payload = 1;

Basic types

C-style preprocessor directives
array declarations
array access
Data types

Basic types

C-style preprocessor directives
array declarations
array access
structured data

```c
#define N 10
byte array[N];
array[0] = array[1];

typedef Msg {
    byte header[16];
    int payload;
}
Msg x;
x.payload = 1;
```
Expressions are statements
Expressions are statements

- No side effects
Basic Statements

Expressions are statements
- No side effects
- Standard arithmetic operations
Basic Statements

Expressions are statements

- No side effects
- Standard arithmetic operations
- Conditional expression: \((x \geq 0 \rightarrow x : -x)\)
Basic Statements

Expressions are statements
 ▶ No side effects
 ▶ Standard arithmetic operations
 ▶ Conditional expression: \((x \geq 0 \rightarrow x : -x)\)

Assignments have the usual meaning
 ▶ \(x = x \times 5;\)
Expressions are statements

- No side effects
- Standard arithmetic operations
- Conditional expression: \((x >= 0 \rightarrow x : -x)\)

Assignments have the usual meaning

- \(x = x * 5;\)
- Promela supports increment ++ and decrement -- assignments
Basic Statements

Expressions are statements
- No side effects
- Standard arithmetic operations
- Conditional expression: \((x \geq 0 \rightarrow x : -x)\)

Assignments have the usual meaning
- \(x = x \times 5;\)
- Promela supports increment ++ and decrement -- assignments

The no-op statement skip is supported
Basic Statements

Expressions are statements

- No side effects
- Standard arithmetic operations
- Conditional expression: \((x >= 0 \rightarrow x : -x)\)

Assignments have the usual meaning

- \(x = x * 5;\)
- Promela supports increment \(++\) and decrement \(--\) assignments

The no-op statement \(\text{skip}\) is supported

Control transfer via \(\text{goto} \ \text{label}\) is supported
Sequential composition via the usual semicolon ; syntax
Sequential composition via the usual semicolon ; syntax

- The arrow -> can be used interchangeably with ;

Selection via the computing if..fi statement
Compound Statements

Sequential composition via the usual semicolon ; syntax

- The arrow \rightarrow can be used interchangeably with ;

Selection via the computing `if..fi` statement

- Expressions guard each case

```plaintext
if
:: a == b
-> state = state + 1
::
else
-> state = state - 1
fi

if
:: x = 0
:: x = 1
fi
```
Compound Statements

Sequential composition via the usual semicolon ; syntax
 - The arrow -> can be used interchangably with ;

Selection via the computing if..fi statement
 - Expressions guard each case
 - Can be non-deterministic by omitting guard

```plaintext
if :: ( a == b ) -> state = state + 1
::
else -> state = state - 1
fi

if :: x = 0
:: x = 1
fi
```
Compound Statements

Sequential composition via the usual semicolon ; syntax

- The arrow \(\rightarrow \) can be used interchangeably with ;

Selection via the computing *if..fi* statement

- Expressions guard each case
- Can be non-deterministic by omitting guard

```plaintext
if
:: (a == b) -> state = state + 1
:: else -> state = state - 1
fi

if
:: x = 0
:: x = 1
fi
```
All statements are either **blocked** or **enabled**
Blocking

All statements are either **blocked** or **enabled**

If an expression-statement evaluates to 0, then it is blocked
Blocking

All statements are either **blocked** or **enabled**

If an expression-statement evaluates to 0, then it is blocked

```
byte state = 1;

proctype A()
{
    byte tmp;
    (state==1) -> tmp = state; tmp = tmp+1; state = tmp
}

proctype B()
{
    byte tmp;
    (state==1) -> tmp = state; tmp = tmp-1; state = tmp
}

init
{
    run A(); run B()
}
```
Syntax for repetition is similar to \texttt{if .. fi}
Syntax for repetition is similar to \texttt{if .. fi}

Keyword \texttt{do .. od} denote repetition block

Can also have non-deterministic behavior by omitting guards
Syntax for repetition is similar to `if .. fi`.

Keyword `do .. od` denote repetition block.

Can also have non-deterministic behavior by omitting guards.

```plaintext
proctype Euclid(int x, y)
{
  do
    :: (x > y) -> x = x - y
    :: (x < y) -> y = y - x
    :: (x == y) -> break
  od;
}
```
More on guards

| :: guard | command |

When this appears in `if` or `do`:
:: guard -> command

When this appears in if or do:

- command is optional: can write :: guard;
More on guards

:: guard -> command

When this appears in if or do:

- command is optional: can write :: guard;
- Guards can overlap: any alternative that is true is non-deterministically selected
:: guard -> command

When this appears in if or do:

- command is optional: can write :: guard;

- Guards can overlap: any alternative that is true is non-deterministically selected

- When no guards are true, the statement (and process) block until one becomes true
Processes can communicate by passing messages

- Asynchronously via a buffered FIFO queue
- Synchronously via rendez-vous ports

Can declare an enumerated message type `mtype`

- One `mtype` per program
- Useful for abstract protocol specifications

```c
mtype = { ack, err, accept }; // store up to 16 messages
```

```c
chan c1 = [16] of { mtype };  // two fields per message
```

- rendez-vous channel for synchronous communication
- Size 0: can transmit but not store a message

```c
chan port = [0] of { short };  // size 0
```
Processes can communicate by passing messages

- Asynchronously via a buffered FIFO queue
Communication Channels

Processes can communicate by passing messages
 ▶ Asynchronously via a buffered FIFO queue
 ▶ Synchronously via rendez-vous ports

Can declare an enumerated message type \texttt{mtype}

\texttt{mtype} = \{ \texttt{ack}, \texttt{err}, \texttt{accept} \};

\texttt{chan} \texttt{c1} = \{16\} of \{ mtype \}; // store up to 16 messages

\texttt{chan} \texttt{c2} = \{16\} of \{ int, mtype \}; // two fields per message

// rendez-vous channel for synchronous communication
// size 0: can transmit but not store a message
\texttt{chan} \texttt{port} = \{0\} of \{ short \};
Communication Channels

Processes can communicate by passing messages

- Asynchronously via a buffered FIFO queue
- Synchronously via rendez-vous ports

Can declare an enumerated message type `mtype`

- One `mtype` per program
Communication Channels

Processes can communicate by passing messages
 ▶ Asynchronously via a buffered FIFO queue
 ▶ Synchronously via rendez-vous ports

Can declare an enumerated message type \texttt{mtype}
 ▶ One \texttt{mtype} per program
 ▶ Useful for abstract protocol specifications
Communication Channels

Processes can communicate by passing messages
 ▶ Asynchronously via a buffered FIFO queue
 ▶ Synchronously via rendez-vous ports

Can declare an enumerated message type \texttt{mtype}
 ▶ One \texttt{mtype} per program
 ▶ Useful for abstract protocol specifications

\begin{verbatim}
\begin{verbatim}
mtype = \{ack, err, accept\};

chan c1 = [16] of \{ mtype \}; // store up to 16 messages
chan c2 = [16] of \{ int, mtype \}; // two fields per message

// rendez-vous channel for synchronous communication
// size 0: can transmit but not store a message
chan port = [0] of \{ short \};
\end{verbatim}
\end{verbatim}
Sending a message: `channel!expr`
Sending a message: \texttt{channel!expr}

- Can specify multiple fields with \texttt{channel!expr1,expr2}
Process Communications

Sending a message: `channel!expr`
- Can specify multiple fields with `channel!expr1,expr2`
- Appends the value of `expr` to the end of `channel`
Sending a message: channel!expr

- Can specify multiple fields with channel!expr1,expr2
- Appends the value of expr to the end of channel
- If channel is full, statement blocks
Process Communications

Sending a message: `channel!expr`
- Can specify multiple fields with `channel!expr1,expr2`
- Appends the value of `expr` to the end of `channel`
- If `channel` is full, statement blocks

Receiving a message: `channel?var`
Process Communications

Sending a message: \texttt{channel!expr}
- Can specify multiple fields with \texttt{channel!expr1,expr2}
- Appends the value of \texttt{expr} to the end of \texttt{channel}
- If \texttt{channel} is full, statement blocks

Receiving a message: \texttt{channel?var}
- Can specify multiple fields with \texttt{channel?expr1,expr2}
Process Communications

Sending a message: channel!expr
- Can specify multiple fields with channel!expr1,expr2
- Appends the value of expr to the end of channel
- If channel is full, statement blocks

Receiving a message: channel?var
- Can specify multiple fields with channel?expr1,expr2
- Reads the head of channel into var

Matt Fredrikson
Symbolic Model Checking
Process Communications

Sending a message: \texttt{channel!expr}

- Can specify multiple fields with \texttt{channel!expr1,expr2}
- Appends the value of \texttt{expr} to the end of \texttt{channel}
- If \texttt{channel} is full, statement blocks

Receiving a message: \texttt{channel?var}

- Can specify multiple fields with \texttt{channel?expr1,expr2}
- Reads the head of \texttt{channel} into \texttt{var}
- If \texttt{channel} is empty, statement blocks
Sending a message: `channel!expr`
- Can specify multiple fields with `channel!expr1,expr2`
- Appends the value of `expr` to the end of `channel`
- If `channel` is full, statement blocks

Receiving a message: `channel?var`
- Can specify multiple fields with `channel?expr1,expr2`
- Reads the head of `channel` into `var`
- If `channel` is empty, statement blocks

The expression `len(channel)` returns # of messages on `channel`
Channels: Example

```plaintext
#define msgtype 33

chan name = [0] of { byte, byte };

active proctype A()
{
    name!msgtype,124;
    // synchronous channel, no second receive in B
    // process will block here forever
    name!msgtype,121;
}

active proctype B()
{
    byte state;
    name?msgtype(state)
}
Atomicity

Basic statements execute atomically
  ▶ Assignments, expressions, \texttt{goto}, \texttt{skip}
Atomicity

Basic statements execute atomically
- Assignments, expressions, goto, skip

Guarded commands are not atomic
Atomicity

Basic statements execute atomically
  ▶ Assignments, expressions, goto, skip

Guarded commands are **not** atomic

```plaintext
int a, b, c;

active proctype P1() {
 a = 1; b = 5;
 if
 :: a != 0 -> c = b / a; // this can be #div0!
 :: else -> c = b;
 fi
}

active proctype P2() {
 a = 0;
}
```
Use an atomic block to prevent bad interleavings
Atomicity

Use an atomic block to prevent bad interleavings

```c
int a, b, c;

active proctype P1() {
 a = 1; b = 5;
 atomic {
 if
 :: a != 0 -> c = b / a;
 :: else -> c = b;
 fi
 }
}

active proctype P2() {
 a = 0;
}
```
### Option 1: `assert` statements

```c
bool flag[2];
bool turn;
byte cnt = 0;

active [2] proctype user()
{
 flag[_pid] = true;
 turn = _pid;
 (flag[1-_pid] == false || turn == 1-_pid);

 cnt++;
 crit: assert(cnt == 1); // critical section
 cnt--;

 flag[_pid] = false;
}
```
Checking the property

- model: name.pml
- correctness properties
- SPIN
- verifier: pan.c
- C compiler
- executable verifier: pan
- failing run: name.pml.trail
- "errors: 0"

random/interactive/guided simulation
Step 1: Generate a verifier

```
> spin -a mutex.pml // spin generates pan.c
```
Checking the property

Step 2: Compile the verifier

> gcc -o pan pan.c  // output in pan
Step 3: Run the verifier to do exhaustive model checking

> ./pan
Verification Results

(Spin Version 6.4.5 -- 1 January 2016)
+ Partial Order Reduction

Full state space search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 28 byte, depth reached 16, errors: 0
56 states, stored
21 states, matched
77 transitions (= stored+matched)
0 atomic steps
hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.003 equivalent memory usage for states
0.292 actual memory usage for states
128.000 memory used for hash table (-w24)
0.534 memory used for DFS stack (-m10000)
128.730 total actual memory usage

unreached in proctype user
(0 of 8 states)
### Option 2: Write an LTL formula

```c
bool flag[2];
bool turn;
byte cnt = 0;

active [2] proctype user()
{
 flag[_pid] = true;
 turn = _pid;
 (flag[1-_pid] == false || turn == 1-_pid);

crit: skip; // critical section

 flag[_pid] = false;
}

ltl mutex { [] (!p[0]@crit || !p[1]@crit) }
```
Grammar:
ltl ::= opd | ( ltl ) | ltl binop ltl | unop ltl

Operands (opd):
true, false, user-defined names starting with a lower-case letter, or embedded expressions inside curly braces, e.g.,: { a+b>n }.

Unary Operators (unop):
[] (the temporal operator always)
<> (the temporal operator eventually)
! (the boolean operator for negation)

Binary Operators (binop):
U (the temporal operator strong until)
W (the temporal operator weak until)
V (the dual of U): (p V q) means !(!p U !q)
&& (the boolean operator for logical and)
|| (the boolean operator for logical or)
\ (alternative form of &&)
/ (alternative form of ||)
-> (the boolean operator for logical implication)
<-> (the boolean operator for logical equivalence)
Let’s introduce the bug from the previous homework

\[
\begin{align*}
\text{bool} & \; \text{flag}[2]; \\
\text{bool} & \; \text{turn}; \\
\text{byte} & \; \text{cnt} = 0;
\end{align*}
\]

\[
\begin{align*}
\text{active} & \; [2] \; \text{proctype} \; \text{user}() \\
\{ & \\
& \text{turn} = \_\text{pid}; \\
& \text{flag}[\_\text{pid}] = \text{true}; \\
& (\text{flag}[1-\_\text{pid}] = \text{false} \; \mathbin{||} \; \text{turn} = 1-\_\text{pid});
\end{align*}
\]

\[
\begin{align*}
\text{crit: skip; } & \; // \; \text{critical section} \\
& \\
& \text{flag}[\_\text{pid}] = \text{false}; \\
\} & \\
\text{ltl mutex} & \{ [] (\!p[0]@\text{crit} \; \mathbin{||} \; \!p[1]@\text{crit}) \}
\]
Generating counterexamples

```bash
> spin -a mutex.pml; gcc -o pan pan.c; ./pan
> spin -t -p -l mutex.pml

using statement merging

1: proc 1 (user:1) mutex.pml:8 (state 1) [turn = _pid]
2: proc 0 (user:1) mutex.pml:8 (state 1) [turn = _pid]
3: proc 0 (user:1) mutex.pml:9 (state 2) [flag[_pid] = 1]
4: proc 0 (user:1) mutex.pml:10 (state 3) [(((flag[1-_pid)]==0)||(turn==1-_pid))]]
5: proc 1 (user:1) mutex.pml:9 (state 2) [flag[_pid] = 1]
6: proc 1 (user:1) mutex.pml:10 (state 3) [(((flag[1-_pid)]==0)||(turn==1-_pid))]]
7: proc 1 (user:1) mutex.pml:12 (state 4) [cnt = (cnt+1)]
8: proc 1 (user:1) mutex.pml:13 (state 5) [assert((cnt==1))]
9: proc 0 (user:1) mutex.pml:12 (state 4) [cnt = (cnt+1)]

spin: mutex.pml:13, Error: assertion violated
spin: text of failed assertion: `assert((cnt==1))`

10: proc 0 (user:1) mutex.pml:13 (state 5) [assert((cnt==1))]
spin: trail ends after 10 steps
#processes: 2
 flag[0] = 1
 flag[1] = 1
 turn = 0
 cnt = 2
10: proc 1 (user:1) mutex.pml:14 (state 6)
10: proc 0 (user:1) mutex.pml:14 (state 6)

2 processes created
```
Generating counterexamples

> spin -t -p -l mutex.pml

- The `-t` option tells Spin to use `mutex.pml.trail` to guide simulation.
- The `-p` option prints all statements in the execution.
- The `-l` option prints the values of local variables.
Generating counterexamples

> spin -t -p -l mutex.pml

- Failed verification produces `mutex.pml.trail`
Generating counterexamples

```bash
> spin -t -p -l mutex.pml
```

- Failed verification produces `mutex.pml.trail`
- `-t` option tells Spin to use `mutex.pml.trail` to guide simulation
Generating counterexamples

```bash
> spin -t -p -l mutex.pml
```

- Failed verification produces `mutex.pml.trail`
- `-t` option tells Spin to use `mutex.pml.trail` to guide simulation
- Basically, inject the discovered fault into execution
Generating counterexamples

```
> spin -t -p -l mutex.pml
```

- Failed verification produces `mutex.pml.trail`
- `-t` option tells Spin to use `mutex.pml.trail` to guide simulation
- Basically, inject the discovered fault into execution
- `-p` option prints all statements in the execution
Generating counterexamples

> spin -t -p -l mutex.pml

- Failed verification produces mutex.pml.trail
- `-t` option tells Spin to use mutex.pml.trail to guide simulation
- Basically, inject the discovered fault into execution
- `-p` option prints all statements in the execution
- `-l` option prints the values of local variables
Last assignment goes out today

Due at midnight on last day of classes

**Next class:** Software Model Checking