Automated Program Verification and Testing
15414/15614 Fall 2016
Lecture 19:
Introduction to Model Checking

Matt Fredrikson
mfredrik@cs.cmu.edu

November 9, 2016
Approaches for Demonstrating Correctness

We’ve seen how to prove correctness with automated assistance:

- Systematic techniques for generating verification conditions
- Decision procedures for checking these VC’s
- Heuristics for inferring inductive invariants

There is still quite a bit of manual effort involved in proof development.

Model checking refers to a set of techniques that:

- Take a system model and a temporal specification
- Automatically determine whether the model matches the specification
Model Checking

Developed independently by Clarke and Emerson, Queille and Sifakis in the 80’s

At a high level, these techniques:

▶ Verify correctness by exhaustive search of the system’s state space
▶ Use specifications that describe states over time, as they evolve according to the system’s computations
▶ Naturally handle concurrent systems

Model checking has been applied to:

▶ Hardware and embedded systems
▶ Systems, device driver, and concurrent software
▶ Network and cryptographic protocols
▶ Hybrid dynamical systems
There are many reasons to use MC:

- Completely automatic, so **no manual proof** burden
- Handles **partial specifications** perfectly well
- Produces **diagnostic counterexamples**, which give helpful information about problematic parts of the system
- In many cases, produces answers quickly
- For the user, reasoning about concurrent systems is no more challenging than sequential systems
There are also some things that make it challenging:

▶ The central issue: **state-space explosion**
▶ ...i.e., too many states to explore
▶ Another potential issue: correctness of the model

We’ll look at both of these problems, and notable solutions

▶ State-space reduction by exploiting symmetries in the model
▶ Symbolic techniques that avoid exploring all states explicitly
▶ Program abstraction techniques that build semantically-correct models
Computations are modeled using a state transition graph, also called a Kripke structure.

Kripke structure

A Kripke structure $M = (P, S, I, L, R)$ consists of:

- Set of atomic propositions P
- States S
- Initial states $I \subseteq S$
- Labeling $L : S \mapsto 2^P$
- Transition relation $R \subseteq S \times S$

Diagram:

$\{p_0, p_2\}$

S_0

$\{p_0, p_1\}$

S_1

$\{p_1, p_2\}$

S_2

- $P = \{p_0, p_1, p_2\}$, $S = \{s_0, s_1, s_2\}$
- $I = \{s_0\}$
- $L = \{(s_0, \{p_0, p_2\}), \ldots\}$
- $R = \{(s_0, s_1), (s_1, s_2), \ldots\}$
The atomic propositions model relevant facts about the system
e.g., “the GPS is turned on”, $x = 5$, …
Transitions model the behavior of the system step-by-step
The transition relation is **total**: for every state $s \in S$, there exists $s' \in S$ such that $(s, s') \in R$

- $P = \{p_0, p_1, p_2\}$, $S = \{s_0, s_1, s_2\}$
- $I = \{s_0\}$
- $L = \{(s_0, \{p_0, p_2\}), \ldots\}$
- $R = \{(s_0, s_1), (s_1, s_2), \ldots\}$
Example: Kripke Structure

- $S = \{s_0, s_1, s_2, s_3\}$
- $P = \{\text{coin, select, coffee, tea}\}$
- $I = \{s_0\}$
- Label function:
 \[
 L = \left\{ (s_0, \{\text{coin}\}), (s_1, \{\text{select}\}), (s_2, \{\text{coffee}\}), (s_3, \{\text{tea}\}) \right\}
 \]
- Transition relation:
 \[
 R = \left\{ (s_0, s_1), (s_1, s_2), (s_1, s_3), (s_2, s_0), (s_3, s_0) \right\}
 \]
Example: Microwave Transition System

- **State Diagram**: A directed graph representing the states and transitions of a microwave system.

- **States**:
 - `start`
 - `close`
 - `heat`
 - `error`

- **Transitions**:
 - From `start` to `close`
 - From `close` to `heat`
 - From `heat` to `error`

- **Initial State**: `start`

- **Final States**: `error`

- **Markovian Model Checking**
 - Analyzes the probability of reaching certain states from the initial state.
Example: Deriving a Kripke Structure

Suppose we have a system with variables \(x, y \) that range over \(\{0, 1\} \)

It begins with \(x = 1, y = 1 \)

The system updates its state by executing:

\[
x := (x + y) \mod 2
\]

Define the Kripke structure:

- \(S = \{0, 1\} \times \{0, 1\} \)
- \(P = \{x = 0, x = 1, y = 0, y = 1\} \)
- \(I = \{(1, 1)\} \)
- \(R = \{((1, 1), (0, 1)), ((0, 1), (1, 1)), ((1, 0), (1, 0)), ((0, 0), (0, 0))\} \)
- \(L((a, b)) = \{x = a, y = b\} \)
Computations correspond to traversals of a Kripke structure.

Formally, a path π is an infinite sequence of states $s_0 s_1 \ldots$ where

$$\text{for } 0 \leq i, (s_i, s_{i+1}) \in R$$

Often, we’ll write π^i to denote the suffix starting at i.

The trace of π is the sequence of corresponding labels.

The set of all paths forms an infinite computation tree:

- Tree nodes represent system states.
- Edges represent transitions.
- Tree paths represent computations (one for each Kripke path).
- Branching results from non-determinism.
We’ve defined the model, what are we checking?

So far, we’ve dealt with properties on input/output behavior

- When $P(input)$ holds, $Q(output)$ does too
- Expressed using Hoare logic, first-order assertions

In this setting, we’re interested in the transition behavior **over time**

To express these, we’ll use **temporal logic**
In first-order logic, we evaluate formulas in a fixed interpretation

- The interpretation defines all facts about one particular “world”
- E.g., the predicate polls_open is either true or false in any world

In a temporal logic, formulas are evaluated in a set of worlds

- E.g., polls_open is true in all worlds in which the date is November 9 in an election year
- The set of worlds define moments in time
- Temporal operators that refer to different moments in time
 - eventually reach a safe state; an error state is never reached

For us, each moment in time corresponds to a path location

Facts about the world come from the labeling function
Temporal Operators

There are five basic temporal operators we’ll use:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (p)</td>
<td>(p) holds at the next point in time</td>
</tr>
<tr>
<td>F (p)</td>
<td>(p) holds at some future point in time</td>
</tr>
<tr>
<td>G (p)</td>
<td>(p) holds at every point in time</td>
</tr>
<tr>
<td>(p \ U \ q)</td>
<td>(p) holds until (q) holds</td>
</tr>
<tr>
<td>(p \ R \ q)</td>
<td>(p) releases (q): (q) holds until (p) (if it ever does)</td>
</tr>
</tbody>
</table>

These operators describe properties of a path \(\pi \).
Examples: Temporal Operators

- Lunch will come eventually
 \[F \text{lunch} \]

- Requests are served until the connection terminates (if ever)
 terminate R serve

- Each request is always followed by an eventual response
 \[G (\text{request} \rightarrow F \text{response}) \]

- \(p \) holds only finitely often
 \[F G \neg p \]

- Whenever the start button is pressed, the oven heats eventually
 \[G (\text{start} \rightarrow F \text{heat}) \]
Linear Temporal Logic

These operators allow us to define **linear temporal logic** (LTL)

LTL contains **state formulas** and **path formulas**

State Formula

The syntax of state formulas is given by:

\[
 f ::= \top | \bot | p | \neg f | f_1 \lor f_2 | f_1 \land f_2
\]

State formulas correspond to facts that hold in a particular state.

Path Formula

An LTL formula is composed of the following elements:

\[
g ::= f | \neg g | g_1 \lor g_2 | g_1 \land g_2 | X g | F g | G g | g_1 U g_2 | g_1 R g_s
\]

Path formulas are evaluated along a particular path.
LTL: Semantics

The semantic judgement that we use is of the form:

\[M, \pi \models g \]

Read: “g holds along path \(\pi \) in Kripke structure \(M \)”

We’ll also use \(M, s \models f \) for path formulas, where \(s \) is a state in \(M \)

The semantics of path formulas is straightforward

\[
\begin{align*}
M, s \models p & \iff p \in L(s) \\
M, s \models \neg f & \iff M, s \not\models f \\
M, s \models f_1 \lor f_2 & \iff M, s \models f_1 \text{ or } M, s \models f_2 \\
M, s \models f_1 \land f_2 & \iff M, s \models f_1 \text{ and } M, s \models f_2
\end{align*}
\]
Recall, X_p asserts that p holds in the next state.

We’ll replace p with an arbitrary path formula.

Then, we define the meaning of Xg to be:

$$M, \pi \models Xg \iff M, \pi^1 \models g$$

(we’re beginning path indices at 0)

Sometimes, it helps to visualize the path:

```
X g
any → g → any → any → any → ...  
```
LTL: Semantics (\(F\) operator)

\(F\ g\) asserts that \(g\) holds at some point in the future

Formally:

\[
M, \pi \models F\ g \iff \text{exists } i \geq 0, M, \pi^i \models g
\]

The following path satisfies \(F\ g\):

\[\neg g \rightarrow \neg g \rightarrow \cdots \rightarrow g \rightarrow \neg g\]

Whereas this one doesn’t

\[\neg g \rightarrow \neg g \rightarrow \neg g \rightarrow \neg g \rightarrow \neg g \rightarrow \cdots\]
G g asserts that g holds *globally* into the future

Formally:
\[M, \pi \models G g \iff \text{for all } i \geq 0, M, \pi^i \models g \]

The following path satisfies G g:

Does this one?
$g_1 \mathbf{U} g_2$ asserts that g_1 holds until g_2 does

Formally:

$$M, \pi \models g_1 \mathbf{U} g_2 \iff \exists i \geq 0, M, \pi^i \models g_2, \text{ and for all } 0 \leq j < i, M, \pi^j \models g_1$$

The following path satisfies $g_1 \mathbf{U} g_2$:

Does this one?

$$g_1 \quad g_1 \quad g_1 \quad g_2 \quad \top$$

$$g_1 \quad g_1 \quad g_1 \cdot g_2 \quad g_1 \quad g_1 \quad \cdots$$
$g_1 \mathbf{R} g_2$ asserts that g_2 releases g_1

It is the dual to \mathbf{U}

Formally:

$$M, \pi \models g_1 \mathbf{R} g_2 \iff \text{forall } i \geq 0, \text{ if for every } j < i, M, \pi^j \not\models g_1, \text{ then } M, \pi^i \models g_2$$

The following path satisfies $g_1 \mathbf{R} g_2$:

$$\begin{array}{cccccc}
g_2 & g_2 & g_2 & g_1, g_2 & \top \\
\text{→} & \text{→} & \text{→} & \text{→} & \text{→}
\end{array}$$

So does this one:

$$\begin{array}{cccccc}
g_2 & g_2 & g_2 & g_2 & g_2 & g_2 \\
\text{→} & \text{→} & \text{→} & \text{→} & \text{→} & \text{→}
\end{array}$$
Write example paths that satisfy these formulas.

\(\mathbf{F} \mathbf{G} p \)

\[\top \rightarrow p \rightarrow p \rightarrow p \rightarrow p \rightarrow p \rightarrow \ldots \]

\(\mathbf{G} (p \rightarrow \mathbf{F} q) \)

\[p \rightarrow \top \rightarrow q \rightarrow p \rightarrow q \rightarrow \ldots \]
Example: Temporal Semantics

Write **counterexample** paths for satisfy these formulas.

\(\mathbf{G} \ (p \rightarrow F \ q) \)

\[
\begin{array}{ccccccc}
p & q & p & p & p & p & \cdots \\
\rightarrow & & & & & &
\end{array}
\]

\(\mathbf{F} \ (p \rightarrow X X \ q) \)

\[
\begin{array}{ccccccc}
p & p & q & p & q & \cdots \\
\rightarrow & & & & & &
\end{array}
\]

\(\mathbf{G} \ F \ p \)

\[
\begin{array}{ccccccc}
q & p & q & q & q & \cdots \\
\rightarrow & & & & & &
\end{array}
\]
An LTL formula g is satisfiable if and only if:

there exists M where for every π in $M : M, \pi \models g$

If $M, \pi \models g$ for all π, then M is a model of g

An LTL formula g is valid if and only if:

for all M, π in $M : M, \pi \models g$

These notions are similar to sat. and validity we’ve discussed before

But notice: to be sat, there must be a model where for every π,

$M, \pi \models g$

Hence, LTL universally quantifies over all paths in the model
LTL Model Checking

Given M and g, decide whether M is a model of g.

Formally, for $M = (P, S, I, L, R)$, decide whether for each $s_0 \in I$ and every path π starting from s_0,

$$M, \pi \models g$$

Alternatively, given $M = (P, S, I, L, R)$ find the states $s_0 \in I$ where:

for all π starting in s_0, $M, \pi \models g$

If this set is not I, then find a path π_{cex} where:

$$M, \pi_{cex} \not\models g$$

\(\pi_{cex}\) is called a **counterexample**
Next Lecture

- Continue discussing model checking
- More on temporal logic
- Useful temporal properties