
Automated Program Verification and Testing
15414/15614 Fall 2016
Lecture 4:
Introduction to Dafny

Matt Fredrikson
mfredrik@cs.cmu.edu

October 17, 2016

Matt Fredrikson Dafny 1 / 25

Overview

The goal of this lecture is to:
▶ Cover enough Dafny to get started on the next assignment.
▶ Touch on some important things we’ll cover in detail later.

We won’t cover some of Dafny’s coolest features
▶ More on these in future lectures...

Consult references and tutorials provided at the end of these slides.

Matt Fredrikson Dafny 2 / 25

Dafny

Dafny is a programming language, verifier, and compiler

Designed from the ground-up with static
verification in mind

Uses SMT solver to automatically prove correctness

When this is not possible, requests proof
annotations

Matt Fredrikson Dafny 3 / 25

Verify what?

Dafny makes it easier to write correct code

Correctness means two things:
▶ No runtime errors: null deref., div. by 0, index o.o.b, ...
▶ Program does what you indended
▶ Terminates (when applicable)

Your intentions are captured with a specification

Matt Fredrikson Dafny 4 / 25

Specifications

Can’t I still write the wrong specification?

Specifications should be:
▶ High-level expression of the desired behavior
▶ Shorter and more direct than implementation
▶ Not concerned with efficiency and representation

forall k:int :: 0 <= k < a.Length ==> 0 < a[k]

exists I:Interpretation :: fmla_satisfied(F, I)

Matt Fredrikson Dafny 5 / 25

Two Languages in One

Specifications in Dafny can be arbitrarily sophisticated

Effectively, Dafny can be seen as hosting two sub-languages

1. Imperative, executable core: methods, loops, arrays, if
statements...

2. Functional specification language: pure functions, sets,
predicates, algebraic datatypes, “ghost” state, ...

The code you write to specify and prove things is not compiled

Matt Fredrikson Dafny 6 / 25

The Tool

Matt Fredrikson Dafny 7 / 25

Dafny Basics: Methods

Unit of executable code

Note that:
▶ Types for parameters

and return values are
required

▶ Types are given after
names, followed by “:”

▶ Return values are
named

Methods can have multiple
return values

method Abs(x: int) returns (r: int)
{

...
}

method M() returns (r1: int, r2:int)
{

...
}

Matt Fredrikson Dafny 8 / 25

Dafny Basics: Methods

method MultipleReturns(x: int, y: int) returns (r1: int, r2:int)
{

r1 := x + y;
r2 := x - y;
// Comments are given
/* in typical C/Java fashion */

}

To return a value, assign to the named return variable

You can assign to the same return value multiple times

Assignments use :=, not =

No valid syntax in Dafny uses a single =

Matt Fredrikson Dafny 9 / 25

Dafny Basics: Methods

method Abs(x: int) returns (x': int)
{

if(x < 0) {
return -x;

} else {
return x;

}
}

You can also use return statements

Input parameters are always read-only

Compound statements (if, while, ...) always need curly braces

Matt Fredrikson Dafny 10 / 25

Dafny Basics: Post-Conditions

method MoreOrLess(x: int, y: int) returns (more: int, less: int)
ensures less < x
ensures x < more

{
more := x + y;
less := x - y;

}

Expression that is always true after method executes

These are statically-checked by Dafny

Note: could have also written less < x < more

Will Dafny accept these postconditions?

Matt Fredrikson Dafny 11 / 25

Dafny Basics: Pre-Conditions

method MoreOrLess(x: int, y: int) returns (more: int, less: int)
requires 0 < y
ensures less < x < more

{
more := x + y;
less := x - y;

}

Expression that must be true when method is called

Again, these are statically-checked by Dafny

Your job: assume pre-conditions, make sure post-conditions hold

Matt Fredrikson Dafny 12 / 25

Dafny Basics: Assertions

method TestCase(x: int)
{

var v := Abs(x);
assert 0 <= v;

}

Expression that must be true when execution reaches statement

Dafny will attempt to prove that the assertion holds

Aside: local variable types can usually be inferred

Notice: methods can’t be called from Boolean exprs.

Why?

Matt Fredrikson Dafny 13 / 25

Helping Dafny Prove Things

method Abs(x: int) returns (y: int)
ensures 0 <= y

{
if(x < 0) { return -x; }
else { return x; }

}

method TestCase()
{

var v := Abs(3);
assert v == 3;

}

Dafny won’t be able to prove this

Forgets everything about other
methods

...except what the postconditions say

This is crucial for making verification
feasible!

When using methods:
▶ Assume pre- and post-conditions describe them entirely
▶ They could be any method that satisfies the specification

Matt Fredrikson Dafny 14 / 25

Helping Dafny Prove Things

method Abs(x: int)
returns (y: int)
ensures 0 <= y

{
y := 0

}

Satisfies the specification...

method Abs(x: int)
returns (y: int)
ensures 0 <= y
ensures 0 <= x ==> y == x;
ensures x < 0 ==> y == -x;

{
if(x < 0) { return -x; }
else { return x; }

}

Perfect!

...but redundant?

Matt Fredrikson Dafny 15 / 25

Dafny: Functions

function abs(x: int): int
{

if x < 0 then -x else x
}

Dafny doesn’t forget about
function bodies

assert abs(3) == 3;

Think: pure mathematical
functions

▶ Cannot write to memory
▶ Body is a single expression
▶ Single return value
▶ Not compiled and executed

Used directly in annotations
▶ Pre-, post-conditions
▶ Assertions
▶ Invariants

Matt Fredrikson Dafny 16 / 25

Dafny: Loop invariants

var i := 0;
while(i < n)

invariant 0 <= i;
{

i := i + 1;
}

Loop invariants hold:
▶ Upon entering the loop
▶ After every iteration of the loop body

Dafny must consider all possible executions of the program
▶ Loops present a problem: how many times will it execute?
▶ Invariants let Dafny make assumptions about what carries

through any number of loop executions

Matt Fredrikson Dafny 17 / 25

Dafny: Loop invariants

method ComputeFib(n: nat)
returns (b: nat)
ensures b == fib(n);

{
if (n == 0) { return 0; }
var i := 1;
var a := 0;
b := 1;
while (i < n)

invariant 0 < i <= n;
invariant a == fib(i - 1);
invariant b == fib(i);

{
a, b := b, a + b;
i := i + 1;

}
}

function fib(n: nat): nat
{

if n == 0 then 0 else
if n == 1 then 1 else

fib(n - 1) + fib(n - 2)
}

As with methods, Dafny forgets
everything about loop bodies

Use the loop guard + invariants to
establish a fact after the loop
terminates

Matt Fredrikson Dafny 18 / 25

Dafny: Termination

Dafny proves termination

Obviously, you need to help

Specification element: decreases
annotation

▶ Attach to loops and recursive
functions

▶ Provide termination
metric

Termination metric:
▶ Gets smaller every iteration
▶ Has a lower bound

while (i < n)
invariant 0 <= i <= n;
decreases n - i;

{
i := i + 1;

}

Note: tell Dafny not to prove
termination by specifying:
decreases *

Matt Fredrikson Dafny 19 / 25

Dafny: Arrays

Arrays are built into the language
▶ They have type array<T>
▶ Can be null
▶ Have built-in Length field
▶ Initialized with new
▶ Accessed with [brackets]

Dafny checks bounds statically

method M(x: int)
{

var a := new int[10];
var b := a[x]; // ERROR
if(0 <= x < 10) {

b := a[x]; // OK
}

method M(x: int, c: array<int>)
requires 0 <= x < 10

{
var a := new int[10];
var b := a[x]; // OK
if(0 <= x < c.Length) {

// ERROR
}

Matt Fredrikson Dafny 20 / 25

Dafny: Framing

function f(a: array<int>): int
reads a

{
sum(a) + prod(a)

}

method M(a: array<int>,
b: array<int>)

modifies a
{

if(a != null && b != null) {
b[0] := a[0]; // ERROR

}
}

Shared memory makes verification hard

Dafny uses framing annotations to specify:
▶ which regions of memory a function can read (“read frame”)
▶ and which regions methods can modify (“write frame”)

Matt Fredrikson Dafny 21 / 25

Dafny: datatypes

datatype Tree =
Empty
| Node(l: Tree, d: int, r: Tree);

...
if(t.Empty?) { ... }
else if(t.Node?) {

d := t.data;
}

match(t) {
case Empty => ...
case Node(l, d, r) =>

...
}

Inductive datatypes are created using a set of constructors

For each constructor Ct, Boolean field Ct?

Can also match using match statement

Matt Fredrikson Dafny 22 / 25

Dafny: Sequences

var g: seq<int> := [];
g := g + [0, 1, 2];
assert |g| == 3;
assert g[0..1] == [0, 1];
assert g[2] == 2;
assert g[..] == [0,1,2];
assert 0 in h;
assert 3 !in h;

Immutable type: cannot be modified once created

No need to allocate: sequences are values

Ordered list of values

Used in both specification and code

Matt Fredrikson Dafny 23 / 25

Further reading

Strongly
encouraged: complete the main tutorial at

http://rise4fun.com/Dafny/tutorial

Getting started guide: http://goo.gl/mJ1Grr

Slightly older guide: http://goo.gl/MVYsbq

Main webpage: http://goo.gl/G1XDiK

Reference manual: http://goo.gl/IGVbYY (note: this is a work in
progress)

Matt Fredrikson Dafny 24 / 25

http://rise4fun.com/Dafny/tutorial
http://goo.gl/mJ1Grr
http://goo.gl/MVYsbq
http://goo.gl/G1XDiK
http://goo.gl/IGVbYY

Assignment 2

Second assignment goes out later today

Main task: implement a SAT solver

Requires the ability to compile Dafny on your machine

Get started early!

Matt Fredrikson Dafny 25 / 25

