Automated Program Verification and Testing
15414/15614 Fall 2016
Lecture 3:
Practical SAT Solving

Matt Fredrikson
mfredrik@cs.cmu.edu

October 17, 2016
Goal: Give meaning to propositional formulas

Assign Boolean truth values to (formula, interpretation) pairs

\[F + \text{Interpretation } I = \text{Truth Value} \ (true, \ false) \]

Note: we often abbreviate *true* by 1 and *false* by 0

Interpretation

An interpretation \(I \) for propositional formula \(F \) maps every propositional variable appearing in \(F \) to a truth value, i.e.:

\[I = \{ P \mapsto true, Q \mapsto false, R \mapsto false, \ldots \} \]
Satisfying Interpretation

I is a *satisfying interpretation* of a propositional formula F if F is *true* under I. We denote this with the notation:

$$I \models F$$

Falsifying Interpretation

I is a *falsifying interpretation* of a propositional formula F if F is *false* under I. We denote this with the notation:

$$I \not\models F$$
Review: Conjunctive Normal Form (CNF)

Take the form:
\[
\bigwedge_i \bigvee_j P_{ij}
\]

To convert to CNF:
1. Convert to NNF
2. Distribute \(\vee \) over \(\wedge \)

Naive approach has exponential blowup

Tseitin’s transformation: linear increase in formula size
Satisfiability Problem

SAT Problem

Given a propositional formula F, decide whether there exists an interpretation I such that $I \models F$.

3SAT was the first established NP-Complete problem (Cook, 1971)

Most important logical problems can be reduced to SAT

- Validity
- Entailment
- Equivalence
All of the algorithms we talk about assume that formulas are in CNF

We’ll refer to a formula as a set of clauses $F = \{C_1, \ldots, C_n\}$

Likewise, clauses as sets of literals

$$(P \lor Q) \land (Q \rightarrow \neg P) \quad \{\{P, Q\}, \{-Q, \neg P\}\}$$

Some convenient notation:

- $C_i\{P \mapsto F\}$: C_i with F substituted for P
- $C_i[P]$: P appears positive in C_i, i.e., $C_i = \{\ldots, P, \ldots\}$
- $C_i[\neg P]$: P appears negated in C_i, i.e., $C_i = \{\ldots, \neg P, \ldots\}$
- $C_i \lor C_j$: union of C_i and C_j, $C_i \cup C_j$
- $F_i \land F_j$: union of F_i and F_j, $F_i \cup F_j$
Resolution

Single inference rule:

\[
\frac{C_1[P] \quad C_2[\neg P]}{C_1\{P \leftrightarrow \bot\} \lor C_2\{\neg P \leftrightarrow \bot\}}
\]

Given two clauses that share variable \(P \) but disagree on its value:

1. If \(P \) is \textit{true}, then some other literal in \(C_2 \) must be true
2. If \(P \) is \textit{false}, then some other literal in \(C_1 \) must be true
3. Therefore, resolve on \(P \) in both clauses by removing it
4. \(C_1\{P \leftrightarrow \bot\} \lor C_2\{\neg P \leftrightarrow \bot\} \) is called the \textit{resolvent}

If \(C_1\{P \leftrightarrow \bot\} \lor C_2\{\neg P \leftrightarrow \bot\} = \bot \lor \bot = \bot \):

1. Then \(C_1 \land C_2 \) is unsatisfiable
2. Any CNF containing \(\{C_1, C_2\} \) is unsatisfiable
function Resolution(F)
 \(F' = \emptyset \)
 repeat
 \(F \leftarrow F \cup F' \)
 for all \(C_i, C_j \in F \) do
 \(C' = \text{Resolve}(C_i, C_j) \)
 if \(C' = \bot \) then
 return unsat
 end if
 \(F' \leftarrow F' \cup \{C'\} \)
 end for
 until \(F' \subseteq F \)
 return sat
end function

1. For each round, compute all possible resolvents
2. \(F' \) holds set of all resolvents
3. At each round, update \(F \) to contain past resolvents
4. Repeat resolution on updated \(F \)
5. Terminate when:
 - Encounter \(\bot \) resolvent
 - Don’t find anything new to add to \(F \)
Resolution: Example

\[(P \lor Q) \land (P \rightarrow R) \land (Q \rightarrow R) \land \neg R\]

\[
\begin{align*}
(C_1) &\quad (P \lor Q) \\
(C_2) &\quad (\neg P \lor R) \\
(C_3) &\quad (\neg Q \lor R) \\
(C_4) &\quad (\neg R)
\end{align*}
\]

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>$P \lor Q$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>$\neg P \lor R$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>$\neg Q \lor R$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>$\neg R$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>$Q \lor R$</td>
<td>1 & 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>$\neg P$</td>
<td>2 & 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>$\neg Q$</td>
<td>3 & 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>R</td>
<td>3 & 5</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Q</td>
<td>4 & 5</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>P</td>
<td>1 & 8</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>\bot</td>
<td>4 & 9</td>
</tr>
</tbody>
</table>

Matt Fredrikson

SAT Solving
Why is resolution particularly bad for large problems?

Hint: What does this technique build along the way?

Space complexity: \(\exp(O(N)) \)

Example: \(m \) pigeons won’t go into \(n \) holes when \(m > n \)

- \(p_{i,j} \): pigeon \(i \) goes in hole \(j \)
- \(p_{i,1} \lor p_{i,2} \lor \cdots \lor p_{i,n} \): every pigeon \(i \) gets a hole
- \(\neg p_{i,j} \lor \neg p_{i',j} \): no hole \(j \) gets two pigeons \(i \neq i' \)
- Resolution proof size: \(\exp(\Omega(N)) \)
Partial Interpretations

Starting from an empty interpretation:

- Extend for each variable
- No direct modifications to literals in formula

More flexibility in implementation strategy (more on this later)

If I is a *partial* interpretation, literals ℓ can be *true*, *false*, *undef*:

- *true* (satisfied): $I \models \ell$
- *false* (conflicting): $I \not\models \ell$
- *undef*: $\text{var}(\ell) \not\in I$

Given a clause C and interpretation I:

- C is *true* under I iff $I \models C$
- C is *false* under I iff $I \not\models C$
- C is *unit* under I iff $C = C' \lor \ell$, $I \not\models C$, ℓ is *undef*
- Otherwise it is *undef*
Example

$I = \{ P_1 \leftrightarrow 1, P_2 \leftrightarrow 0, P_4 \leftrightarrow 1 \}$

\[
\begin{align*}
P_1 \lor P_3 \lor \neg P_4 & \quad \text{satisfied} \\
\neg P_1 \lor P_2 & \quad \text{conflicting} \\
\neg P_1 \lor \neg P_4 \lor P_3 & \quad \text{unit} \\
\neg P_1 \lor P_3 \lor P_5 & \quad \text{undef}
\end{align*}
\]
Transition system is a binary relation over **states**

Transitions are induced by *guarded* transition rules

Procedure State

<table>
<thead>
<tr>
<th>The possible states are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ sat</td>
</tr>
<tr>
<td>▶ unsat</td>
</tr>
<tr>
<td>▶ ([I]) (\parallel) (F)</td>
</tr>
</tbody>
</table>

Where \([I]\) is an *ordered* interpretation, \(F\) is a CNF.

Initial state: \([\emptyset]\) \(\parallel\) \(F\)

Final states: *sat*, *unsat*

Ex. intermediate states:

- \([\emptyset]\) \(\parallel\) \(F_1, C\): empty interpretation, \(F = F_1 \land C\)

- \([I_1, \overline{P}, I_2]\) \(\parallel\) \(F\): interp. assigns \(I_1\) first, then \(P \leftrightarrow 0\), then \(I_2\)
Basic Search

Decision Rule

\[
[I] \parallel F \leftrightarrow [I, P^\circ] \parallel F \text{ if } \begin{cases} P \text{ occurs in } F \\ P \text{ unassigned in } I \end{cases}
\]

Backtrack Rule

\[
[I_1, P^\circ, I_2] \parallel F \leftrightarrow [I_1, \overline{P}] \parallel F \text{ if } \begin{cases} [I_1, P, I_2] \not\models F \\ P \text{ last decision in interp.} \end{cases}
\]

Sat Rule

\[
[I] \parallel F \leftrightarrow \text{sat if } [I] \models F
\]

Unsat Rule

\[
[I] \parallel F \leftrightarrow \text{unsat if } \begin{cases} [I] \not\models F \\ \text{No decisions in } I \end{cases}
\]
Example

\[F := \begin{align*}
C_1 &= \neg P_1 \lor P_2 \\
C_2 &= \neg P_3 \lor P_4 \\
C_3 &= \neg P_6 \lor \neg P_5 \lor \neg P_2 \\
C_4 &= \neg P_5 \lor P_6 \\
C_5 &= P_5 \lor P_7 \\
C_6 &= \neg P_1 \lor P_5 \lor P_7
\end{align*} \]

<table>
<thead>
<tr>
<th>(I)</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_2^o)</td>
<td>Decide</td>
</tr>
<tr>
<td>(P_2^o, P_4^o)</td>
<td>Decide</td>
</tr>
<tr>
<td>(P_2^o, P_4^o, P_5^o)</td>
<td>Decide</td>
</tr>
<tr>
<td>(P_2^o, P_4^o, P_5^o, P_6^o)</td>
<td>Decide</td>
</tr>
<tr>
<td>(P_2^o, P_4^o, P_5^o, \overline{P_6})</td>
<td>Backtrack</td>
</tr>
<tr>
<td>(P_2^o, P_4^o, \overline{P_5})</td>
<td>Backtrack</td>
</tr>
<tr>
<td>(P_2^o, P_4^o, \overline{P_5}, P_7^o)</td>
<td>Decide</td>
</tr>
<tr>
<td>(P_2^o, P_4^o, \overline{P_5}, P_7^o)</td>
<td>Sat</td>
</tr>
</tbody>
</table>
Unit Propagation

Recall *unit* clauses. For an interpretation I and clause C,

- I does not satisfy C,
- All but one literals in C are assigned

I implies an assignment for the unassigned literal

Unit Propagation Rule

\[
[I] \parallel F, C \lor \neg P \leftrightarrow [I, P \lor \neg \overline{P}] \parallel F, C \lor \neg P \quad \text{if} \quad \begin{cases} [I] \not\models C \\ P \text{ undefined in } I \end{cases}
\]

This is a restricted form of resolution
Example Revisited

\[F := \begin{align*}
C_1 &= \neg P_1 \lor P_2 \\
C_2 &= \neg P_3 \lor P_4 \\
C_3 &= \neg P_6 \lor \neg P_5 \lor \neg P_2 \\
C_4 &= \neg P_5 \lor P_6 \\
C_5 &= P_5 \lor P_7 \\
C_6 &= \neg P_1 \lor P_5 \lor \neg P_7
\end{align*} \]

<table>
<thead>
<tr>
<th>(I)</th>
<th>Rule</th>
<th>(I)</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1^o)</td>
<td>Decide</td>
<td>(P_1^o, P_2, \overline{P_3})</td>
<td>Backtrack</td>
</tr>
<tr>
<td>(P_1^o, P_2)</td>
<td>Propagate</td>
<td>(P_1^o, P_2, \overline{P_3}, P_5^o)</td>
<td>Decide</td>
</tr>
<tr>
<td>(P_1^o, P_2, P_3^o)</td>
<td>Decide</td>
<td>(P_1^o, P_2, \overline{P_3}, P_5^o, \overline{P_6})</td>
<td>Propagate</td>
</tr>
<tr>
<td>(P_1^o, P_2, P_3^o, P_4)</td>
<td>Propagate</td>
<td>(P_1^o, P_2, \overline{P_3}, \overline{P_5})</td>
<td>Backtrack</td>
</tr>
<tr>
<td>(P_1^o, P_2, P_3^o, P_4, P_5^o)</td>
<td>Decide</td>
<td>(P_1^o, P_2, \overline{P_3}, \overline{P_5}, P_7)</td>
<td>Propagate</td>
</tr>
<tr>
<td>(P_1^o, P_2, P_3^o, P_4, \overline{P_5})</td>
<td>Propagate</td>
<td>(\overline{P_1})</td>
<td>Backtrack</td>
</tr>
<tr>
<td>(P_1^o, P_2, P_3^o, P_4, \overline{P_5}, P_7)</td>
<td>Propagate</td>
<td>(\overline{P_1}, P_2^o, P_3^o, P_4, \overline{P_5}, P_7)</td>
<td>Sat</td>
</tr>
</tbody>
</table>
Example

\[F := \begin{align*}
C_1 &= \neg P_1 \lor P_2 \\
C_2 &= \neg P_2 \lor P_3 \\
C_3 &= \neg P_3 \lor P_4 \\
C_4 &= \neg P_4 \lor P_5 \\
C_5 &= \neg P_5 \lor \neg P_1 \\
C_6 &= P_1 \lor P_2 \lor P_3 \lor P_4 \lor \neg P_5
\end{align*} \]

<table>
<thead>
<tr>
<th>I</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1^o)</td>
<td>Decide</td>
</tr>
<tr>
<td>(P_1^o, P_2)</td>
<td>Propagate</td>
</tr>
<tr>
<td>(P_1^o, P_2, P_3)</td>
<td>Propagate</td>
</tr>
<tr>
<td>(P_1^o, P_2, P_3, P_4)</td>
<td>Propagate</td>
</tr>
<tr>
<td>(P_1^o, P_2, P_3, P_4, P_5)</td>
<td>Propagate</td>
</tr>
<tr>
<td>(\overline{P_1})</td>
<td>Backtrack</td>
</tr>
<tr>
<td>(\overline{P_1}, P_2^o)</td>
<td>Decide</td>
</tr>
<tr>
<td>(\overline{P_1}, P_2^o, P_3)</td>
<td>Propagate</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(Several propagations)</td>
</tr>
<tr>
<td>(\overline{P_1}, P_2^o, P_3, P_4, P_5)</td>
<td>Sat</td>
</tr>
</tbody>
</table>
The backtracking rule seems short-sighted
- It always jumps to the most recent decision
- It does not keep information about the conflict

Backjump Rule

\[
[I_1, P^\circ, I_2] \parallel F \leftrightarrow [I_1, \ell] \parallel F, C \quad \text{if}
\]

\[
\begin{align*}
[I_1, P^\circ, I_2] &\neq F \\
\exists C \text{ s.t. } &
\begin{cases}
F \Rightarrow (C \rightarrow \ell) \\
I_1 \models C \\
\text{var(}\ell\text{) undefined in } I_1 \\
\text{var(}\ell\text{) appears in } F
\end{cases}
\end{align*}
\]

\(C\) is called a conflict clause

Will help us prevent similar conflicts in the future
Example Revisited (again)

\[F := \begin{align*}
C_1 &= \neg P_1 \lor P_2 \\
C_2 &= \neg P_3 \lor P_4 \\
C_3 &= \neg P_6 \lor \neg P_5 \lor \neg P_2 \\
C_4 &= \neg P_5 \lor P_6 \\
C_5 &= P_5 \lor P_7 \\
C_6 &= \neg P_1 \lor P_5 \lor \neg P_7 \\
C_7 &= \neg P_1 \lor \neg P_5
\end{align*} \]

\[I \quad \text{Rule} \]

\begin{align*}
P_1^o &\quad \text{Decide} \\
P_1^o, P_2 &\quad \text{Propagate} \\
P_1^o, P_2, P_3^o &\quad \text{Decide} \\
P_1^o, P_2, P_3^o, P_4 &\quad \text{Propagate} \\
P_1^o, P_2, P_3^o, P_4, P_5^o &\quad \text{Decide} \\
P_1^o, P_2, P_3^o, P_4, P_5^o, \overline{P_6} &\quad \text{Propagate} \\
P_1^o, P_2, \overline{P_5} &\quad \text{Backjump, } P_1 \rightarrow \neg P_5 \\
P_1^o, P_2, \overline{P_5}, P_7 &\quad \text{Propagate} \\
\overline{P_1} &\quad \text{Backjump, } \text{true} \rightarrow \neg P_1 \\
\ldots
\end{align*}
Finding a Conflict Clause

The Backjump rule requires a conflict clause

To find one, we construct an *implication graph* $G = (V, E)$

- V has a node for each decision literal in I, labeled with the literal’s value and its decision level.
- For each clause $C = \ell_1 \lor \cdots \lor \ell_n \lor \ell$ where ℓ_1, \ldots, ℓ_n are assigned false,
 1. Add a node for ℓ with the decision level in which it entered I
 2. Add edges (ℓ_i, ℓ) for $1 \leq i \leq n$ to E
- Add a special *conflict node* Λ. For any conflict variable with nodes labeled P and $\neg P$, add edges from these nodes to Λ in E.
- Label each edge with the clause that caused the implication.

The implication graph contains sufficient information to generate a conflict clause
Implication Graph

\[F := \begin{align*}
C_1 &= \neg P_1 \lor P_2 \\
C_2 &= \neg P_3 \lor P_4 \\
C_3 &= \neg P_6 \lor \neg P_5 \lor \neg P_2 \\
C_4 &= \neg P_5 \lor P_6 \\
C_5 &= P_5 \lor P_7 \\
C_6 &= \neg P_1 \lor P_5 \lor \neg P_7
\end{align*} \]

\[I = [P_1^\circ, P_2, P_3^\circ, P_4, P_5^\circ, \overline{P_6}] \]
Conflict Graph

Implication graph where:

- Exactly one conflict variable
- All nodes have a path to Λ

$$
\begin{align*}
C_1 &= \neg P_1 \lor P_2 \\
C_2 &= \neg P_3 \lor P_4 \\
C_3 &= \neg P_6 \lor \neg P_5 \lor \neg P_2 \\
C_4 &= \neg P_5 \lor P_6 \\
C_5 &= P_5 \lor P_7 \\
C_6 &= \neg P_1 \lor P_5 \lor \neg P_7
\end{align*}
$$

$$
I = [P_1^\circ, P_2, P_3^\circ, P_4, P_5^\circ, \overline{P_6}]
$$
Generating Conflict Clauses

Consider a conflict graph G

1. Pick a cut in G such that:
 - All of the decision nodes are on one side (the “reason” side)
 - At least one conflict literal is on the other (the “conflict” side)

2. Pick all nodes K on the reason side with an edge crossing the cut

3. The nodes in K form a cause of the conflict

4. The negations of the corresponding literal form the conflict clause
Generating Conflict Clauses

\[C_1 = \neg P_1 \lor P_2 \quad C_2 = \neg P_3 \lor P_4 \]
\[C_3 = \neg P_6 \lor \neg P_5 \lor \neg P_2 \]
\[C_4 = \neg P_5 \lor P_6 \quad C_5 = P_5 \lor P_7 \]
\[C_6 = \neg P_1 \lor P_5 \lor \neg P_7 \]

\[I = [P_1^O, P_2, P_3^O, P_4, P_5^O, \overline{P_6}] \]

Conflict clause: \(\neg P_1 \lor \neg P_5\)
Generating Conflict Clauses

\[C_1 = \neg P_1 \lor P_2 \quad C_2 = \neg P_2 \lor P_3 \]
\[C_3 = \neg P_3 \lor P_4 \quad C_4 = \neg P_4 \lor P_5 \]
\[C_5 = \neg P_5 \lor \neg P_1 \]
\[C_6 = P_1 \lor P_2 \lor P_3 \lor P_4 \lor \neg P_5 \]

\[I = [P_1^c, P_2, P_3, P_4, P_5] \]

Conflict clause: \(P_1 \rightarrow \neg P_2 \)

Any others?

Does order matter?
Generating Conflict Clauses

This corresponds to resolution:

1. Let \(C \) be the conflicted clause
2. Pick most recently implied literal in conflict graph \(G \)
3. Let \(C' \) be the clause that implied it
4. Let \(C \leftarrow \text{resolve}(C, C') \)
5. Repeat step 2 while applicable

\[
C_1 = \neg P_1 \lor P_2 \quad C_2 = \neg P_3 \lor P_4 \\
C_3 = \neg P_6 \lor \neg P_5 \lor \neg P_2 \\
C_4 = \neg P_5 \lor P_6 \quad C_5 = P_5 \lor P_7 \\
C_6 = \neg P_1 \lor P_5 \lor \neg P_7
\]

\[
I = [P_1^\circ, P_2, P_3^\circ, P_4, P_5^\circ, \overline{P}_6]
\]

1. \(C = \neg P_5 \lor P_6 \)
2. Pick \(\overline{P}_6 \)
3. \(C' = \neg P_6 \lor \neg P_5 \lor \neg P_2 \)
4. \(C = \neg P_5 \lor \neg P_2 \)
5. Pick \(P_2 \)
6. \(C' = \neg P_1 \lor P_2 \)
7. \(C = \neg P_1 \lor \neg P_5 \)
Generating Conflict Clauses

The textbook doesn’t cover this at all

For more information, see:

▶ *Decision Procedures* by Kroening and Strichman. Download a copy from the library by visiting: http://vufind.library.cmu.edu/vufind/Record/1607216
DPLL and CDCL

Original DPLL used:

Decide, Sat/Unsat, Propagate, Backtrack

Modern DPLL replaces:

Backtrack with Backjump

These are called Conflict Driven Clause Learning (CDCL) solvers

In addition, most use:

- “Forgetting”: periodically forget learned clauses
- Restart: reset interpretation, but keep learned clauses

```python
while(1) {
    while(exists_unit(I, F))
        I, F = propagate(I, F);
        I, F = decide(I, F);
    if(conflict(I, F)) {
        if(has_decision(I))
            I, F = backjump(I, F);
        else
            return unsat;
    } else if(sat(I, F))
        return sat;
}
```
Correctness of DPLL

Soundness
For every execution starting with $[\emptyset] \parallel F$ and ending with $[I] \parallel sat$ (resp. $[I] \parallel unsat$), F is satisfiable (resp. unsatisfiable).

Completeness
If F is satisfiable (resp. unsatisfiable), then every execution starting with $[\emptyset] \parallel F$ ends with $[I] \parallel sat$ (resp. $[I] \parallel unsat$).

Note: Termination not obvious with Backjump. Define a metric that decreases:
- When adding a decision level (Decide)
- When adding literal to the current decision level (Propagate)
- When adding literal to previous decision level (Backjump)
Practical Considerations

Conflict-Driven Clause Learning (CDCL) made large-scale SAT practical

- GRASP solver, 1996
- From hundreds and low-thousands to thousands and millions of variables
- Focus shifted towards better heuristics, implementation

Several considerations proved effective:

- Make resolution more efficient: keep # memory accesses per iteration low
- Simple, low-overhead decision guidance
- Strategies for forgetting learned clauses
Watch Pointers

Idea: Watch two unassigned literals in each non-satisfied clause. Ignore the rest.

Maintain two lists for each variable P
- The first, L_P, contains watching clauses with P
- The second, $L_{\overline{P}}$, contains watching clauses with \overline{P}

Each time an assignment to is made to P:
1. For clauses in $L_{\overline{P}}$, find another literal in the clause to watch
2. If (1) is not possible, the clause is unit

Advantages:
1. When P assigned, only examine clauses in the appropriate list
2. No overhead when backtracking
Dynamic Largest Individual Sum (DLIS)

Decision heuristic: choose variable that satisfies the most clauses

How do we implement this?
- Maintain sat counters for every variable
- When clauses are satisfied, update counters
- Must touch every clause containing literal set to 1
- Need to reverse process when backtracking

More overhead than unit propagation...

Probably not worth it
Rank variables by literal count in the initial database
 ▶ Only increment when clauses are learned
 ▶ Periodically divide all counts by 2

Main idea: bias towards literals from recent conflicts
 ▶ Conflict adds 1 to each literal in conflict clause
 ▶ More time passed \rightarrow more divisions by 2
 ▶ Effectively solves conflicts before moving onto new clauses

Use heap structure to find unassigned variable with the highest ranking
Other Approaches

There are other good SAT-solving approaches

Randomized approaches (GSAT, WSAT)
 - Hill-climbing, local search algorithms
 - State: full interpretation, Cost: # non-satisfied clauses
 - Move: flip one assignment

Binary decision diagrams
 - Efficiently represent formula as a DAG
 - Manipulate formula by changing graph structure

Stalmarck’s algorithm
 - Breadth-first search: try both branches at once
 - Also branch on variable relationships
Install Dafny on your machine

See the **Assignments** section on course webpage for a guide