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The Problem: Real-Time High-Res Object Detection

…
7 × 1920 × 1200 x 3

@ 30 FPS

Efficiency becomes unprecedentedly important in the era

of “oversensing”: multiple high-resolution cameras and LiDAR

sensors can be found on a single autonomous vehicle. Such

an overwhelming amount of data coming at a high-frame rate

call for novel approaches to make use of high-res footage be-

yond the conventional downsampling and frame dropping [1].

Intuition: Attentional Foveation

Inspiration: In the human visual sys-

tem, the center (fovea) has a much

higher resolution than the periphery.

Key Insight: Learn to intelligently subsample the input. We

adaptively downsample the high-resolution raw image such

that the original resolution is better preserved for salient ar-

eas. For example, wemight contract the background and big-

ger objects to make room for smaller objects while maintain-

ing a small canvas size.

Approach
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Note that our method is largely agnostic to a specific detector

sincewemodify the input/output of a given detector. All com-

ponents are differentiable, and can be trained end-to-end!

Key Components and Contributions

Saliency from Temporal and Spatial Object Priors

The saliency generatormaps bounding boxes from previous

prediction or over the entire dataset to a soft saliency map.

Bounding-Box Backward Mapping

Warped image leads to warped boxes and need to be

unwarped! It turns out to be an existing transformation.

Anti-Cropping Regularization

The spatial transformer in [2] tends to crop the input,

undesirable for object detection. We reflectively pad the

saliency map to prevent cropping.

Separable Warps

Ensure that bounding boxes remain axis-aligned!

Results

Method AP AP50 AP75 APS APM APL Latency (ms)

Baseline (FRCNN FPN) 24.2 38.9 26.1 4.9 29.0 50.9 50.9 ± 0.9

KDE (SD) 26.7 43.3 27.8 8.2 29.7 54.1 50.8 ± 1.2
KDE (SI) 28.0 45.5 29.2 10.4 31.0 54.5 52.2 ± 0.9

LKDE (SI) 28.1 45.9 28.9 10.3 30.9 54.1 50.5 ± 0.8

Upper Bound (0.75x) 29.2 47.6 31.1 11.6 32.1 53.3 87.0 ± 1.4
Upper Bound (1x) 33.3 53.9 35.0 16.8 34.8 53.6 135.0 ± 1.6

Table 1. Offline detection on Argoverse-HD after finetuning.
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ID Method AP APS APM APL

1 Prior art [1] 17.8 3.2 16.3 33.3

2 1 + Better implementation 19.3 4.1 18.3 34.9
3 1 + Train with pseudo GT 21.2 3.7 23.9 43.8

4 2 + KDE (SI) 19.3 5.2 18.5 39.0
5 3 + KDE (SI) 23.0 7.0 23.7 44.9

Table 2. Streaming detection [1] on Argoverse-HD.

References

[1] Mengtian Li, Yuxiong Wang, and Deva Ramanan. Towards streaming perception. In ECCV, 2020.

[2] Adria Recasens, Petr Kellnhofer, Simon Stent, Wojciech Matusik, and Antonio Torralba. Learning to
zoom: a saliency-based sampling layer for neural networks. In ECCV, pages 51–66, 2018.

ICCV 2021


