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Abstract. We present some recent progress in designing and imple-
menting two interactive image-based 3D modeling systems.
The first system constructs 3D models from a collection of panoramic
image mosaics. A panoramic mosaic consists of a set of images taken
around the same viewpoint, and a camera matrix associated with each
input image. The user first interactively specifies features such as points,
lines, and planes. Our system recovers the camera pose for each mosaic
from known line directions and reference points. It then constructs the
3D model using all available geometrical constraints.
The second system extracts structure from stereo by representing the
scene as a collection of approximately planar layers. The user first in-
teractively segments the images into corresponding planar regions. Our
system recovers a composite mosaic for each layer, estimates the plane
equation for the layer, and optionally recovers the camera locations as
well as out-of-plane displacements.
By taking advantage of known scene regularities, our interactive systems
avoid difficult feature correspondence problems that occur in traditional
automatic modeling systems. They also shift the interactive high-level
structural model specification stage to precede (or intermix with) the
3D geometry recovery. They are thus able to extract accurate wire frame
and texture-mapped 3D models from multiple image sequences.

1 Introduction

A lot of progress has been made recently in developing automated techniques for
3D scene reconstruction from multiple images, both with calibrated and uncali-
brated cameras [1–9]. Unfortunately, the results from many automated modeling
systems are disappointing due to the complexity of real scenes and the fragility
of fully automated vision techniques. Part of the reason stems from the accurate
and robust correspondences required by many computer vision techniques such
as stereo and structure from motion. Moreover, such correspondences may not
be available in regions of the scene that are untextured.

Automated techniques often require manual clean-up and post-processing to
segment the scene into coherent objects and surfaces, or to triangulate sparse
point matches [5]. They may also be required to enforce geometric constraints



such as known orientations of surfaces. For instance, building interiors and exte-
riors provide vertical and horizontal lines and parallel and perpendicular planes.
In this paper, we attack the 3D modeling problem from the other side: we spec-
ify some geometric knowledge ahead of time (e.g., known orientations of lines,
co-planarity of points, initial scene segmentations), and use these constraints to
guide our matching and reconstruction algorithms.

The idea of using geometric constraints has previously been exploited in sev-
eral interactive modeling systems. For example, PhotoModeler [10] is a comme-
cial product which constructs 3D models from several images, using photogram-
metry techniques and manually specified points. The TotalCalib system, on the
other hand, estimates the fundamental matrix from a few hand-matched points,
and then predicts and verifies other potential matching points [11]. The Facade
system exploits the known rectahedral structure of building exteriors to directly
recover solid 3D models (blocks) from multiple images [12].

This paper presents two interactive (semi-automated) systems for recovering
3D models of large-scale environments from multiple images. Our first system
uses one or more panoramic image mosaics, i.e., collections of images taken from
the same viewpoint that have been registered together[13]. Panoramas offer sev-
eral advantages over regular images. First, we can decouple the modeling prob-
lem into a zero baseline problem (building panoramas from images taken with
rotating camera) and a wide baseline stereo or structure from motion problem
(recovering 3D model from one or more panoramas). Second, the intrinsic cam-
era calibrations are recovered as part of the panorama construction [14]. Due to
recent advances, it is now possible to construct panoramas even with hand-held
cameras [15].

Unlike previous work on 3D reconstruction from multiple panoramas [16, 17],
our 3D modeling system exploits important regularities present in the environ-
ment, such as walls with known orientations. Fortunately, the man-made world
is full of constraints such as parallel lines, lines with known directions, planes
with lines and points on them. Using these constraints, we can construct a fairly
complex 3D model from a single panorama (or even a wide-angle photograph),
and easily handle large co-planar untexture regions such as walls. Using multiple
panoramas, more complete and accurate 3D models can be constructed.

Multiple-image stereo matching can be used to recover a more detailed de-
scription of surface shape than can be obtained by simply triangulating matched
feature points [8]. Unfortunately, stereo fails in regions without texture. A simple
depth map also cannot capture the full complexity of a large-scale environment.
Methods for overcoming this limitation include volumetric stereo techniques [18,
19] and model-based stereo [12].

In this paper, we propose a different approach—extending the concept of
layered motion estimates [20, 21] and “shallow” objects [22] to true multi-image
stereo matching. Our second interactive modeling system reconstructs the 3D
scene as a collection of approximately planar layers, each of which has an explicit
3D plane equation, a color image with per-pixel opacity, and optionally a per-
pixel out-of-plane displacement[23]. This representation allows us to account for



inter-surface occlusions, which traditional stereo systems have trouble modeling
correctly.

2 3D modeling from panoramas

2.1 Interactive modeling system

Our modeling system uses one or more panoramas. For each panorama, we draw
points, lines, and planes, set appropriate properties for them, and then recover
the 3D model. These steps can be repeated in any order to refine or modify
the model. The modeling system attempts to satisfy all possible constraints in
a consistent and coherent way.

Three coordinate systems are used in our work. The first is the world coor-
dinate system where the 3D model geometry is defined. The second is the “2D”
camera coordinate system (panorama coordinates). The third is the screen co-
ordinate system where zoom and rotation (pan and tilt, but no roll) are applied
to facilitate user interaction. While each panorama has a single 2D coordinate
system, several views of a given panorama can be open simultaneously, each with
its own screen coordinate system.

We represent the 3D model by a set of points, lines and planes. Each point is
represented by its 3D coordinate x. Each line is represented by its line direction
m and points on the line. Each plane is defined by (n, d) where n is the normal,
d is the distance to the origin, and n · x + d = 0 or (n, d) · (x, 1) = 0. A plane
typically includes several vertices and lines.

Each 2D model consists of a set of 2D points and lines extracted from a
panorama. A panorama consists of a collection of images and their associated
transformations. A 2D point x̃ (i.e., on a panorama) represents a ray going
through the 2D model origin (i.e., camera optical center).1 Likewise, a 2D line
(represented by its line direction m̃) lies on the “line projection plane” (with
normal ñp) which passes through the line and 2D model origin.2

2.2 Modeling steps

Many constraints exist in real scenes. For example, we may have known quanti-
ties like points, lines, and planes. Or we may have known relationships such as
parallel and vertical lines and planes, points on a line or a plane. With multi-
ple panoramas, we have more constraints from corresponding points, lines, and
planes.

Some of these constraints are bilinear. For example, a point on a plane is a bi-
linear constraint in both the point location and the plane normal. However, plane
normals and line directions can be recovered without knowing plane distance and
1 We use the notation x̃ for a 2D point, x for a 3D point, and x̂ for a 3D point whose

position is known. Likewise for line directions, plane normals, etc..
2 If a pixel has the screen coordinate (u, v, 1), its 2D point on the panorama is repre-

sented by (u, v, f) where f is the focal length.



points. Thus, in our system we decouple the modeling process into several lin-
ear steps: (a) recovering camera orientations (R) from known line directions;
(b) recovering camera translations (t) from known points; (c) estimating plane
normals (n) and line directions (m); (d) estimating plane distances (d), vertex
positions (x). These steps are explained in detail in the next sections.

2.3 Recovering camera pose

The camera poses describe the relationship between the 2D models (panorama
coordinate systems) and the 3D model (world coordinate system).

To recover the camera rotation, we use lines with known directions. For
example, one can easily draw several vertical lines at the intersections of walls
and mark them to be parallel to the Z axis of the world coordinate system.
Given at least two vertical lines and a horizontal line, or two sets of parallel lines
of known directions, the camera matrix can be recovered. This is achieved by
computing vanishing points for the parallel lines, and using these to constrain
the rotation matrix. If more than 2 vanishing points are available, a least squares
solution can be found for R.

To recover the translation, observe that a point on a 2D model (panorama)
represents a ray from the camera origin through the pixel on the image,

(x − t) × RT x̃ = 0. (1)

This is equivalent to

(x − t) · (RT p̃j) = 0, j = 0, 1, 2, (2)

where p̃0 = (−x2, x1, 0), p̃1 = (−x3, 0, x1) and p̃2 = (0,−x3, x2) are three
directions perpendicular to the ray x̃ = (x1, x2, x3). Note that only two of the
three constraints are linearly independent.3 Thus, camera translation t can be
recovered as a linear least-squares problem if we have two or more given points.
Given a single known point, t can be recovered only up to a scale. In practice, it
is convenient to fix a few points in 3D model, such as the origin (0, 0, 0). These
given points are also used to eliminate the ambiguities in recovering camera pose.

For a single panorama, the translation t is set to zero if no point in 3D model
is given. This implies that the camera coordinate coincides with the 3D model
coordinate.

2.4 Estimating plane normals

Once we have camera pose, we can recover the scene geometry. Because of the
bilinear nature of some constraints (such as points on planes), we recover plane
normals (n) before solving for plane distances (d) and points (x). If a normal
is given (north, south, up, down, etc.), it can be enforced as a hard constraint.

3 The third constraint with minimum ‖p̃i‖2 is eliminated.



Otherwise, we compute the plane normal n by finding two line directions on the
plane.

If we draw two pairs of parallel lines (a parallelogram) on a plane, we can
recover the plane normal. Because R has been estimated, and we know how to
compute a line direction (i.e., the vanishing point m̃) from two parallel lines, we
obtain m = RT m̃. From two line directions m1 and m2 on a plane, the plane
normal can be computed as n = m1 × m2.

In general, the line direction recovery problem can be formulated as a stan-
dard minimum eigenvector problem. Because each “line projection plane” is
perpendicular to the line (i.e., ñpi · m̃ = 0), we want to minimize

e =
∑

i

(ñpi · m̃)2 = m̃T (
∑

i

ñpiñT
pi)m̃. (3)

This is equivalent to finding the vanishing point of the lines [24]. The advantage
of the above formulation is that the sign ambiguity of ñpi can be ignored. When
only two parallel lines are given, the solution is simply the cross product of two
line projection plane normals.

Using the techniques described above, we can therefore recover the surface
orientation of an arbitrary plane (e.g., tilted ceiling) provided either we can draw
a parallelogram (or a 3-sided rectangle) on the plane.

2.5 Estimating the 3D model

Given camera pose, line directions, and plane normals, recovering plane dis-
tances (d), 3D points (x), and camera translation t (if desired), can be for-
mulated as a linear system consisting of all possible constraints. By separating
hard constraints from soft ones, we obtain a least-squares system with equal-
ity constraints. Intuitively, the difference between soft and hard constraints is
their weights in the least-squares formulation. Soft constraints have unit weights,
while hard constraints have very large weights [25].

Some constraints (e.g., a point is known) are inherently hard, therefore equal-
ity constraints. Some constraints (e.g., a feature location on a 2D model or
panorama) are most appropriate as soft constraints because they are based on
noisy image measurements. Take a point on a plane for an example. If the plane
normal n̂k is given, we consider the constraint (xi · n̂k + dk = 0) as hard. We
use the notations m̂ and n̂ to represent the given line direction m and plane
normal n, respectively. This implies that the point has to be on the plane, only
its location can be adjusted. On the other hand, if the plane normal nk is esti-
mated, we consider the constraint (xi ·nk +dk = 0) as soft. This could lead to an
estimated point that is not on the plane at all. So why not make the constraint
(xi · nk + dk = 0) hard as well?

The reason is that we may end up with a very bad model if some of the esti-
mated normals have large errors. Too many hard constraints could conflict with
one another or make other soft constraints insignificant. To satisfy all possible
constraints, we formulate our modeling process as an equality-constrained least-
squares problem. In other words, we would like to solve the linear system (soft



constraints) Ax = b subject to (hard constraints) Cx = q where A is m × n,
C is p × n. A solution to the above problem is to use the QR factorization [25].

Before we can apply the equality-constrained linear system solver, we must
check whether the linear system formed by all constraints is solvable. In general,
the system may consist of several subsystems (connected components) which can
be solved independently. For example, when modeling a room with a computer
monitor floating in the space not connected with any wall, ceiling or floor, we
may have a system with two connected components. To find all connected com-
ponents, we use depth first search to step through the linear system. For each
connected components we check that: (a) the number of equations (including
both hard and soft constraints) is no fewer than the number of unknowns; (b)
the right hand side is a non-zero vector, i.e., has some minimal ground truth
data; (c) the hard constraints are consistent. If any of the above is not satisfied,
the system is declared unsolvable, and a warning message is then generated to
indicate which set of unknowns cannot be recovered.

3 3D modeling using layered stereo

3.1 Overview of layered stereo approach

Our second 3D modeling system interactively extracts structure as a collection
of 3D (quasi-) planar layers from multiple images. The basic concepts of the
layered stereo approach are illustrated in Figure 1. Assume that we are given as
input K images I1(u1), I2(u2), . . . , IK(uK)4 captured by K cameras with camera
matrices P1,P2, . . . ,PK . In what follows, we will drop the image coordinates uk

unless they are needed to explain a warping operation explicitly. Our hypothesis
is that we can reconstruct the world as a collection of L approximately planar
layers. Following [26], we denote a layer “sprite” image by Ll(ul) = (αl · rl, αl ·
gl, αl · bl, αl), where rl = rl(ul) is the red band, gl = gl(ul) is the green band,
bl = bl(ul) is the blue band, and αl = αl(ul) is the opacity of pixel ul.5 We
also associate with each layer a homogeneous vector nl which defines the plane
equation of the layer via nT

l x = 0, and optionally a per-pixel residual depth
offset Zl(ul).

A number of automatic techniques have been developed to initialize the lay-
ers, e.g, merging [20, 28, 29], splitting [30, 28], color segmentation [31] and plane
fitting to a recovered depth map. In our system, we interactively initialize the
layers because we wish to focus initially on techniques for creating composite
(mosaic) sprites from multiple images, estimating the sprite plane equations,
and refining layer assignments. We plan to incorporate automated initialization
techniques later.

4 We use homogeneous coordinates in this section for both 3D world coordinates x =
(x, y, z, 1)T and for 2D image coordinates u = (u, v, 1)T .

5 The terminology comes from computer graphics, where sprites are used to quickly
(re-)render scenes composed of many objects [27].
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Fig. 1. Suppose K images Ik are captured by K cameras Pk. We assume the scene can
be represented by L sprite images Ll on planes nT

l x = 0 with depth offsets Zl. The
boolean masks Bkl denote the pixels in image Ik from layer Ll and the masked images
Mkl = Bkl · Ik.

The input consists of a collection of images Ik taken with known camera
matrices Pk. The camera matrices can be estimated when they are not known a
priori, either using traditional structure from motion [3, 7, 8], or directly from the
homographies relating sprites in different images [32, 33]. Our goal is to estimate
the layer sprites Ll, the plane vectors nl, and the residual depths Zl.

Our approach can be subdivided into a number of steps where we estimate
each of Ll, nl, and Zl in turn. To compute these quantities, we use auxiliary
boolean mask images Bkl. The boolean masks Bkl denote the pixels in image Ik

which are images of points in layer Ll. Since we are assuming boolean opacities,
Bkl = 1 if and only if Ll is the front-most layer which is opaque at that pixel
in image Ik. Hence, in addition to Ll, nl, and Zl, we also need to estimate
the boolean masks Bkl. Once we have estimated these masks, we can compute
masked input images Mkl = Bkl · Ik (see Figure 1).

Given any three of Ll, nl, Zl, and Bkl, there are techniques for estimating
the remaining one. Our algorithm therefore consists of first initializing these
quantities. Then, we iteratively estimate each of theses quantities in turn fixing
the other three.



3.2 Estimation of Plane Equations

In order to compute the plane equation vector nl, we need to be able to map
points in masked image Mkl onto the plane nT

l x = 0. If x is a 3D world coordinate
of a point and uk is the image of x in camera Pk, we have:

uk = Pkx

where equality is in the 2D projective space P2. Since Pk is of rank 3, we can
write:

x = P∗
kuk + spk (4)

where P∗
k = PT

k (PkPT
k )−1 is the pseudoinverse of Pk, s is an unknown scalar,

and pk is a vector in the null space of Pk, i.e. Pkpk = 0. If x lies on the plane
nT

l x = 0 we can solve for s, substitute into Equation (4), and obtain:

x =
(
(nT

l pk)I − pknT
l

)
P∗

kuk. (5)

Equation (5) allows us to map a point uk in image Mkl onto the point on plane
nT

l x = 0, of which it is an image. Afterwards we can map this point onto its
image in another camera Pk′ :

uk′ = Pk′
(
(nT

l pk)I − pknT
l

)
P∗

kuk ≡ Hl
kk′uk (6)

where Hl
kk′ is a homography (collineation of P2). Equation (6) describes the

image coordinate warp between the two images Mkl and Mk′l which would hold
if all the masked image pixels were images of world points on the plane nT

l x = 0.
Using this relation, we can warp all of the masked images onto the coordinate
frame of one distinguished image, w.l.o.g. image M1l, as follows:

(
Hl

1k ◦ Mkl

)
(u1) ≡ Mkl

(
Hl

1ku1
)
.

Here, Hl
1k ◦ Mkl is the masked image Mkl warped into the coordinate frame of

M1l.
We can therefore solve for nl by finding the value for which the homogra-

phies Hl
1k defined in Equation (6) best register the images onto each other.

Typically, this value is found using some form of gradient decent, such as the
Gauss-Newton method, and the optimization is performed in a hierarchical (i.e.
pyramid based) fashion to avoid local extrema [34]. To apply this approach, we
compute the Jacobian of the image warp Hl

1k with respect to the parameters of
nl. Alternatively, we can first compute a set of unconstrained homographies us-
ing a standard mosaic construction algorithm, and then invoke a structure from
motion algorithm to recover the plane equation (and also the camera matrices,
if desired) [32, 33].

3.3 Estimation of Layer Sprites

Before we can compute the layer sprite images Ll, we need to choose 2D co-
ordinate systems for the planes. Such coordinate systems can be specified by a



collection of arbitrary (rank 3) camera matrices Ql.6 Then, following the same
argument used in Equations (5) and (6), we can show that the image coordinates
uk of the point in image Mkl which is projected onto the point ul on the plane
nT

l x = 0 is given by:

uk = Pk

(
(nT

l ql)I − qlnT
l

)
Q∗

l ul ≡ Hl
kuk (7)

where Q∗
l is the pseudo-inverse of Ql and ql is a vector in the null space of

Ql. The homography Hl
k can be used to warp the image Mkl forward onto the

plane, the result of which is denoted Hl
k ◦Mkl. After we have warped the masked

image onto the plane, we can estimate the layer sprite (with boolean opacities)
by “blending” the warped images:

Ll =
K⊕

k=1

Hl
k ◦ Mkl (8)

where
⊕

is a blending operator.
There are a number of ways the blending can be performed. One simple

method is to take the mean of the color or intensity values. A refinement is to
use a “feathering” algorithm, where the averaging is weighted by the distance
of each pixel from the nearest invisible pixel in Mkl [35]. Alternatively, robust
techniques can be used to estimate Ll from the warped images.

3.4 Estimation of Residual Depth

In general, the scene will not be exactly piecewise planar. To model any non-
planarity, we assume that the point ul on the plane nT

l x = 0 is displaced slightly
in the direction of the ray through ul defined by the camera matrix Ql, and that
the distance it is displaced is Zl(ul), measured in the direction normal to the
plane. In this case, the homographic warps used in the previous section are not
applicable. However, using a similar argument to that in Sections 3.2 and 3.3, it
is easy to show (see also [36, 12]) that:

uk = Hl
kul + Zl(ul)tkl (9)

where Hl
k = Pk

(
(nT

l ql)I − qlnT
l

)
Q∗

l is the planar homography of Section 3.3,
tkl = Pkql is the epipole, and it is assumed that the plane equation vector
nl = (nx, ny, nz, nd)T has been normalized so that n2

x+n2
y+n2

z = 1. Equation (9)
can be used to map plane coordinates ul backwards to image coordinates uk,
or to map the image Mkl forwards onto the plane. We denote the result of this
warp by (Hl

k, tkl, Zl) ◦ Mkl, or Wl
k ◦ Mkl for more concise notation.

To compute the residual depth map Zl, we could optimize the same (or a simi-
lar) consistency metric as that used in Section 2.2 to estimate the plane equation.
Doing so is essentially solving a simpler (or what [12] would call “model-based”)
stereo problem. In fact, almost any stereo algorithm could be used to compute
Zl. The algorithm should favor small disparities.
6 A reasonable choice for Ql is one of the camera matrices Pk.



3.5 Pixel Assignment to Layers

In the previous three sections, we have assumed a known assignment of pixels
to layer, i.e., known boolean masks Bkl which allow us to compute the masked
image Mkl using Mkl = Bkl · Ik. We now describe how to estimate the pixel
assignments from nl, Ll, and Zl.

We could try to update the pixel assignments by comparing the warped
images Wl

k ◦ Mkl to the layer sprite images Ll. However, if we compared these
images, we would not be able to deduce anything about the pixel assignments
outside of the current estimates of the masked regions. To allow the boolean
mask Bkl to “grow”, we therefore compare Wl

k ◦ Ik with:

L̃l =
K⊕

k=1

Wl
k ◦ M̃kl,

where M̃kl = B̃kl · Ik and B̃kl is a dilated version of Bkl (if necessary, Zl is also
enlarged so that it declines to zero outside the masked region).

Given the enlarged layer sprites L̃l, our approach to pixel assignment is as
follows. We first compute a measure Pkl(ul) of the likelihood that the pixel
Wl

k ◦ Ik(ul) is the warped image of the pixel ul in the enlarged layer sprite L̃l.
Next, Pkl is warped back into the coordinate system of the input image Ik to
yield:

P̂kl = (Wl
k)−1 ◦ Pkl.

This warping tends to blur Pkl, but this is acceptable since we will want to
smooth the pixel assignment. The pixel assignment can then be computed by
choosing the best possible layer for each pixel:

Blk(uk) =
{

1 if P̂kl(uk) = minl′ P̂kl′(uk)
0 otherwise

.

The simplest ways of defining Pkl is the residual intensity difference [28];
another possibility is the residual normal flow magnitude [30]. A third possibility
would be to compute the optical flow between Wl

k ◦ Ik and L̃l and then use the
magnitude of the flow for Pkl.

3.6 Layer refinement by re-synthesis

The layered stereo algorithm described above is limited to recovering binary
masks Bkl for the assignment of input pixels to layers. If we wanted to, we could
use an EM (expectation maximization) algorithm to obtain graded (continuous)
assignments [37, 38]. However, EM models mixtures of probability distributions,
rather than the kind of partial occlusion mixing that occurs at sprite boundaries
[26]. Stereo techniques inspired by matte extraction [39] are needed to refine
the color/opacity estimates for each layer [19]. Such an algorithm would work
by re-synthesizing each input image from the current sprite estimates, and then
adjusting pixel colors and opacities so at to minimize the difference between
the original and re-synthesized images. We are planning to implement such an
algorithm in future work.



4 Experiments

We have implemented our panorama 3D modeling system on a PC and tested
it with single and multiple panoramas. The system consists of two parts: the
interface (viewing the panorama with pan, tilt, and zoom control) and the mod-
eler (recovering the camera pose and the 3D model). Figure 2 shows a spherical
panoramic image on the left and a simple reconstructed 3D model on the right.
The coordinate system on the left corner (red) is the world coordinate, and the
coordinate system in the middle (green) is the camera coordinate. The panorama
is composed of 60 images using the method of creating full-view panoramas [35].
The extracted texture maps (without top and bottom faces) are shown in Figure
3. Notice how the texture maps in Figure 3 have different sampling rates from
the original images. The sampling is the best (e.g., Figure 3(b)) when the surface
normal is parallel with the viewing direction from the camera center, and the
worst (e.g., Figure 3(d)) when perpendicular. This explains why the sampling on
the left is better than that on the right in Figure 3(a). Figure 4 shows two views
of our interactive modeling system. Green lines and points are the 2D items that
are manually drawn and assigned with properties, and blue lines and points are
projections of the recovered 3D model. It took about 15 minutes for the authors
to build the simple model in Figure 2. In 30 minutes, we can construct the more
complicated model shown in Figure 5.

Figures 6 and 7 show an example of building 3D models from multiple panora-
mas. Figure 6 shows two spherical panoramas built from image sequences taken
with a hand-held digital video camera. Figure 7 shows two views of reconstructed
3D wireframe model from the two panoramas in Figure 6. Notice that the oc-
cluded middle area in the first panorama (behind the tree) is recovered because
it is visible in the second panorama.

We have applied our layered stereo modeling system to a number of multi-
frame stereo data sets. A standard point tracking and structure from motion
algorithm is used to recover a camera matrix for each image. To initialize our
algorithm, we interactively specify how many layers and then perform a rough
assignment of pixels to layers. Next, an automatic hierarchical parametric motion
estimation algorithm similar to [34] is used to find the homographies between the
layers, as defined in Equation (7). For the experiments presented in this paper,
we set Ql = P1, i.e. we reconstruct the sprites in the coordinate system of the
first camera. Using these homographies, we find the best plane estimate for each
layer using a Euclidean structure from motion algorithm [40].

The results of applying these steps to the MPEG flower garden sequence are
shown in Figure 8. Figures 8(a) and (b) show the first and last image in the
subsequence we used (the first seven even images). Figure 8(c) shows the ini-
tial pixel labeling into seven layers. Figures 8(d) and (e) show the sprite images
corresponding to each of the seven layers, re-arranged for more compact dis-
play. Note that because of the compositing and blending that takes place during
sprite construction, each sprite is larger than its footprint in any one of the input
images. This sprite representation makes it very easy to re-synthesize novel im-
ages without leaving gaps in the new image, unlike approaches based on a single



Fig. 2. 3D model from a single panorama.

(a) (b)

(c) (d) (e) (f)
Fig. 3. Texture maps for the 3D model.

Fig. 4. Two views of the interactive system.

Fig. 5. A more complex 3D model from a single panorama.

Fig. 6. Two input panoramas of an indoor scene.



Fig. 7. Two views of a 3D model from multiple panoramas.

painted depth map [16]. Figure 8(f) shows the depth map computed by paint-
ing every pixel in every sprite with its corresponding color coded Z value, and
then re-compositing the image. Notice how the depth discontinuities are much
crisper and cleaner than those available with traditional stereo correspondence
algorithms.

Our second set of experiments uses five images taken from a 40-image stereo
dataset taken at a computer graphics symposium. Figure 9(a) shows the mid-
dle input image, Figure 9(b) shows the initial pixel assignment to layers, and
Figure 9(c) shows the recovered depth map. Figures 9(d) and (e) show the recov-
ered sprites, and Figure 9(f) shows the middle image re-synthesized from these
sprites. The gaps visible in Figures 9(c) and 9(f) lie outside the area correspond-
ing to the middle image, where the appropriate parts of the background sprites
could not be seen.

5 Discussion and conclusions

In this paper, we have presented two systems for interactively constructing com-
plex (large-scale) 3D models from multiple images. Our modeling systems are
able to construct accurate geometrical and photo-realistic 3D models because
our approaches have much less ambiguity than traditional structure from mo-
tion or stereo approaches. Our results show that it is desirable and practical
for the modeling systems to take advantage of as many regularities and priori
knowledge about man-made environments (such as vertices, lines, and planes)
as possible [41].

Our panorama 3D modeling system decomposes the modeling process into
a zero baseline problem (panorama construction) and a wide baseline problem
(stereo or structure from motion). Using the knowledge of the scene, e.g., known
line directions, parallel or perpendicular planes, our system first recovers the
camera pose for each panorama, and then constructs the 3D model using all pos-
sible constraints. In particular, we carefully partition the recovery problem into
a series of linear estimation stages, and divide the constraints into “hard” and
“soft” constraints so that each estimation stage becomes a linearly-constrained
least-squares problem.

Our layered stereo modeling system makes use of a different kind of scene
regularity, where input images are segmented into planar layers (with possible



(a) (b) (c)

(d) (e) (f)

Fig. 8. Results on the flower garden sequence: (a) first and (b) last input images; (c)
initial segmentation into six layers; (d) and (e) the six layer sprites; (f) depth map for
planar sprites (bottom strip illustrates the coding of depths as colors)

(a) (b) (c)

(d) (e) (f)

Fig. 9. Results on the symposium sequence: (a) third of five images; (b) initial seg-
mentation into six layers; (c) recovered depth map; (d) and (e) the five layer sprites;
(f) re-synthesized third image (note extended field of view).



small depth offsets). By drastically reducing the number of unknowns (only 3
parameters for each sprite plane), the recovery of 3D structure is much more
robust than conventional stereo algorithms.

We are working on several extensions to improve the usability and gener-
ality of our system. Naturally, we want to automate even more parts of the
interactive systems. For the panorama modeling system, we have implemented
an automatic line snapping technique which snaps lines to their closest edges
present in the panorama. We also plan to incorporate automatic line detection,
corner detection as well as inter-image correspondence and other feature detec-
tions to further automate the system. If we use more features with automatic
feature extraction and correspondence techniques, robust modeling techniques
should also be developed [7]. For the layered stereo modeling system, we plan to
automate the interactive masking process by only specifying layers in few (e.g.,
the first and the last) images and by incorporating motion segmentation and
color segmentation techniques.

We are also planning to combine our layered stereo modeling system with the
panorama modeling system. The idea is to build a rough model using panorama
modeling system and refine it using layered stereo wherever it is appropriate
(similar in spirit to the model-based stereo of [12]). We are also investigating
representations beyond texture-mapped 3D models, i.e, image-based rendering
approaches [42] such as view-dependent texture maps [12] and layered depth
images [43]. Integrating all of these into one interactive modeling system will
enable users to easily construct complex photorealistic 3D models from images.
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