
Creating 3D Models with Uncalibrated Cameras

Mei Han Takeo Kanade
Robotics Institute, Carnegie Mellon University

meihan,tk@cs.cmu.edu

Abstract

We describe a factorization-based method to recover 3D
models from multiple perspective views with uncalibrated
cameras. The method first performs a projective recon-
struction using a bilinear factorization algorithm, and then
converts the projective solution to a Euclidean one by en-
forcing metric constraints. We present three factorization-
based normalization algorithms to generate the Euclidean
reconstruction and the intrinsic parameters, assuming zero
skews. The first two algorithms are linear, one for deal-
ing with the case that only the focal lengths are unknown,
and another for the case that the focal lengths and the con-
stant principal point are unknown. The third algorithm is
bilinear, dealing with the case that the focal lengths, the
principal points and the aspect ratios are all unknown. We
present the results of applying this method to building mod-
eling, terrain recovery and multi-camera calibration.

1 Introduction

The problem of recovering shape and motion from an
image sequence has received a lot of attention. Previous
approaches include recursive methods (e.g., [11, 2]) and
batch methods (e.g., [15, 13, 4]). The factorization method,
first developed by Tomasi and Kanade [15] for orthographic
views and extended by Poelman and Kanade [13] to weak
and para perspective views, achieves its robustness and ac-
curacy by applying the singular value decomposition (SVD)
to a large number of images and feature points. Christy
and Horaud [4, 5] described a method for the perspective
camera model by incrementally performing reconstructions
with either a weak or a para perspective camera model. One
major limitation with most factorization methods, however,
is that they require the use of intrinsically calibrated cam-
eras.

When nothing is known about the camera intrinsic pa-
rameters, the extrinsic parameters or the object, it is only
possible to compute a reconstruction up to an unknown
projective transformation [6]. There has been considerable
progress on projective reconstruction ([6, 3, 12, 16]). Triggs
proposed a projective factorization method in [17] which re-

covers projective depths by estimating a set of fundamental
matrices to chain all the images together. Heyden [8, 9] pre-
sented methods of using multilinear subspace constraints to
perform projective structure from motion.

In order to obtain a Euclidean reconstruction from
the projective reconstruction some additional information
about either the camera or the object is needed . Hartley
recovered the Euclidean shape using a global optimization
technique, assuming that the camera intrinsic parameters
are constant [7]. In [10] Heyden and̊Aström used a bun-
dle adjustment algorithm to estimate the focal lengths, the
principal points, the camera motion and the object shape.
Agapito et al. proposed a linear self-calibration algorithm
for rotating and zooming cameras [1]. Pollefeys et al. as-
sumed that the focal length is the only varying intrinsic pa-
rameter and presented a linear algorithm [14].

Our normalization process is computationally equivalent
to recovering the absolute quadric [18, 14]. However, our
representation is explicit in the motion parameters (rota-
tion axes and translation vectors) and enables the geomet-
ric constraints to be naturally enforced. The representa-
tion also deals with the similarity ambiguity problem di-
rectly by putting the world coordinate system at the cen-
ter of gravity of the object and aligning its orientation with
the first camera. Therefore, we can follow the same line
of orthographic and weak perspective factorization meth-
ods [15, 13] to “normalize” the projective reconstruction
into Euclidean, which achieves reliability and accuracy by
uniformly considering all the data in all the images.

In this paper we describe a factorization-based method
which recovers Euclidean shape and motion from multi-
ple uncalibrated perspective views. Given tracked feature
points, our method reconstructs the object shape, the cam-
era motion and the intrinsic parameters (assuming zero
skews). We first apply an iterative algorithm to get a pro-
jective reconstruction, then propose three normalization al-
gorithms to impose metric constraints on the projective re-
construction. The normalization algorithms recover the un-
known intrinsic parameters and convert the projective solu-
tion to a Euclidean one simultaneously. The first algorithm
deals with the case that the focal lengths are the only un-
known parameters. The second one deals with the case that
the focal lengths and the principal point are unknown, while



the principal point is fixed. These two algorithms are linear.
The third algorithm, which is bilinear, works in the case that
the focal lengths, the principal points and the aspect ratios
are all unknown. Application results to building modeling,
terrain recovery and multi-camera calibration show that our
method is reliable under noise.

2 Projective reconstruction

Suppose there aren perspective camerasPi, i = 1 � � �n
andm object pointsxj , j = 1 � � �m represented by ho-
mogeneous coordinates. The image coordinates are repre-
sented by(uij ; vij). The following hold
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where�ij is a non-zero scale factor, commonly called pro-
jective depth. The equivalent matrix form is:
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whereWs is thescaled measurement matrix. We apply the
following projective factorization algorithm which is very
similar to Triggs’s approach described in [17]. This algo-
rithm iteratively applies factorization to the current scaled
measurement matrix.

Iterative Projective Factorization Algorithm

1. Set�ij = 1, for i = 1 � � �n andj = 1 � � �m;

2. Compute the current scaled measurement matrix
Ws by Equation (2);

3. Perform rank4 factorization onWs, generate the
projective shape and motion;

4. Reset�ij = P
(3)
i xj whereP (3)

i denotes the third
row of the projection matrixPi;

5. If �ij ’s are the same as the previous iteration,
stop; else go to step 2.

The goal of the projective reconstruction process is to
estimate the values of the projective depths (�ij ’s) which

make Equation (2) consistent. The reconstruction results
are iteratively improved by back projecting the current pro-
jective reconstruction to refine the depth estimates.

3 Euclidean reconstruction

The factorization of Equation (2) recovers the motion
and shape up to a4 � 4 linear projective transformation
H :

Ws = P̂ X̂ = P̂HH�1X̂ = PX (3)

whereP = P̂H andX = H�1X̂. P̂ andX̂ are referred
to as the projective motion and the projective shape. Any
non-singular4� 4 matrix could be inserted between̂P and
X̂ to get another motion and shape pair.

Assuming zero skews, we impose metric constraints to
the projective motion and shape in order to simultaneously
reconstruct the intrinsic parameters (i.e., the focal lengths,
the principal points and the aspect ratios) and the linear
transformationH , from which we can get the Euclidean
motion and shape. We call this processnormalization. We
classify the situations into three cases:

Case 1: Only the focal lengths are unknown.

Case 2: The focal lengths and the principal point are un-
known, and the principal point is fixed.

Case 3: The focal lengths, the principal points and the
aspect ratios are all unknown and varying.

We present three factorization-based normalization algo-
rithms to deal with the three cases. The methods are linear
for the first two cases and bilinear for the third case.

The first linear algorithm works for the situations that
the camera experiences obvious zooming in/out during the
sequence. The focal lengths are therefore the main concern
of the reconstruction process. The second linear algorithm
works for the situations in which the camera focal length
changes only a little, so that there is no obvious zooming
effect and the principal point is very close to being con-
stant. Aerial image sequences taken by a flying platform
are examples of this case. The third algorithm, which is bi-
linear, works for situations in which multiple cameras are
included. The focal lengths, the principal points and the
aspect ratios all vary from image to image.

3.1 Normalization algorithm outline

The projective motion matrixPi is:

Pi � Ki [Rijti] (4)

where
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The upper triangular calibration matrixKi encodes the in-
trinsic parameters of theith camera:fi represents the focal
length,(u0i; v0i) is the principal point and�i is the aspect
ratio.Ri is theith rotation matrix withii, ji andki denoting
the rotation axes.ti is theith translation vector. Combin-
ing Equation (4) fori = 1 � � �n into one matrix equation,
we get,

P = [M jT ] (5)

where

M = [mx1 my1 mz1 � � � mxn myn mzn]
T

T = [Tx1 Ty1 Tz1 � � � Txn Tyn Tzn]
T

and

mxi = �ifiii + �iu0iki
myi = �i�ifiji + �iv0iki
mzi = �iki
Txi = �ifitxi + �iu0itzi
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Tzi = �itzi

(6)

The shape matrix is represented by:
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where
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and
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T
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We put the origin of the world coordinate system at the cen-
ter of gravity of the scaled object points to enforce
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Define the4� 4 projective transformationH as:

H = [AjB] (11)

whereA is 4� 3 andB is 4� 1.
SinceP = P̂H ,

[M jT ] = P̂ [AjB] (12)

we have,

Txi = P̂xiB Tyi = P̂yiB Tzi = P̂ziB (13)

From Equations (9) and (10) we know,
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we set up2n linear equations of the4 unknown elements
of the matrixB. Linear least squares solutions are then
computed.

Asmxi, myi andmzi are the sum of the scaled rotation
axes, we get the following constraints from Equation (6):
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Based on the three different assumptions of the intrinsic pa-
rameters (three cases), we translate the above constraints to
linear constraints onMMT (see Section 3.2, 3.3 and 3.4
for details). Since

MMT = P̂AATP̂T (16)

we can get least squares solutions for the10 unknown ele-
ments of the symmetric4� 4 matrixQ = AAT. Then we
get the matrixA fromQ by rank3 matrix decomposition.

Once the matrixA has been found, the projective trans-
formation is[AjB]. The shape is computed asX = H�1X̂

and the motion matrix asP = P̂H . We first compute the
scales�i:

�i = jmzij (17)

We then compute the principal points (if applied)
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and the focal lengths as
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The aspect ratios (if applied) are

�i =

p
jmyij2 � �2i v

2
0i

�ifi
(20)

Therefore, the motion parameters are
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The normalization process is summarized by the follow-

ing algorithm.

Normalization Algorithm

1. Perform SVD onWs and getP̂ andX̂;

2. Sum up each row ofWs and compute the ratios
between them as in Equation (14);

3. Set up2n linear equations of the4 unknown ele-
ments of matrixB based on the ratios from step 2
and computeB;

4. Set up linear equations of the10 unknown elements
of the symmetric matrixQ and computeQ;

5. DecomposeQ to getA fromQ = AAT;

6. Put matricesA andB together and get the projec-
tive transformationH = [AjB];

7. Recover the shape usingX = H�1X̂ and motion
matrix usingP = P̂H ;

8. Recover the intrinsic parameters, the rotation axes
and the translation vectors according to Equations
(18)–(21).

3.2 Case 1: Unknown focal lengths

Assuming that the focal lengths are the only unknown
intrinsic parameters, we have

u0i = 0 v0i = 0 �i = 1 (22)

We combine the constraints in Equation (15) to impose the
following linear constraints on the matrixQ:

jmxij
2 = jmyij

2

mxi �myi = 0
mxi �mzi = 0
myi �mzi = 0

We can add one more equation assuming�1 = 1:

jmz1j
2 = 1 (23)

Totally we have4n+1 linear equations of the10 unknown
elements ofQ.

The only intrinsic parameters to be recovered in this case
are the focal lengths. As the aspect ratios are1, the focal
lengths are computed by the average of Equations (19) and
(20):

fi =
jmxij+ jmyij

2�i
(24)

3.3 Case 2: Unknown focal lengths and constant
principal point

Assuming that the focal lengths are unknown and the
principal point is constant, that is,

u0i = u0 v0i = v0 �i = 1 (25)

We translate the constraints in Equation (15) as follows.
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wherej = i+ 1; if i 6= n; j = 1; if i = n. We also have the
following equation assuming�1 = 1:

jmz1j
4 = 1 (28)

These are linear equations of the unknown elements of sym-
metric matrixQ1 = qqT, whereq is a10� 1 vector com-
posed of the10 unknown elements of the matrixQ. There-
fore, we get7n + 1 linear equations of the55 unknown
elements of the matrixQ1.

OnceQ1 has been computed,q is generated by rank1
matrix decomposition ofQ1. We then put the10 elements
of q into a symmetric4� 4 matrixQ which is decomposed
asAAT.

We compute the principal point as the average of Equa-
tion (18):
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and the focal lengths as the average of Equations (19) and
(20):
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3.4 Case 3: Unknown focal lengths, principal
points and aspect ratios

Assuming that the focal lengths, the principal points and
the aspect ratios are all unknown and varying, we represent
the constraints in Equation (15) as bilinear equations on the
focal lengths and the principal points plus the aspect ratios.
Starting with the rough values of the principal points and
the aspect ratio of the first camera (�1), we impose linear
constraints on the elements of the matrixQ:

mxi �myi = u0iv0i mzi �mzi

mxi �mzi = u0i mzi �mzi

myi �mzi = v0i mzi �mzi (31)

We add two more equations assuming�1 = 1:

�21(jmx1j
2 � u201) = jmy1j

2 � v201

jmz1j
2 = 1 (32)

Once the matrixH has been found, the current shape is
X = H�1X̂ and the motion matrix isP = P̂H . We com-
pute the refined principal points, the current recovered focal
lengths and the aspect ratios according to Equations (18),
(19) and (20) respectively. The current motion parameters
are then computed as in Equation (21).

Taking the refined principal points and the first aspect
ratio, the normalization steps are performed again to gener-
ate the matrixH , then the refined principal points, the focal
lengths, the aspect ratios, the current shape and the motion.
The above steps are repeated until the principal points and
the first aspect ratio do not change.

4 Applications

In this section we apply the perspective factorization
method to synthetic and real image sequences. Given
tracked feature points, we first generate the projective re-
construction as described in Section 2, then recover the Eu-
clidean reconstruction and the camera intrinsic parameters
using one of the three normalization algorithms described in
Section 3 . Real image sequences are used to demonstrate
each of the three cases. Experimental results on synthetic
and real data show that our method is reliable under noise.

4.1 Experiments on synthetic data

We generate sequences of20 frames with 8 feature
points representing a cube in the scene. The camera under-
goes non-critical motions. We add5% noises to the feature

locations. The experimental results show that the method
converges reliably. The errors of the recovered object shape
are less than0:8% of the object size. The recovered focal
lengths are always within1� 1:8% of the true values. The
recovered principal points and the aspect ratios are more
accurate than the focal lengths. The errors of the principal
points are less than0:25% of the image size and the errors
of the aspect ratios are less than0:5% of the true values.
The maximum distance between the recovered camera lo-
cations and the corresponding ground truth values is2:4%
of the object size and the maximum difference between the
recovered camera orientations and the true values is0:33Æ.

4.2 Application 1: Building modeling

This sequence was taken by a hand-held camera in front
of a building. The camera was very far from the building
at first, then moved toward the building, and away again.
The camera was zoomed in when it was far from the build-
ing and zoomed out when it was close so that the building
appears to be almost the same size in every image of the se-
quence. The largest focal length is about3 times the small-
est one according to the rough readings on the camera. The
sequence includes14 frames, of which two are shown in
Figure 1(a).50 feature points were manually selected along
the building windows and the corners. In this example we
assume the focal lengths are unknown while the principal
points are given (the middle of the images) and the aspect
ratios are1. We apply the projective algorithm described
in Section 2 and the normalization algorithm described in
Section 3.2 to this example.
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Figure 2: Focal lengths of the building sequence recovered by
the perspective factorization method. The recovered values are
changing with the camera motion as expected.

Figure 1(b) shows the reconstructed building model and
camera trajectories. The top view shows that the recovered
camera moves toward the building and then away again as
expected. The recovered camera positions and orientations
shown in the side view demonstrate that all the cameras
have the almost same height and tilt upward a little bit,
which are the expected values that the same person took



(a) (b) (c)

Figure 1: (a) 1st and 9th images of the building sequence. (b)Top and side view of the reconstruction, the 3-axis figures denote the
recovered cameras. The top view shows that the recovered camera moves toward the building, then away again as expected. The side view
shows that the recovered locations of the cameras are at the same height and the orientations are tilted upward. (c)Bottom and side view of
the reconstructed building with texture mapping.

the sequence while walking in front of the building. Fig-
ure 1(c) shows the reconstructed building with texture map-
ping. To quantify the results, we measure the orthogonality
and parallelism of the lines composed of the recovered fea-
ture points. The average angle between pairs of expected
parallel lines is0:89Æ and the average angle between pairs
of expected perpendicular lines is91:74Æ. Figure 2 plots the
recovered focal lengths, which shows that the focal lengths
are changing with the camera motion as we expected.

4.3 Application 2: Terrain recovery

The second example is an aerial image sequence taken
from a small airplane flying over the Grand Canyon. The
plane changed its altitude as well as its roll, pitch and yaw
angles during the sequence. The sequence consists of97
images, and86 feature points were tracked through the se-
quence. Two frames from the sequence are shown in Fig-
ure 3(a). We assume that the focal lengths and the princi-
pal point are unknown, but that the principal point is fixed
over the sequence. The normalization algorithm of Sec-
tion 3.3 is used here. Figures 3(b) and (c) show the recon-
structed camera trajectories and terrain map. The camera
focal lengths changed little when taking the sequence. Fig-
ure 4 is a plot of the recovered focal lengths, and shows that
the focal lengths are relatively constant. The principal point
recovered by our method is(159; 119) (with the image size
as320� 240).
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Figure 4:Focal lengths of the Grand Canyon sequence recovered
by the perspective factorization method. The recovered values are
relatively constant as expected.

4.4 Application 3: Calibration setup

In this experiment we test our method on a setup for
multi-camera calibration. The setup includes51 cameras
arranged in a dome and a bar of LEDs which is moved
around under the dome. The bar is imaged by each camera
as it is moved through a series of known positions. Since
the intrinsic parameters of each camera do not change as
the bar is moved, the images taken by one camera are com-
bined into one image containing multiple bars. Each of
these composite images includes 232 feature points (LED
positions). Therefore, the setup generates51 images which
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Figure 3:(a) 1st and 91st images of the Grand Canyon sequence. (b)Top and side view of the reconstruction, the 3-axis figures denote the
recovered cameras. (c)Top and side view of the reconstructed Grand Canyon with texture mapping.

are used as calibration data for the cameras. Tsai’s cali-
bration algorithm [19] is used on this setup to calibrate the
51 cameras. The calibration results of Tsai’s algorithm are
compared with the results of our method.

In this example we assume that all the intrinsic parame-
ters (except the skews) are unknown, and differ from cam-
era to camera. The normalization algorithm described in
Section 3.4 is applied. We initialize the aspect ratios to1
and initialize the principal points to the middle of the im-
ages. Figure 5 shows the reconstructed LED positions and
the reconstructed camera orientations and locations. The re-
constructed LED positions are compared with their known
positions. The maximum distance is20mm which is about
0:61% of the bar length. The recovered camera locations
and orientations are compared with Tsai’s calibration re-
sults. The maximum distance between the recovered cam-
era locations by the two methods is32mm which is about
0:98% of the bar length, the maximum angle between the
recovered camera orientations is0:3Æ.

Figure 6 are plots of the differences of the focal lengths,
the principal points and the aspect ratios recovered by our
method and by Tsai’s calibration algorithm. The plots show
that the calibration results of our method are very close to
those of Tsai’s algorithm.

Obtaining ground truth is difficult and time-consuming
in camera calibration. This example demonstrates a good
calibration method for multi-camera systems. Instead of
carefully putting objects at accurate positions, a person
can wave one stick randomly in the room. The stick has
marks which enable fast and easy computation of corre-
spondences. Given these tracked feature points, the per-

spective factorization method can be applied to recover the
camera extrinsic and intrinsic parameters simultaneously.

5 Discussion

Given image sequences taken with uncalibrated cam-
eras, the perspective factorization method creates 3D mod-
els of the scene and recovers the extrinsic and intrinsic pa-
rameters of the cameras simultaneously. The reconstruction
process consists of two steps: firstly, an iterative bilinear
factorization method is applied to themeasurement matrix
which is composed of all the image locations of all the fea-
ture points. The output of this step is thescaled measure-
ment matrixwhich is the product of the projective motion
and shape; secondly, factorization-basednormalizationis
performed on the scaled measurement matrix, which im-
poses metric constraints on the projective reconstruction to
recover the projective transformation (matrixH) and gen-
erate the Euclidean shape and motion. In comparison, the
normalization in orthographic and weak perspective factor-
ization methods [15, 13] is applied directly to the measure-
ment matrix, which imposes similar metric constraints to
recover the affine transformation.

This method works with uncalibrated situations, there-
fore, it provides a strong tool of modeling from image se-
quences taken with one or multiple uncalibrated cameras.
In this paper we show the results of applying this method to
indoor object modeling, outdoor scene recovery and multi-
camera calibration. The results are promising. We are
working on the situations with degenerate scene structure,
such as planar terrain, and/or critical camera motion.



Figure 5: Top and side view of the reconstruction of the calibration setup, the points denote the recovered LED positions, the 3-axis
figures are the recovered cameras.
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Figure 6:Differences of (a)the focal lengths (b) the principal points(u0; v0) (c) the aspect ratios of the calibration setup data recovered
by the perspective factorization method and by Tsai’s calibration algorithm.
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