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Abstract

We describe a reconstruction method of multiple motion
scenes, which are the scenes containing multiple moving
objects, from uncalibrated views. Assuming that the objects
are moving with constant velocities, the method recovers the
scene structure, the trajectories of the moving objects, the
camera motion and the camera intrinsic parameters (except
skews) simultaneously. The number of the moving objects is
automatically detected without prior motion segmentation.
The method is based on a uni£ed geometrical representation
of the static scene and the moving objects. It £rst performs a
projective reconstruction using a bilinear factorization al-
gorithm, and then converts the projective solution to a Eu-
clidean one by enforcing metric constraints. Experimental
results on synthetic and real images are presented.

1. Introduction

Structure from Motion (SFM), which is recovering cam-
era motion and scene structure from image sequences, has
various applications, such as scene modeling, robot navi-
gation, object recognition and virtual reality. Most of pre-
vious research on SFM requires simplifying assumptions
on the camera or the scene. Common assumptions are a)
the camera intrinsic parameters, such as focal lengths, are
known or unchanged throughout the sequence, and/or b)
the scene does not contain moving objects. In practice,
these are unrealistic assumptions. In this paper we propose
a factorization-based method for multiple motion scene re-
construction from uncalibrated views. The method recon-
structs the scene structure, the trajectories of the moving
objects, the camera motion and the camera intrinsic param-
eters (assuming zero skews) simultaneously. The number of
the moving objects is automatically detected without prior
motion segmentation.

When the moving objects are far from the camera, it is

1The research described in this paper was conducted while the £rst au-
thor was a Ph.D. student in the Robotics Institute at CMU.

dif£cult to get multiple feature points from every moving
object throughout the image sequences. It is a good ap-
proximation to abstract the moving objects as points. How-
ever, recovering the locations of a moving point from a
monocular image sequence is impossible without assump-
tions about its trajectory [2]. In this paper we assume that
the objects are moving linearly with constant speeds. This
assumption is reasonable for most moving objects, such as
cars, planes and people, especially for short time intervals.

1.1. Related work

The multibody factorization method proposed by
Costeira and Kanade [7] reconstructs the motions and
shapes of independently moving objects, but requires that
each object have multiple feature points. Avidan and
Shashua [2] recover the trajectory of a 3D point by line £t-
ting. They assume that the object is moving along a line, but
they do not require the object to move with constant speed.
They assume that the camera positions and the prior mo-
tion segmentation are given. They extend this work to conic
shape trajectories in [18]. Bregler et al. [4] describe a tech-
nique to recover non-rigid 3D model based on the represen-
tation of 3D shape as a linear combination of a set of basis
shapes. The complexity of their solution increases with the
number of basis shapes. There is much work done on pla-
nar points as well [23, 19, 20]. Han and Kanade present a
multiple motion scene reconstruction method under af£ne
camera models in [11], assuming that the objects are mov-
ing with constant velocities. The method requires that the
camera intrinsic parameters are known.

Whether cameras are intrinsically pre-calibrated or un-
calibrated differentiates various solutions. The above mul-
tiple motion scene reconstruction methods all assume that
the cameras are intrinsically pre-calibrated. When noth-
ing is known about the camera calibration parameters or
the scene, it is only possible to compute a reconstruction
up to an unknown projective transformation [8]. There
has been considerable progress on projective reconstruction
([3, 22, 13, 17]). Some additional information about either
the camera or the object is needed to obtain a Euclidean



reconstruction from the projective reconstruction. Tremen-
dous work has been done in this area ([12, 14, 1, 16, 10]).
However, most of these methods assume that the scenes do
not contain moving objects.

The method presented here uses the factorization tech-
nique as the basis of solution. The factorization method,
£rst developed by Tomasi and Kanade [21] for orthographic
views and extended by Poelman and Kanade [15] to weak
and para perspective views, achieves its robustness and ac-
curacy by applying the singular value decomposition (SVD)
to a large number of images and feature points. Christy and
Horaud [5, 6] describe a method for the perspective camera
model by incrementally performing reconstructions with ei-
ther a weak or a para perspective camera model. One major
limitation with most previous factorization methods is that
they require the use of intrinsically calibrated cameras. The
method described in this paper, however, works on uncali-
brated cameras.

1.2. Representation

We propose a uni£ed representation of the static scene
and the moving objects in [11]. Assuming that m feature
points are tracked over n images, some of them static and
the others moving linearly with constant speeds, we regard
every point as a moving point with constant velocity: the
static points simply have zero velocity. Any point is repre-
sented by a 3× 1 vector pj ,

pj = sj + ivj (1)

in a world coordinate system, where i = 1 · · ·n and j =
1 · · ·m, n is the number of frames and m is the number of
feature points. sj is the point position at frame 0 (i.e., when
the 0th frame is taken) and vj is its motion velocity. The
method presented in this paper is built on the same uni£ed
representation of feature points.

2. Projective reconstruction

Given tracked feature points from uncalibrated views, we
£rst perform a projective reconstruction. Perspective pro-
jection Pi, i = 1 · · ·n, is represented by a 3× 4 matrix,

Pi ∼ Ki

[

Ri ti
]

(2)

where

Ki =





fi 0 u0i

0 αifi v0i

0 0 1



Ri =





iTi
jTi
kT
i



 ti =





txi
tyi
tzi





The upper triangular calibration matrix Ki encodes the in-
trinsic parameters of the ith camera: fi represents the focal
length, (u0i, v0i) is the principal point and αi is the aspect

ratio. We assume that the cameras have zero skews. Ri is
the ith rotation matrix with ii, ji and ki denoting the rota-
tion axes. ti is the ith translation vector. Feature point xj ,
j = 1 · · ·m, is represented by homogeneous coordinates,

xj ∼
[

pT
j 1

]T
(3)

where pj is de£ned as the uni£ed representation of point
in Equation (1). The image coordinates are represented by
(uij , vij) and the following hold,





uij
vij
1



∼Pixj or λij





uij
vij
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 = Pixj (4)

where λij is a non-zero scale factor called projective depth.
According to Equations (2) and (3),

Pixj ∼ Ki ( Ri pj + ti )

= Ki ( Ri sj + i Ri vj + ti )

= Ki [Ri iRi ti]
[

sT
j vT

j 1
]T

∼ P̃ix̃j (5)

where

P̃i ∼ Ki [Ri iRi ti] x̃j ∼
[

sT
j vT

j 1
]T

(6)

P̃i is a 3×7 matrix which is the product of the ith calibration
matrix and the uni£ed motion matrix composed of the cam-
era rotation, the scaled camera rotation by the frame num-
ber and the camera translation. x̃j is a 7×1 vector which is
the homogeneous representation of the uni£ed scene struc-
ture including the initial point position and its velocity. The
equivalent matrix form is,

Ws =
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(7)

=







P̃1

...
P̃n






[x̃1 · · · x̃m] = P̃ X̃ (8)

where Ws is the scaled measurement matrix. We call the
3n× 7 matrix P̃ as motion matrix and the 7×m matrix X̃

as shape matrix. The constraint of the objects moving with
constant velocities enables the uni£ed representation of the
motion matrix P̃ and the shape matrix X̃ . They are both at
most rank 7, therefore, the rank of the scaled measurement



matrix Ws is at most 7 (instead of rank 4 when the scene
does not contain moving objects).

We apply the following bilinear factorization algorithm
to get the projective reconstruction. The algorithm is similar
to the iterative algorithm presented in [22] with the differ-
ence that a rank 7 matrix factorization is performed at step
3. It iteratively applies factorization to the current scaled
measurement matrix.

Iterative Projective Factorization Algorithm

1. Set λij = 1, for i = 1 · · ·n and j = 1 · · ·m;

2. Compute the current scaled measurement matrix Ws

by Equation (7);

3. Perform rank 7 factorization on Ws, generate the pro-
jective motion P̂ and shape X̂;

4. Reset λij = P̂
(3)
i x̂j , where P̂

(3)
i denotes the third row

of the projection matrix P̂i;

5. If λij’s are the same as the previous iteration, stop; else
go to step 2.

The goal of the projective reconstruction process is to
estimate the values of the projective depths (λij’s) which
make Equation (8) consistent. The reconstruction results
are iteratively improved by back projecting the current pro-
jective reconstruction to re£ne the depth estimates.

3. Euclidean reconstruction

The factorization of Equation (8) recovers the motion
and shape up to a 7× 7 linear projective transformation H ,

Ws = P̂ X̂ = P̂HH−1X̂ = P̃ X̃ (9)

where P̃ = P̂H and X̃ = H−1X̂ . P̂ and X̂ are referred
to as the projective motion and the projective shape. Any
non-singular 7× 7 matrix could be inserted between P̂ and
X̂ to get another motion and shape pair. The goal of the
Euclidean reconstruction is to impose metric constraints on
the projective motion and shape in order to recover the lin-
ear transformation H , from which we can simultaneously
reconstruct the intrinsic parameters and the Euclidean mo-
tion and shape. This is the normalization process.

In this section we present a linear normalization algo-
rithm for the case that only the focal lengths are unknown
and varying. It is straightforward to derive the normaliza-
tion algorithms for the other cases where more or all of the
intrinsic parameters are unknown (except skews) following
the same line of work presented in this paper.

When the focal lengths are the only unknown intrinsic
parameters, we have,

u0i = 0 v0i = 0 αi = 1 (10)

therefore, according to Equation (6),

P̃ =
[

M T
]

(11)

where

M =

[

mx1 my1 mz1 · · · mxn myn mzn

nx1 ny1 nz1 · · · nxn nyn nzn

]T

T =
[

Tx1 Ty1 Tz1 · · · Txn Tyn Tzn
]T

and

mxi = µifiii
myi = µifiji
mzi = µiki

nxi = iµifiii
nyi = iµifiji
nzi = iµiki

Txi = µifitxi
Tyi = µifityi
Tzi = µitzi

(12)

The shape matrix is represented by,

X̃ ∼

[

S

1

]

(13)

where

S =

[

s1 s2 · · · sm
v1 v2 · · · vm

]

and
x̃j =

[

νjs
T
j νjv

T
j νj

]T

µi and νi are the scale factors for the homogeneous repre-
sentations in Equations (2) and (3).

3.1. Moving coordinate system location

As the points are either static or moving linearly with
constant speeds, the center of gravity of all the points is
also moving linearly with constant speed. So is the cen-
ter of gravity of the scaled feature points (νjpj). Here we
transform the 3D representations to a moving world coor-
dinate system with £xed orientation (such as being aligned
with the £rst camera) and the origin at the center of gravity
of all the scaled points. Therefore,

m
∑

j=1

νjpj = 0 (14)

We get,
m
∑

j=1

λijuij =
m
∑

j=1

(mxi · νjsj + nxi · νjvj + νjTxi)

=

m
∑

j=1

(mxi · νjsj + imxi · νjvj + νjTxi)

= mxi ·

m
∑

j=1

νj(sj + ivj) + Txi

m
∑

j=1

νj

= mxi ·

m
∑

j=1

νjpj + Txi

m
∑

j=1

νj

= Txi

m
∑

j=1

νj (15)



Similarly,

m
∑

j=1

λijvij = Tyi

m
∑

j=1

νj

m
∑

j=1

λij = Tzi

m
∑

j=1

νj (16)

De£ne the 7× 7 projective transformation H as,

H =
[

A B
]

(17)

where A is 7× 6 and B is 7× 1.
Since P̃ = P̂H ,

[

M T
]

= P̂
[

A B
]

(18)

we have,

Txi = P̂xiB Tyi = P̂yiB Tzi = P̂ziB (19)

From Equations (15) and (16),

Txi

Tzi
=

∑m
j=1 λijuij
∑m

j=1 λij

Tyi

Tzi
=

∑m
j=1 λijvij
∑m

j=1 λij
(20)

we set up 2n linear equations of the 7 unknown elements of
the matrix B. Least squares solutions are then computed.

3.2. Normalization

We recover the 7 × 6 matrix A by observing that the
rows of the matrix M consist of mi, which are the scaled
rotation axes by µi and the focal length fi, and ni, which
are the scaled mi by the frame number i (Equation (12)),
orthogonality of mi:

|mxi|
2 = |myi|

2

mxi ·myi = 0 mxi ·mzi = 0 myi ·mzi = 0
(21)

orthogonality of ni:

|nxi|
2 = |nyi|

2

nxi · nyi = 0 nxi · nzi = 0 nyi · nzi = 0
(22)

relationship of mi and ni:

|nxi|
2 = i2|mxi|

2 |nyi|
2 = i2|myi|

2 |nzi|
2 = i2|mzi|

2

mxi · nyi = 0 mxi · nzi = 0
myi · nxi = 0 myi · nzi = 0
mzi · nxi = 0 mzi · nyi = 0

(23)
The above equations impose linear constraints on the ele-
ments of MMT. Since M = P̂A,,

MMT = P̂AATP̂T (24)

these constraints are linear on the elements of the symmetric
matrix Q = AAT. De£ne,

A =
[

A1 A2

]

(25)

where A is a 7×6 matrix and A1, A2 are both 7×3 matrices.
We get,

P̂A1 = [mx1 my1 mz1 · · · mxn myn mzn]
T

P̂A2 = [nx1 ny1 nz1 · · · nxn nyn nzn]
T

= N [mx1 my1 mz1 · · · mxn myn mzn]
T(26)

where

N =
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0 0 1 0 0 0 · · · 0
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0 0 0 0 0 2 · · · 0
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0 0 0 0 0 0 · · · n

























(27)

according to Equation (12). Therefore,

P̂A2 = NP̂A1 (28)

A2 is over constrained given A1 and P̂ ,

A2 = KA1 (29)

where

K = P̂−1NP̂ (30)

and P̂−1 is the generalized inverse matrix which is 7 × 3n
and uniquely de£ned when n ≥ 3.

From Equation (26), we see that Equation (21) imposes
linear constraints on the 28 unknown elements of the 7× 7
symmetric matrix Q1 = A1A

T
1 , while Equation (22) im-

poses constraints on the 28 unknown elements of Q2 =
A2A

T
2 . From Equation (29) we have,

Q2 = A2A
T
2 = KA1A

T
1 K

T = KQ1K
T (31)

which translates the constraints on Q2 to constraints on Q1.
Equation (23) imposes constraints on Q3 = A2A

T
1 which

can also be translated into constraints on Q1,

Q3 = A2A
T
1 = KA1A

T
1 = KQ1 (32)

Therefore, each frame contributes 17 constraints (Equa-
tions (21) to (23)) on Q1. In total, we get 17n linear equa-
tions on the 28 unknown elements of the symmetric matrix
Q1. Linear least squares solutions are computed. We then
compute the matrix A1 from Q1 by rank 3 matrix decom-
position and A2 by Equation (29), so we recover the linear
transformation A.



3.3. Shape reconstruction and camera calibration

Once the matrices A and B have been found, the projec-
tive transformation H is [A B]. The shape matrix is com-
puted as X̃ = H−1X̂ and the motion matrix as P̃ = P̂H .
We £rst compute the scale factors µi,

µi = |mzi| (33)

We then compute the focal lengths as,

fi =
|mxi|+ |myi|

2µi
(34)

Therefore, the camera motion parameters are,

ii = mxi

µifi
ji =

myi

µifi
ki = mzi

µi

txi = Txi

µifi
tyi =

Tyi

µifi
tzi = Tzi

µi

(35)

The shape matrix consists of the scene structure and the
velocities represented in the moving world coordinate sys-
tem. We need to transform the representation back to a £xed
coordinate system with the origin at the center of gravity of
all the points at frame 1.

First the velocity of the moving coordinate system is
computed. Since the system is moving at the average ve-
locity of all the scaled moving points, the static points share
the same velocity which is the negative value of the aver-
age velocity. It is often the case that there are more static
points than the points from any moving object, so we let
every point vote for a “common” velocity (denoted as vc).
The velocity with the most votes is taken as the negative
velocity of the moving coordinate system. The points with
the “common” velocity are automatically classi£ed as static
and the scene structure is computed as,

scj = sj + vc (36)

where scj denotes the scene point position represented in
the £xed coordinate system. According to Equation (1), sj
is the point position at frame 0.

The points which do not have the “common” velocity
are the moving points. The number of the moving objects
is therefore detected. Their starting positions represented in
the £xed coordinate system are,

smj = sj + vc (37)

and their velocities are,

vmj = vj − vc (38)

3.4. Algorithm outline

We summarize the algorithm as follows:

1. Perform SVD on Ws, get the projective motion P̂ and
the projective shape X̂;

2. Sum up each row of Ws and compute the ratios be-
tween them as in Equation (20);

3. Set up 2n linear equations of the 7 unknown elements
of the matrix B based on the ratios from step 2 and
compute B;

4. Set up 17n linear equations of the 28 unknown ele-
ments of the symmetric matrix Q1 by imposing con-
straints in Equations (21) to (23);

5. Factor Q1 to get A1 from Q1 = A1A
T
1 ;

6. Compute A2 from A2 = KA1;

7. Combine A1 and A2 to generate the linear transforma-
tion matrix A = [A1 A2];

8. Put the matrices A and B together and get the projec-
tive transformation H = [A B];

9. Recover the shape matrix using X̃ = H−1X̂ and mo-
tion matrix using P̃ = P̂H;

10. Recover the focal lengths, the camera rotation axes and
the translation vectors according to Equations (34) and
(35).

11. Reconstruct the scene structure and the trajectories of
the moving objects according to Equations (36) to (38).

4. Experiments

In this section the experimental results on synthetic and
real images are presented. The £rst set of experiments use
synthetic images to evaluate the method quantitatively. The
second experiment is conducted on a real image sequence
taken by a hand-held camera of an indoor scene, and the
reconstruction results are compared with the ground truth
values.

4.1. Synthetic data

We generate 100 image sequences of the scene with 8 to
49 static feature points and 3 to 8 points moving in random
directions. The frame number is 4 to 60. The shape of the
static scene is a sweep of the sin curve in the space. The
camera is rotating randomly through 30 to 40 degrees for
each of roll, pitch and yaw. The distance between the cam-
era and the center of gravity of all the static points is varied
from 4 to 20 times the object size. We add 2 pixel standard
noise to the feature locations from 640× 480 images.

Figure 1 illustrates the case where 4 objects are mov-
ing randomly in 3D space. The method automatically de-
tects the number of the moving objects as 4, reconstructs the



(a) (b)

Figure 1. Reconstruction of a scene with four moving
objects by the method. (a) The reconstructed scene struc-
ture and the initial positions of the moving objects. (b) The
reconstructed scene and the motion trajectories.

static scene and the initial positions of the 4 moving objects,
as shown in Figure 1(a). Figure 1(b) shows the trajectories
of the moving objects as well as the static scene. There are
49 points from the static scene and 60 frames are taken.

Figure 2 plots the focal lengths recovered by the method
and their ground truth values. The maximum error is 7.2%
of the true value.

To compare the results, we apply the multiple motion
scene reconstruction method for weak perspective cameras
[11] to the same sequence using the true values of the focal
lengths. The results are shown in Figure 3. It is easy to
see that the reconstruction results have distortions which are
caused by the approximation of perspective cameras with
weak perspective cameras.
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Figure 2. Comparison of the focal lengths recovered by
the method and their ground truth values for the synthetic
sequence. The maximum error is 7.2% of the true value.

To evaluate the quality of the reconstruction method, we
measure the reconstruction error by comparison with the
ground truth. Since the reconstruction from monocular im-
age sequences is up to scale, we assume that the size of
the static shape is 1. The maximum distance between the
recovered static points and their known positions is 3.2%,

(a) (b)

Figure 3. Reconstruction of a scene with four moving
objects by the weak perspective method [11]. (a) The re-
constructed scene structure and the initial positions of the
moving objects. (b) The reconstructed scene and the motion
trajectories. The distortions are caused by the approxima-
tion of perspective cameras with weak perspective cameras.

the maximum error of the reconstructed initial positions of
the moving objects is 4.1% and the velocity error is less
than 1.9%. We also assess the quality of the camera mo-
tion reconstruction. The maximum distance between the
recovered camera locations and the ground truth values is
5.4% and the maximum angle between the recovered cam-
era orientations and the known values is 0.12◦. The max-
imum reconstruction error of the focal lengths is 8.11% of
the ground truth values.

4.2. Real data

This real data sequence was taken by a hand-held cam-
era. There were three objects moving in the scene, includ-
ing a toy car, a toy bird and a toy person. The objects were
moving linearly with constant speeds. The car and the per-
son were moving on the table. The speed of the car was
3.5cm per frame and the speed of the person was 2.5cm per
frame. The bird was climbing the pole and moved 3.0cm
per frame. The books and the box represented the static
scene. The camera was zoomed out at the beginning and
gradually zoomed in as it moved around the scene. The fo-
cal length was changed every two frames. 10 images were
taken. Three of them are shown in Figure 4(a). 29 feature
points were manually selected and tracked. Each moving
object had one feature point selected.

The shapes of the books and the box, the starting po-
sitions of the toys and the motion velocities are recovered
and demonstrated in Figure 4(b), the motion trajectories are
overlaid in the images. Figure 4(c) shows the recovered
camera locations and orientations. Figure 5 plots the re-
covered focal lengths, which shows that the focal lengths
are changing with the camera motion as we expected. The
largest focal length almost doubles the smallest one, which
is correct for the 2× optical lens.

We assess the quality of the reconstruction by compari-
son with the ground truth. The ratio between the speeds of



(a)

(b) (c)

Figure 4. (a) 1st, 5th and 10th images of the real data, the white circles show the feature points selected on the moving objects
in the 1st image. (b) Two views of the scene reconstruction with texture mapping, the black lines denote the recovered motion
trajectories. (c) Reconstruction of the scene and the camera positions/orientations, the 3-axis £gures are the recovered cameras.

the moving toys are 2.5 : 3.77 : 2.91 which are close to
the expected value 2.5 : 3.5 : 3.0. The maximum distance
between the positions of the recovered static points and the
ground truth positions is 5mm. The angle between the re-
covered motion direction of the bird and the ¤oor is 91.2◦,
which is close to the expected value.
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Figure 5. Focal lengths of the real data recovered by the
method. The recovered values change every two frames as
expected.

5. Minimum data requirement

The main advantage of the factorization-based method
is using the heavily redundant information from multiple
image features and views. However, it is equally important
to compute the minimum data requirement of the method to
analyze its practicality and reliability.

The low bound of data requirement is determined by the
number of degrees of freedom of the reconstruction and the
number of constraints given by each feature in each view.
The input to the reconstruction method are the feature cor-
respondences. Therefore, the number of constraints is 2nm,
where n is the number of views and m is the number of fea-
ture points. The output of the reconstruction consists of the
scene structure (3m), the trajectories of the moving objects
(3m), the camera motion (6n) and the camera intrinsic pa-
rameters (n). Euclidean reconstruction from monocular im-
age sequences is up to a rigidity transformation which has
6 degrees of freedom, and the scale. This number should
be subtracted from the total number of degrees of freedom.
Therefore, the constraint is 2nm ≥ 7n + 6m − 7. The
minimum data requirement is n = 4,m = 11.

The minimum data is also constrained by the solution
process. It requires that the number of equations is larger
than the number of variables. The multiple motion scene re-



construction method decouples the reconstruction into pro-
jective and Euclidean reconstruction. A total of 2nm mea-
surements are available to estimate the projective motion
and shape. Each camera projection is represented by a 3×7
matrix which has 20 variables because of the homogeneous
representation. Each feature point is a 7×1 vector which has
6 variables. Since the projective reconstruction is up to an
unknown 7×7 transformation, the total number of variables
is 20n + 6m− 48. In order to convert the projective recon-
struction to the Euclidean one, the normalization algorithm
sets up 17n equations to solve the 28 unknowns. There-
fore, there are two constraints, 2nm ≥ 20n+ 6m− 48 and
17n ≥ 28, for the reconstruction process. The minimum
data required is n = 4,m = 16.

The above two computations of the minimum data only
provide necessary conditions to carry out the reconstruc-
tion. We conduct a number of synthetic experiments to
determine the minimum number of views and features re-
quired for reasonably accurate reconstructions. The em-
pirical results show that the minimum data requirement is
n = 4,m = 16.

6. Discussion

The method described in this paper solves the full rank
case where the static structure and the motion space of the
objects are both rank 3. In other words, the scene is three
dimensional and the velocities of the moving objects span a
three dimensional space. Degenerate cases, however, exist
because either or both of shape and motion spaces are de-
generate. The shape space is degenerate, for example, when
all the points lie in a plane. The motion space of the moving
objects is degenerate, when:

1. There is no moving object in the scene.

2. There is one moving object or multiple objects moving
in the same and/or the opposite direction (not necessar-
ily the same 3D line).

3. The velocities of the objects lie in a two dimensional
space (not necessarily the same 3D plane).

When cameras are intrinsically calibrated, there are solu-
tions to these degenerate cases as shown in [11]. Following
the same line of work presented in this paper, it is easy to de-
sign the reconstruction algorithms for degenerate cases with
uncalibrated cameras. However, the rank of the measure-
ment matrix can not be used as a clue about which case is
the best approximation under perspective projections. The
measurement matrix is always full rank. Therefore, we
assume that the rank approximation information is given
though there is no requirement for prior motion segmen-
tation and the rank does not depend on how many objects
are moving. Detailed derivations can be found in [9].
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