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ABSTRACT

In the following we show that any convex set that contains a congruent copy of any set
of diameter one (universal cover) has area at least 0.832. This considerably improves the
lower bound for Lebesgue’s universal cover problem, using a combination of computer
search and geometric bounds.
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1. Introduction and Result

The universal cover problem was first stated 1914 in a personal communication by
Lebesgue to Pal!; Lebesgue asked for the minimum area of a convex set U in the
plane such that for each set C of diameter 1 there is a congruent copy C’ contained
in U. So U is a universal cover for the family of sets of diameter 1, under congruence,
and we wish to determine the minimum area of a convex set with that property.
This became the prototype for a large family of problems, with the parameters

the family of sets to be covered,
the sets allowed as covers (convex or nonconvex, special types of sets),
the size measure to be minimized (area, perimeter, diameter, etc.),

the allowed transformations (congruence or translation).

The other well-known problem of this type is Moser’s worm problem, which asks for
a convex minimum-area universal cover for curves of length one; but many other
variants have been studied, see Brass, Moser, Pach,? chapter 11.4, for a survey,
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and Wetzel® for an update on the worm problem. In this note we will study only
Lebesgue’s classical version.

An easy example of a universal cover for sets of diameter 1 is the circle of radius
%; Jung* proved that the smallest ball that contains all sets of diameter 1 is the
ball circumscribed to the equilateral simplex of diameter 1 (a different proof for
the planar case was also given by Jung®). This circle has area 3 ~ 1.047. The
unit square is a smaller universal cover, and it is also a universal cover even under
translation.

P4l constructed a sequence of better and better universal covers in his paper,!
culminating in his truncated hexagon, a regular hexagon circumscribed to the unit
circle, with two corners cut off (see Fig. 1); this universal cover has the area 0.8454.
Further improvements on this cover were made by cutting off very small pieces of a
corner by Sprague,’ and Hansen®?1%; Duff” showed that the convexity of the cover
is an important restriction by constructing a significantly smaller nonconvex uni-
versal cover; and Eggleston'! studied universal covers minimal under set inclusion,
and observed that the set obtained as union of a Reuleaux triangle of diameter 1
and a circle of diameter 1, when the triangle vertices are antipodal points of the
circle, is a universal cover. But all progress was small, and after Sprague® almost
infinitesimal, the papers aimed only to show that each previous cover could still be
improved. Sprague did not even compute the area of his cover, this was done by
Meschkowski,'? who popularized the problem by inclusion in one of his very suc-
cessful books for mathematical amateurs. The smallest currently known universal
cover has area 0.844.

As lower bound, P4l' observed that any set that contains congruent copies
of all sets of diameter 1 must contain at least congruent copies of the circle and
equilateral triangle of diameter 1; if the set is additionally convex, the area is at
least the minimum area of the convex hull of a circle and a triangle of diameter 1.
P4l shows that this minimum is reached when circle and triangle are concentric;
that set has area g + @ ~ 0.8257. This lower bound could be improved if one
could add further sets of diameter 1 to this family, for which the area of the convex
hull is minimized. This was already observed by Pal, but he found unsurmountable

Fig. 1. Pal’s universal cover, two other universal covers for the same diameter.
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difficulties in extending his method from two sets (disc and triangle) to three sets.
This step was finally taken by Elekes,'® more than seventy years later, when Elekes
showed that the smallest convex hull of a circle, and all regular 3i-gons, all of
diameter 1, is reached if all these sets are concentric and equally aligned; this
raised the lower bound to ~ 0.8271.

The improvement was comparatively small since the next set included in this
sample, the regular 9-gon, is already very near a circle, and the improvement de-
creases fast with the number of vertices. It would have been much more efficient if
one could have taken circle, equilateral triangle, and regular fivegon, of diameter 1;
but the analytic methods do not extend to this situation. It is the aim of this paper
to use instead computational methods to bound the minimum area of the convex
hull of a circle, triangle, and fivegon, as a lower bound for the minimum area of a
universal cover for sets of diameter 1.

Theorem 1. A convex set in the plane that contains a congruent copy of each set
of diameter one has area at least 0.832.

Figure 2 shows the placement of triangle, fivegon and circle that gives the small-
est convex hull we know of. It appears quite irregular. Part of this irregularity is
due to sampling, we did not make any search for the best placement, but obtained
this only as the best among the centers of boxes covering the space of placements
in our lower bound computation. The only relevance of this example is to bound
the potential for improvement of our lower bound which could be reached by con-
sidering the same sets; the set in figure 2 is not itself a universal cover. But it does
show that in the optimal placement, the sets are not concentric, which was crucial
for the proofs by P4l' and Elekes.!® This suggests that the analytic methods for
finding the minimizing position are not applicable anymore.

The search space of possible placements of the three sets is five-dimensional (the
circle is fixed, the triangle might be rotated to be axis-aligned, only the five-gon
has three degrees of freedom); adding another set would raise the dimension of the
search space to eight and make our approach again infeasible.

Circle Center:
0,0

Fivegon Center:
0.0197531, 0.0148148

Fivegon Rotation:
61.045 degree

Triangle Center:
0.00617284, 0.0037037

Convex Hull Area:
.833646

Fig. 2. The smallest known convex hull of circle, triangle and fivegon.
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2. Proof of the Theorem

To prove the theorem, we wish to show that the convex hull of a circle of diameter
one, an equilateral triangle of diameter one, and a regular fivegon of diameter one
has always area at least 0.8323. So we want to show that for any choice of three
rigid motions p1, pe, u3 applied to the sets ©), A\, (), holds

area(conv(,ul (©) Upa(A) U us (Q))) > 0.832.

Each rigid motion is described by three parameters, but without loss of generality
we can assume that the circle is centered at (0,0), and the triangle is oriented with
one side axis-parallel, so the remaining parameters are just the translation of the
triangle, and translation and rotation of the fivegon. Thus we have a function

fp(m37y37x57y5) = area(conv(ou A_‘_ $37y3 I'Ot O p x57y5))))7

which we want to bound from below.

We first observe that there is an easy Lipschitz bound for this function. If X
is the set obtained as convex hull of one placement, and X is a convex hull for a
different placement, where each point of the circle, triangle, and fivegon generating
X has distance at most § to the corresponding point, of the circle, triangle, and
fivegon generating X, then X is contained in the outer parallel body of X at
distance §. So the area can increase by at most § peri(X) + 762. Any relevant set
X is certainly contained in a disc of radius 2 5, since the triangle and the fivegon
will at least have a common point with the circle; since the perimeter of convex
sets is a monotone function under set inclusion, we have peri(X) < 3w. This bound
would be sufficient, if we could subdivide the search region fine enough, but since
the parameter space is five-dimensional this turns out to lead to an unfeasibly large
number of cases.

We do use the bound, however, to discretize the rotations. It is sufficient to prove
a slightly stronger lower bound for all the fixed rotation angles mn (multiples
of 0.005°) for ¢ = 0...,14400. If the claimed inequality holds for each of these
fixed-rotation cases for all translations, then the correct angle for the extremal
case differs from the nearest of our discretized angles by at most 72000# By this
rotation, the vertices of the fivegon would move at most 72000 QST ~ 0.000023;
so by considering only our discretized angles, we overestimate the area by at most
370.000023 + 7(0.000023)2 < 0.00022.

The main step is to prove the bound in the pure translative case, for a fixed
rotation angle. We observe that f,(zs,ys,s,ys) > 0.83222 is certainly satisfied if
one of the translation components x3, ys3, 5, y5 is larger than 0.19. For if the triangle
is translated by more than 0.19 in some direction, then the vertex of the triangle
with the smallest angle to the translation direction (at most %) will be moved to
a distance of at least 0.692192 from the center of the circle, and the convex hull of
that vertex and the circle already has area at least 0.8338. In the same way, if the
center of the fivegon is moved by more than 0.19, then the fivegon vertex with the
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smallest angle to the translation direction (at most ) will be moved to a distance
of at least 0.68856 from the center of the circle, and the convex hull of that vertex
and the circle has already area at least 0.8325.

So we can restrict ourselves to the cube [—0.19,0.19]* as possible values for the
translations. To bound the function over this region, we divide it into cells, which
are small cubes for the translations. Then we evaluate the function in the center of
the cell, and compute a lower bound for the function in that cell. If that lower bound
is larger than 0.83222, we have proved the required lower bound on the function
for that cell. Else we subdivide the cell. The key to the applicability of the method
is that lower bound.

We construct a bound similar to a first derivative plus error terms, which has the
advantage of being a good bound near the minimum. We will drop the fixed rotation
angle from our notation. The bound for each search cube with center (3, ys3, -5, ys)
and edgelength 260 has the form

(@3 + 643,Y3 + Oy3, T5 + o5, Y5 + y5)
> f(®3,Y3,%5,Y5) + Ca3023 + Cy3lys + Co5025 + Cysdys — 7
> f(wa,ys,25,95) = O(leal + leyal + leasl + leyal) =7,
so for each cell we have to construct the set

X = conv(QU (A + (23,y3)) U (rot((, p) + (z5,¥5))),

compute the numbers c;3,cy3, C5, Cys,y and the area area(X) = f(z3,ys,5,9Ys5),
and then check whether

£ (3,98, 75,95) = 6 (|cas] + leyal + leas] + legal) — 7 > 0.83222;

if the inequality is satisfied, then our bound is proved for that cell, otherwise we
subdivide it, cutting each coordinate interval in thirds.

We now have to define the numbers cg3, cy3, Ce5,Cys,7y. For this, consider the
boundary of the set for the center (z3,ys,s,ys5). The boundary is a sequence of
segments and circular arcs, these are separated by points that are vertices of the

Fig. 3. A configuration and a change by a small translation.
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triangle, and of the fivegon, and points on the circle that are starting point of a
tangent to the circle through a triangle or fivegon vertex. Consider now the set
with the same boundary structure, but where the fivegon and triangle vertices
are replaced by vertices of the triangle at (z3 + dg3,ys + 0y3) and the fivegon at
(x5 + dz5,Y5 + 0y5). The area of this set is a lower bound for f(zs + dg3,y3 +
dy3, Ts + g5, Ys + dys), since it is contained in the convex hull of those translates
of circle, triangle and fivegon. The change of area of this set, in dependence of
(023, 0y3, 025, 0y5) is easy to bound, since the set changes only at its boundary, but
that has the same combinatorial structure. We compute the change for each part
of the boundary, and sum these contributions.
The boundary of the convex hull consists of the following parts:

edges between two triangle vertices (3-3 edges)

edges between two fivegon vertices (5-5 edges)

edges between a triangle and a fivegon vertex (3-5 edges)
tangents from a triangle vertex to the circle (3-t-edges)

e tangents from a fivegon vertex to the circle (5-t-edges)

e circular arcs

There is no change at the circular arcs, since we do not change the tangent points.
For 3-3-edges, 5-5-edges, 3-t-edges, and 5-t-edges the change in area is actually
a linear function of (0z3,dy3,025,0y5). If pq is a 3-3-edge, with p = (ps,py), ¢ =
(¢z,4qy), then the area change along that edge is 6,3(qy — py) + 9y3(¢e — pa) If pt is
a 3-t-edge, with p = (ps,py),t = (tz,ty), then the area change along that edge is
%6z3 (ty —py) + %61/3 (tz — pz)- The other cases are similar.

Only the change of area at a 3-5 edge is not linear. Let pg be a 3-5 edge, and
P =D+ (023,9y3), ¢ = ¢+ (025,0y5). Then the change of area is the area of the
fourgon pqq'p’, which we can write as the union of the triangles pgq’ and pq'p'. The
area of pgq’ is again a linear function in 0,5, dy5. The area of pg'p’ differs from the
area of pgp’ by at most 42, since the common side pp' has length at most /24, and
the other endpoints ¢, ¢’ also have distance at most v/23. The area of pgp’ is a linear
function in d.3, dy3. So we compute for each side its contribution to the coeflicients
Ce3, Cy3, Czs, Cys, and for 3-5-sides we also add 62 to 7.

q

Fig. 4. Change at 3-3 side, 3-t side and 3-5 side.
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This completes the construction of the error bound for the cube with cen-
ter (r3,ys,s,ys) and edgelength 2§ . Applying this bound, starting with center
(0,0,0,0) and § = 0.19, and refining whenever the inequality was not satisfied, we
proved the claimed inequality. Our program did this for 14400 different orientations
of the fivegon; the easiest did not require any subdivision, the most difficult evalu-
ated 5671 cubes. In total 53118162 cubes were evaluated, of these 655602 required
subdivision.

3. Related Problems

This problem is just one of a large family of universal cover problems, obtained
by varying the parameters mentioned in the introduction. Many of these questions
have actually been studied, and this technique could be used for a lower bound in
each of them. It just needs a sufficiently strong local lower bound; but that bound
has to be quite quite strong, since we work in the 10~* error region, and at that
resolution a five-dimensional parameter space is already very large. The technique
is only reasonable if the extremal set is quite irregular, so there is no direct attack
on that problem. For the translative analogue of our problem, e.g., there is a good
conjecture on the extremal set.!*

One could use a much larger family of test sets if one could determine the min-
imum for the translations directly; then the recursive subdivision of the parameter
space as used here would be unnecessary. It would be interesting to find an algo-
rithm for the following problem: given polygons P, ..., P, with a total of n vertices,
find the translations ¢q,...,; that minimize

area(conv((Pl +t)U---U (P + tk)))

It was observed by G. Rote that this area function in the translations is con-
vex for k = 2, but not for ¥ > 3; if P, = P, = P; just consists of one
point, then for (t,t,t3) = ((0,0),(1,0),(0,0)) one has area 0, and the same
for ((0,0),(0,0),(0,1)), but for ((0,0),(5,0),(0,3)) the area is 1. So the set of
minimizing translations need not have a nice structure.
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