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Abstract

Continuous trails are extended regions along the
ground such as roads, hiking paths, rivers, and
pipelines which can be navigationally useful for
ground-based or aerial robots. Finding trails in an im-
age and determining possible obstacles on them are im-
portant tasks for robot navigation systems. Assuming
that a rough initial segmentation or outline of the region
of interest is available, our goal is to refine the initial
guess to obtain a more accurate and detail representa-
tion of the true trail borders. In this paper, we compare
the suitability of several previously published segmenta-
tion algorithms both in terms of agreement with ground
truth and speed on a range of trail images with diverse
appearance characteristics. These algorithms include
generic graph cut, a shape-based version of graph cut
which employs a distance penalty, GrabCut, and an it-
erative superpixel grouping method.

1 INTRODUCTION

Vision-based trail finding and tracking can be con-
sidered as a form of road following [7, 13, 12, 5]. How-
ever, several factors make the computer vision task par-
ticularly hard, including indistinct borders, abrupt ele-
vation changes, dead-ends and forks, sharply varying
illumination conditions due to shadows, a wide range
of trail materials and hence colors and textures, and the
possibility of in-trail objects such as rocks, stumps, or
grass. In our previous work [8], we described an effi-
cient and robust approach to trail finding using a general
model of color contrast and a triangular shape template.
A shortcoming of the approach, however, was the ap-
proximation of the trail shape in its linearity and lack of
local shape variation.

In this paper we describe a second stage of shape es-
timation in which the initial, rough shape is refined au-
tomatically, without user interaction. The contribution
of this work is a survey, analysis, and comparison of

several basic segmentation algorithms for this purpose,
specifically graph cut [2], graph cut with distance maps
[6], GrabCut [10], and a grouping method based on su-
perpixel oversegmentation [4]. Although the focus here
is on trail image data most relevant to mobile robot ap-
plications, we believe that the problem of automatically
refining segmentations is a general one.

The rest of the paper is organized as follows. Sec-
tion 2 outlines the basic segmentation methods. Sec-
tion 3 describes some algorithmic changes we made
to transform the GraphCut methods and GrabCut into
automatic foreground refinement algorithms. Section
4 shows some results of the transformed methods on
our data sets, compares their performances and the final
segmentations of the techniques with ground-truth data.
Finally, in Section 5, we summarize the algorithms and
their results.

2 Review of Basic Segmentation Algo-
rithms

Graph Cut: The segmentation algorithm proposed
in [3, 1, 2] can convert an image segmentation task to
a foreground/background labeling problem. Labeling
problem is to assign a label L; for each pixel ¢ in the
image. L; is from the set of segmentation result, S;¢uit
= ("background”,”object”). L = (L1, La,...,Ly),
where n is the number of the pixels in the image, is
the solution of the segmentation. To find the set L the
following energy function can be solved:

n
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In this energy function, R;(L;) is called as regional
term and B(L;,L;) as boundary term. A > 0 is a
weight term to set the relative influence of boundary
term versus regional term in the function. N is all un-
ordered neigborhood pixel pairs.



Graph Cut with Distance Penalty: Standard Graph
cut technique is capable of capturing areas similar to ob-
ject of interest. As an addition to Graph cut method, [6]
introduces the idea of using a distance penalty on pix-
els based upon the distance from the region of interest
to bias the segmentation to remain in its area. The Re-
gional term function in regular graph cut algorithm is
changed as follows:

Mapg; (i) = ||i — Center(Object)|| )

R;("Object”) = —InPr(I;|0) — a(Mapg; (i) (3)

where Map,, ., (7) is the distance of a pixel in the im-
age to the center of a given object priori and « is an
additional weight to adjust relative distance penalty in-
fluence in regional term function.

GrabCut: The algorithm described in [10] is a power-
ful foreground/background segmentation technique. It
extends the regular graph cut technique in several ways.
First, the segmentation is performed on a given initial
trimap 7. The pixels are labeled as T's for background
pixels, T'r for foreground pixels and 7y, for the pixels
whose labels will be determined by GrabCut. Instead of
one shot regular graph cut algorithm, iterative version
of the graph cut optimization is combined with Gaus-
sian Mixture Models of background and foreground re-
gions. After each iteration of GrabCut, a border matting
algorithm is performed around the object boundary and
the colors of foreground pixels.

Superpixel grouping The algorithm in [4] is an effi-
cient method to oversegment an image into self-similar
regions. It defines a predicate for measuring the ev-
idence for a boundary between two regions using a
graph-based representation of the image. Their segmen-
tation algorithm is constructed based on this predicate.
Although this algorithm makes greedy decisions, it pro-
duces segmentations that satisfy global properties. In
[9] we described an iterative method for grouping super-
pixels to maximize both shape and appearance contrast
criteria which starts from initial triangular model T. Su-
perpixels outside this initial region may be added and
superpixels inside may be removed in a non-parametric
process that allows a wide effective range of shape de-
formations, including the introduction of “holes,” or
outlier subregions within the trail which may be obsta-
cles.

3 Changes to GraphCut-based methods

In this section, we describe the changes we make on
the basic algorithms outlined in Section 2 to use them as
automatic foreground extraction methods for our image
sets.

Figure 1. The image, its background and
object models, and its distance map.

3.1 Obtaining Background and Foreground
Models

Standard graph cut, graph cut with distance penalty
and GrabCut algorithms require color information of
background and foreground regions in the image. The
weights of the edges in the segmentation graph G of
these algorithms are set by provided background and
foreground models, respectively Mp and M.

We obtain Mp and MF from our previous work ex-
plained in [8]. Briefly, it fits an estimated shape .S (here
a triangle to the trail in the image. S may cover some
part of the background or not include all the trail region.
We scale down S and form S~—. S~ provides color in-
formation to construct M. Some background pixels in
S may generally be placed near the border of S. Scaling
down process eliminates those pixels and yields better
true trail pixels to construct M. Simply, we use all the
pixels in S~ and form Mp. To retrieve Mp, first S is
scaled up and obtained ST. All color information of
the pixels outside of ST are employed in Mp. Scaling
up and down factors are 60% and 40%, respectively. In
Figure 1(b), the pixels colored as green form Mg, col-
ored as red form M, the purple triangle corresponds to
the initial estimated trail S

The pixels in S~ are set as hard constraints in the
segmentation graphs of the methods. No background
pixels are provided as hard constraints to the algorithms.
In the trimap of GrabCut method, unknown label is as-
signed to all pixels outside of S~, and inside of S~ is
considered as foreground.

3.2 Distance Map Construction

[6] uses a distance penalty function in its regional
term. To set the penalty function of this method, we
construct a distance map, Map,;,;, and provide the
map to the algorithm. Initial estimated priori S of fore-
ground includes three important cues about the object:
Color information, estimated shape of the object, and
spatial information of it in the image. To obtain color
models Mr and Mp, we used color information pro-



vided by S. Other two cues coming with .S help to con-
struct M ap;;. Figure 1(c) shows the distance map of
the given image. Instead of using object center to cal-
culate the distances as in [6], we use closest pixel to S.
Equation 2 is changed as follows

Mapy; (i) = || — closestTo;]] )

where closestTo; € S is closest pixel of S to pixel ¢
in the image space. ||i — closestTo;|| is the distance
between closestTo; and pixel .

3.3 Removing Weak Components

The raw foreground mask generated by graph cut
techniques typically contains some noisy, small and
weakly-connected foreground regions, because our im-
ages can contain a non-homogeneous color distribution
inside the foreground regions and [3] uses the color
histogram to assign weights to terminal links. In or-
der to clean up those regions, we first do morpholog-
ical opening and closing and find the connected com-
ponents. The largest region is taken as the final refined
foreground region.

4 RESULTS

We measure the accuracy and efficiency of the
algorithms described in Section 3 on a diverse set
of trail images. The experiments are run on two
set of images. Set-1 consists of the images col-
lected from several trail image sequences taken by
our robot platform as it was manually driven and
Set-2 includes 30 images from the hiking trail, river
and canyon sequences taken from the web. Images
of Set-2 are available through the “Data/trail30” link
at http://nameless.cis.udel.edu. The data
sets are scaled to 320 by 240 as necessary. At regularly
spaced intervals along trail sequences we have manually
generated ground-truth segmentations. We compare the
results with the ground-truth segmentations to quantify
the accuracy of the refinement algorithms. We use the
following polygon area overlap formula suggested by
[11] to measure the overlap between the ground-truth
segmentation and the result of the refinement methods:

Overlap(R1, Ra) = A(R1 N'R2)?/(A(R1)A(Rz))

®)

where R and R4 are given two regions to calculate the
overlap between them.

We have refined two set of images by using each de-
scribed method in previous section. Then, we calcu-
lated median overlapping scores and average segmen-
tation time of refinement methods and initial models

Algorithm Median Over- | Median Over-
lap Score of | lap Score of
Set-1 Set-2

Initial Models [8] || 0.663 0.732

Superpixel 0.740 0.713

Grouping [4]

GrabCut [10] 0.631 0.738

Graph Cut [2] 0.730 0.737

Graph Cut(With || 0.783 0.760

Distance ~ Map)

[6]

Table 1. Comparisons of the Methods.

obtained from [8] for two set of images. The overlap
scores can be seen in Table 1. Average segmentation
time of GrabCut, superpixel, graph cut, graph cut with
distance penalty methods are 2.85, 4.95, 0.17 and 0.19
seconds, respectively. Since initial models may con-
tain non-trail regions or not cover entire trail region, the
median overlapping score of given initial models is not
good in our first image set. Using regular graph cut
method for refinement process improves the segmenta-
tion quality. However, incorporating distance map ap-
proach to graph cut performs better than regular graph
cut in both two image sets. The results of the refinement
methods are shown in Figure 2.

S CONCLUSION

We have compared and analyzed the performance of
several transformed methods which can refine automat-
ically foreground regions for the purpose of robot trail
following. These refinement methods are obtained by
making some changes on graph cut, graph cut with dis-
tance penalty, GrabCut and super pixel segmentation al-
gorithms. The refinement methods require to take ini-
tial information about the foreground region. These in-
formation contain cues about the color, shape and spa-
tial position of the region in a given image. We con-
struct initial color and shape models of the foreground
and background regions by using these priori informa-
tion. The performance of the algorithms are analyzed
on several long sequences with diverse appearance and
structural characteristics. Ground-truth segmentations
are used to quantify performance where available.
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