15-150

Principles of Functional Programming

Slides for Lecture 25

Computability

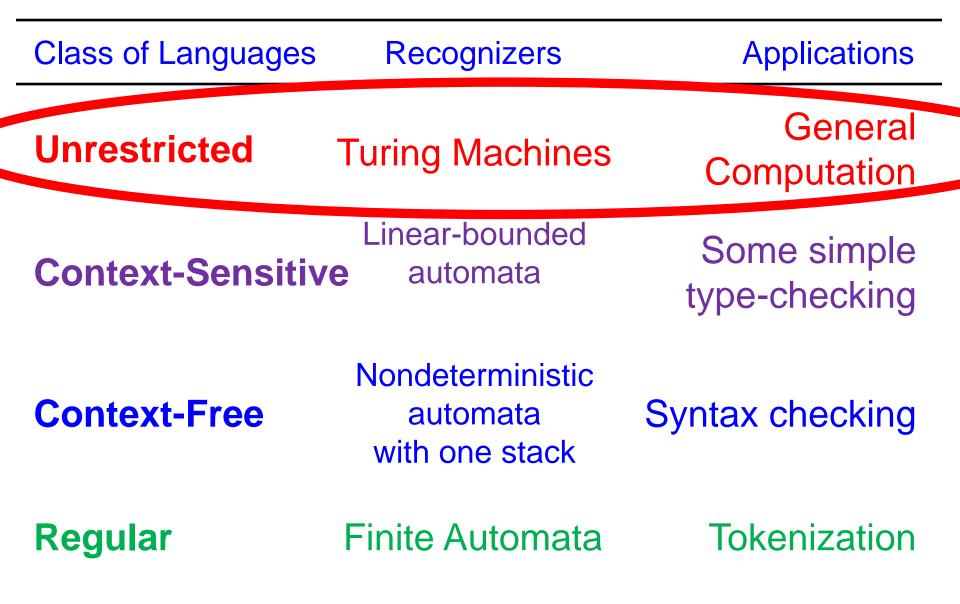
April 28, 2020

Michael Erdmann

Lessons:

- Decision Questions and Procedures
- Decidability
 - Halting Problem
 - Diagonalization
 - Reduction
- Semi-Decidability
- Some Computability Properties

Language Hierarchy



Some Computational Questions

- Can I win this chess game from this position?
- Does this graph have a cycle consisting of 10 different edges?
- Is this SML expression well-typed?
- Does this SML expression reduce to a value?

Properties

Domain	Problem Instance	Property
chess boards	a specific chess board (arrangement of pieces)	white can win
graphs	a specific graph G	G contains a cycle with 10 edges
SML expressions	s a specific e Fo	or some t, e:t.
SML expressions	a specific e Fo	or some $\mathbf{v}, \mathbf{e} \hookrightarrow \mathbf{v}$.

Definition

We also assume that for every element \mathbf{x} in D, property P either holds or does not hold, i.e., there is no third possibility.

However, computing whether the property holds can be an issue, as we will see. There exists the third possibility that we will not obtain an answer.

Definition

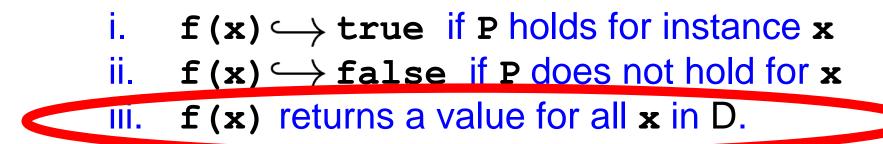
Let P be a property on some domain D. A *decision procedure for* P is an SML function

- f : D -> bool such that:
- i. $f(x) \hookrightarrow true$ if P holds for instance x ii. $f(x) \hookrightarrow false$ if P does not hold for x iii. $f(x) \to false$ or plue for all $x \to D$
- iii. f(x) returns a value for all x in D.

Definition

Let P be a property on some domain D. A *decision procedure for* P is an SML function

f : D -> bool such that:



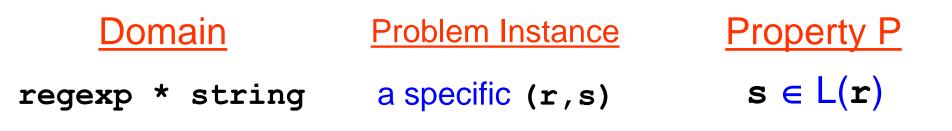
We state condition (iii) explicitly for emphasis, and to avoid worrying about / discussing the "law of the excluded middle".

Definition

Let P be a property on some domain D. A *decision procedure for* P is an SML function

- f : D -> bool such that:
- i. $f(x) \hookrightarrow true$ if P holds for instance x ii. $f(x) \hookrightarrow false$ if P does not hold for x iii. f(x) returns a value for all x in D.
- The task of deciding whether property P holds for arbitrary x in D is a decision problem.
- When **f** exists as above we say that P is *decidable*.

Example



Property P is decidable.

The regular expression acceptor (with the code that avoids infinite looping for Star(r)) provides a decision procedure:

fun f (r,s) = accept r s

Not all Properties are Decidable

Domain Problem Instance

(int->int) * int a specific (g,x)

 $g(\mathbf{x}) \hookrightarrow \mathbf{v},$ for some value \mathbf{v} .

Property P

Deciding P is called the Halting Problem. We will write HALT to mean this P.

Property HALT is not decidable.

Let us prove this fact from the definitions.

Theorem HALT is not decidable.

Proof:

Suppose otherwise, i.e., suppose there exists

H : (int->int) *int -> bool such that

- i. $H(g,x) \hookrightarrow true \text{ if } g(x) \text{ is valuable}$
- ii. $H(g,x) \hookrightarrow false if g(x) is not valuable$
- iii. H(g, x) returns a value for all (g, x).

Now define:

- fun loop () = loop ()
- fun diag (x:int):int =

if H(diag,x) then loop () else 0

We will see that this reasoning leads to a contradiction. So **H** cannot exist, establishing the theorem.

Consider now H(diag,0).

By property (iii) of H, this expression reduces to either true or false. Let us examine each possibility.

 $\underline{H(diag, 0) \hookrightarrow true} \qquad \underline{Let's evaluate diag(0)}:$

diag(0) \Longrightarrow if H(diag,0) then loop() else 0 \implies loop()

So H says diag(0) is valuable, but it actually loops forever.

 $\texttt{H(diag,0)} \hookrightarrow \texttt{false} \qquad \texttt{Again, let's evaluate:}$

diag(0) \Longrightarrow if H(diag,0) then loop() else 0 \Longrightarrow 0

So H says diag(0) is not valuable, but it actually reduces to 0. For both possibilities we obtain a contradiction.

Proof Techniques

 The previous proof technique is known as a *diagonalization argument*. It sets up an adversary who does the opposite of what is expected (very similar to Cantor's proof that the reals are uncountable).

 Another common proof technique is a reduction argument (to be discussed next).

Reduction Argument

Let **P** and **Q** be two properties.

We write f_P to mean a decision procedure for P and f_Q to mean a decision procedure for Q.

We say that **P** is *reducible to* **Q** if, given f_Q , one could implement f_P by calling f_Q on the result of transforming the arguments passed to f_P (intuitively, if $f_P = f_Q \circ i$ for some total function i).

OBSERVE:

provides a proof roadmap

If **P** is reducible to **Q** and if f_P is known not to exist, then f_Q cannot exist.

We might think that HALT is undecidable merely because there are infinitely many possible arguments x, so let's look at a variant:

<u>Domain</u>	Problem Instance	Property P
int -> int	a specific g	$g(0) \hookrightarrow v,$ for some value v.

We will write HALT₀ to mean this P.

Property HALT₀ is also **not decidable**.

Let us prove this fact by reducing HALT to HALT₀.

<u>Theorem</u> HALT₀ is not decidable.

Proof: By reduction, reducing HALT to $HALT_0$. Let **z** mean a decision procedure for $HALT_0$. Let **H** mean a decision procedure for HALT.

We proved earlier than H does not exist. We will show that if Z existed, then we could define H. Consequently, Z cannot exist.

Observe that H is total since Z is. Moreover, H(g,x) returns true iff Z(fn ...) returns true iff (fn y => g x)(0) is valuable iff g(x) is valuable. So H would indeed be a decision procedure for HALT. QED

Comment

Be careful about the direction of the reduction.

For instance, one could also define

fun Z (g : int \rightarrow int) : bool = H(g, 0)

That would be a reduction of $HALT_0$ to HALT. It would **not** help us prove that $HALT_0$ is undecidable.

Comment

Be careful about the direction of the reduction.

For instance, one could also define

fun Z (g : int \rightarrow int) : bool = H(g, 0)

That would be a reduction of $HALT_0$ to HALT. It would **not** help us prove that $HALT_0$ is undecidable.

However, the two reductions together tell us that HALT and HALT₀ are "equivalently undecidable".

A Computability Hierarchy

The phrase "equivalently undecidable" suggests degrees of undecidability.

Let us explore that idea a little.

Recall: Decision Procedure

Definition

Let P be a property on some domain D. A *decision procedure for* P is an SML function

- f : D -> bool such that:
- i. $f(x) \hookrightarrow true$ if P holds for instance x
- ii. $f(x) \hookrightarrow false$ if P does not hold for x
- iii. f(x) returns a value for all x in D.

We will now remove condition (iii) by changing condition (ii).

Semi-Decision Procedure

Another definition

- Let P be a property on some domain D. A semi-decision procedure for P is an SML function
 - f : D -> bool such that:
 - i. $f(x) \hookrightarrow true$ if P holds for instance x
 - ii. $f(x) \hookrightarrow false \ OR \ f(x) \ diverges$ if P does not hold for x.

In other words, f must return true for instances x that satisfy P, but can either return false or diverge for instances that do not satisfy P.

("diverge" means "does not return a value")

Semi-Decision Procedure

Another definition

Let P be a property on some domain D.
A semi-decision procedure for P is an SML function
f : D -> bool such that:
i. f(x) → true if P holds for instance x
ii. f(x) → false OR f(x) diverges
if P does not hold for x.

• When **f** exists as above we say that P is *semi-decidable*.

Theorem HALT is semi-decidable.
Proof:
 Here is a semi-decision procedure for HALT:
fun S (g:int->int, x:int) : bool = (g x; true)
 QED

Theorem HALT₀ is semi-decidable.
Proof:
fun S₀ (g:int->int) : bool = (g 0; true)

QED

Co-Semi-Decidability

Yet another definition

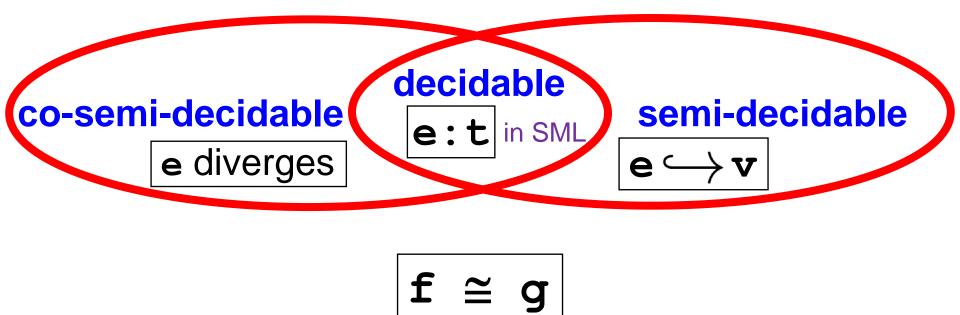
Let P be a property on some domain D.

We say that P is *co-semi-decidable* if ¬P is semi-decidable.

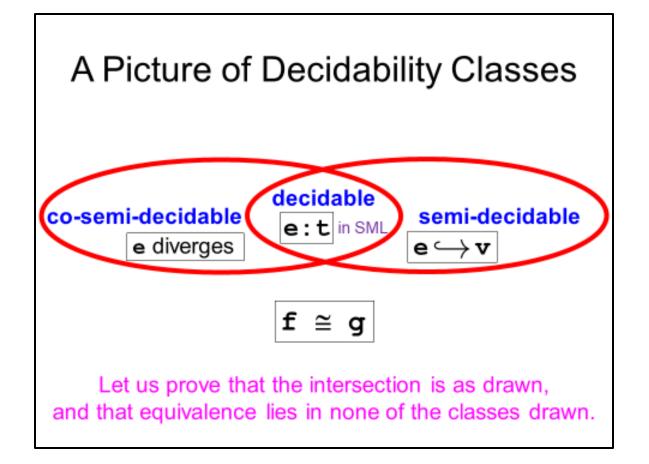
(¬P means the Boolean negation of P.)

For example, the property "g(0) diverges" is co-semi-decidable since HALT₀ is semi-decidable.

A Picture of Decidability Classes



Let us prove that the intersection is as drawn, and that equivalence lies in none of the classes drawn.



We will prove some other results along the way. Doing so will help achieve our goal, as well as build some intuition about the "calculus of undecidability". Theorem Let P be a property on some domain D.

P is decidable if and only if $\neg P$ is decidable.

- Proof:
- Let \mathbf{f}_{P} be a decision procedure for P.
- We can define a decision procedure $g_{\neg P}$ for $\neg P$:

fun $g_{\neg P}(x) = not(f_P(x))$

 $g_{\neg P}$ is total since f_P is, and decides $\neg P$ correctly since f_P decides P correctly.

(The other direction of the "iff" is similar.)

Theorem Let P be a property on some domain D.

If P is both semi-decidable and co-semi-decidable, then P is in fact decidable.

Proof:

Let f_P be a semi-decision procedure for P and let $g_{\neg P}$ be a semi-decision procedure for $\neg P$.

We define a decision procedure $h : D \rightarrow bool$ for P: For a given problem instance x in D, h interleaves evaluation of $f_P(x)$ and $g_{\neg P}(x)$. At least one of these expressions is valuable. If $f_P(x)$ returns a value before $g_{\neg P}(x)$ does, then $h(x) == f_P(x)$. Otherwise, $h(x) == not(g_{\neg P}(x))$.

Theorem HALT₀ is not co-semi-decidable.

Proof:

We saw earlier that HALT₀ is semi-decidable.

If HALT₀ were also co-semi-decidable, then the previous theorem would imply that HALT₀ is decidable, which we proved earlier is not the case.

QED

Let us now consider function equivalence. We assume the pure subset of SML that does not include mutation or exceptions.

Domain: $(int \rightarrow int) * (int \rightarrow int)$ Problem Instance:a specific pair (f,g)Property: $f \cong g$

We will write EQUIV to mean this property.

TheoremEQUIV is neither semi-decidablenor co-semi-decidable.

Proof: (Reduction arguments make sense for semi-decidability.)

 Suppose eq is a semi-decision procedure for EQUIV. Then d below would be a semi-decision procedure for ¬HALT₀, contradicting HALT₀ being not co-semi-decidable:

```
fun d (h:int->int):bool =
```

 Similarly, if neq is a semi-decision procedure for ¬EQUIV, then d' would be a semi-decision procedure for ¬HALT₀:

```
fun d' (h:int->int):bool =
    neq (fn (y:int) => (h 0; y),
        fn (y:int) => y)
```

One more comment

The (un)decidability properties we discussed today do not depend on our working with SML functions.

The same properties hold if we were to examine the abstract syntax trees of written code or if we were to work in a different programming language or at the assembly level or even at the transistor level of a computer.

That is all.

Have a good Wednesday.

See you Thursday. We will review the semester.

