Mutable References

15-150, April 21, 2020
Frank Pfenning



Learning Goals

« How do we integrate mutability into functional languages?
« What are the consequences?

e For reasoning

e For parallelism

* For data structures

e For programming in general
e Benign effects

* Major example: memoizing streams



Outline

e The basics
o type t ref

* Aliasing and extensional equality revisited

Example: accounts and transactions
 Example: a random number generator

 Example: memoizing streams



Mutability in Functional Languages

We only show the ML approach

Fundamentally, two different approaches
» Every expression can mutate references (SML, OCamli, ..., Lisp)

« Mutability is isolated (Haskell, ..., Algol)

Interesting trade-offs
« SML/OCaml: programming is simplified (somewhat)

* Haskell: reasoning is simplified (somewhat)

Ultimately, we cannot escape the complications!

Use mutability sparingly!



Type t ref

For any type t, we have a new type t ref

Values: Cells containing values of type t

* In essence, an address (with no source-level representation)

Constructor: ref e : t ref providede : t

Destructor: 'e : t providede : t ref

Mutator: e1 := e, : unitprovidede: : t refande; : t

 Discriminator: e; = exfore; : t refande; : t ref



Dynamics

Write for a cell with contents v (blank if irrelevant)
Cells are never “empty”

ref e ==> if e ==> v where cell is freshly allocated
e vite —[7]
e e 1= e; ==> ()ifes ==>B,e ==> V
* with effect
* e1 = €2 ==> trueiffe; ==>g €2 ==>B where cells are

the same (have the same address

e 21 = e, ==> trueif e; and e; are aliases



Example: Bank Accounts

Let’s code!



Sequential Composition

(el ; e2 ; .. ; en)
let val _ = el
val _ = e’

val v = en
1n

end



Some Observations

* Equality is no longer reflexive on expressions

 Example: ref 0 = ref 0 ==> false
» Carefully need to reason about effects and their interactions
e Aliasing is tricky

* We never explicitly deallocate cells, but the garbage collector will
remove them just like other data

e Evaluating expressions in parallel can lead to race conditions if
they might access the same memory



Example: Random Numbers

Let’s code



Memoizing Streams

* An example of “benign effect”

* Hidden behind abstraction boundary

* Can still change behavior if suspension itself modifies state
 May be necessary if stream does input or output

* Do not want input or output to be repeated!



Computation / Data & Functions

Persistent Data Ephemeral Data
/ /
Pure Functions Effectful Functions

Reasoning is more
complicated (use
only benign effects
whenever possible)

Functional
programming
is an excellent tool

Sequential
Computation

: Reasoning is hard
Functional
Parallel due to race

i ing is an "
Computation proeg;c?;“rennl:?olsl a conditions and
deadlocks




Summary

e The basics
o type t ref

* Aliasing and extensional equality revisited

Example: accounts and transactions
 Example: a random number generator

 Example: memoizing streams



