
Mutable References
15-150, April 21, 2020
Frank Pfenning

• How do we integrate mutability into functional languages?

• What are the consequences?

• For reasoning

• For parallelism

• For data structures

• For programming in general

• Benign effects

• Major example: memoizing streams

Learning Goals

• The basics

• type t ref

• Aliasing and extensional equality revisited

• Example: accounts and transactions

• Example: a random number generator

• Example: memoizing streams

Outline

• Fundamentally, two different approaches

• Every expression can mutate references (SML, OCaml, …, Lisp)

• Mutability is isolated (Haskell, …, Algol)

• Interesting trade-offs

• SML/OCaml: programming is simplified (somewhat)

• Haskell: reasoning is simplified (somewhat)

• Ultimately, we cannot escape the complications!

• Use mutability sparingly!

Mutability in Functional Languages

We only show the ML approach

• For any type t, we have a new type t ref

• Values: Cells containing values of type t

• In essence, an address (with no source-level representation)

• Constructor: ref e : t ref provided e : t

• Destructor: !e : t provided e : t ref

• Mutator: e1 := e2 : unit provided e1 : t ref and e2 : t

• Discriminator: e1 = e2 for e1 : t ref and e2 : t ref

Type t ref

• ref e ==> v if e ==> v where cell is freshly allocated

• !e ==> v if e ==> v

• e1 := e2 ==> () if e1 ==> _ , e2 ==> v

• with effect _ v

• e1 = e2 ==> true iff e1 ==> _ , e2 ==> _ where cells are
the same (have the same address)

• e1 = e2 ==> true if e1 and e2 are aliases

Write v for a cell with contents v (blank if irrelevant)
Dynamics

Cells are never “empty”

Let’s code!
Example: Bank Accounts

Sequential Composition

(e1 ; e2 ; … ; en)
==
let val _ = e1
 val _ = e2
 …
 val v = en
in
 v
end

• Equality is no longer reflexive on expressions

• Example: ref 0 = ref 0 ==> false

• Carefully need to reason about effects and their interactions

• Aliasing is tricky

• We never explicitly deallocate cells, but the garbage collector will
remove them just like other data

• Evaluating expressions in parallel can lead to race conditions if
they might access the same memory

Some Observations

Let’s code
Example: Random Numbers

• An example of “benign effect”

• Hidden behind abstraction boundary

• Can still change behavior if suspension itself modifies state

• May be necessary if stream does input or output

• Do not want input or output to be repeated!

Memoizing Streams

Computation / Data & Functions

Persistent Data
/

Pure Functions

Ephemeral Data
/

Effectful Functions

Sequential
Computation

Functional

programming

is an excellent tool

Reasoning is more
complicated (use

only benign effects
whenever possible)

Parallel
Computation

Functional
programming is an

excellent tool

Reasoning is hard
due to race

conditions and
deadlocks

• The basics

• type t ref

• Aliasing and extensional equality revisited

• Example: accounts and transactions

• Example: a random number generator

• Example: memoizing streams

Summary

