Frank Pfenning

15-150, April 8, 2020

1/7



Learning Objectives

m Game trees

m Practicing sequences and parallelism

m Refactoring

m Generalizing an instance
m Creating module structure

2/7



m The Nim game

m Intuitively

m Live code

m Sequences, revisited
m Classes of games

m Refactoring

m A GAMES signature
m A PLAYER signature

3/7



Maxie +1 0

take 1 take 2 take 3
I\/Iiﬁnie 3 9 0
- -1 +1
Masxie 2 O O O O ©
+177 -1 1= -1 +1 +1
Minnie (1) (0) (0) 0)
4+17-1—"-1 -1
I\/Iz;xie @
+1

4/7



Classes of Games

2-player, alternating turns
Deterministic (no dice)

Perfect information (no hidden state)
Zero-sum (A wins iff B loses, or tie)

Finitely branching

Examples: tic-tac-toe, connect4, checkers, chess, go, ...

5/7



m In practice, we cannot explore the full tree for interesting
games

m We cut off exploration (based on various criteria) and
estimate the value of the position

m Using minimax (or smarter alternatives, see next lecture) to
propagate value up the tree

m Better estimators (generally) result in better players

6/7



m Game trees

m Practicing sequences and parallelism

m Refactoring

m Generalizing an instance
m Creating module structure

7/7



