
MiniMax Games

Frank Pfenning

15-150, April 8, 2020

1 / 7



Learning Objectives

Game trees

Practicing sequences and parallelism

Refactoring

Generalizing an instance
Creating module structure

2 / 7



Outline

The Nim game

Intuitively
Live code
Sequences, revisited

Classes of games

Refactoring

A GAMES signature
A PLAYER signature

3 / 7



Maxie

Minnie

Maxie

Minnie

Maxie

4

3

2

1

0
+1

+1
0

-1

+1
1

0
-1

-1
0

+1

-1

take 1

2

1

0
-1

-1
0

+1

-1

take 2

1

0
+1

+1

take 3

+1

4 / 7



Classes of Games

2-player, alternating turns

Deterministic (no dice)

Perfect information (no hidden state)

Zero-sum (A wins iff B loses, or tie)

Finitely branching

Examples: tic-tac-toe, connect4, checkers, chess, go, . . .

5 / 7



Estimators

In practice, we cannot explore the full tree for interesting
games

We cut off exploration (based on various criteria) and
estimate the value of the position

Using minimax (or smarter alternatives, see next lecture) to
propagate value up the tree

Better estimators (generally) result in better players

6 / 7



Summary

Game trees

Practicing sequences and parallelism

Refactoring

Generalizing an instance
Creating module structure

7 / 7


