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Learning Objectives

m Game trees

m Practicing sequences and parallelism

m Refactoring

m Generalizing an instance
m Creating module structure
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m The Nim game

m Intuitively

m Live code

m Sequences, revisited
m Classes of games

m Refactoring

m A GAMES signature
m A PLAYER signature
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Classes of Games

2-player, alternating turns
Deterministic (no dice)

Perfect information (no hidden state)
Zero-sum (A wins iff B loses, or tie)

Finitely branching

Examples: tic-tac-toe, connect4, checkers, chess, go, ...
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m In practice, we cannot explore the full tree for interesting
games

m We cut off exploration (based on various criteria) and
estimate the value of the position

m Using minimax (or smarter alternatives, see next lecture) to
propagate value up the tree

m Better estimators (generally) result in better players
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m Game trees

m Practicing sequences and parallelism

m Refactoring

m Generalizing an instance
m Creating module structure
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