
15-150
Principles of Functional Programming

Slides for Lecture 19

Parallelism, Cost Graphs, Sequences
April 7, 2020

Michael Erdmann

Lessons:
• Cost Semantics / Cost Graphs
• Brent’s Theorem
• Sequences

Parallelism:
Performing multiple computations simultaneously.

Scheduling:
Telling each processor what to do when.

• We allow independent expressions in a
program to evaluate in parallel.

• We require parallel evaluation to have
well-defined behavior.

• We do not worry explicitly about
scheduling, but we use cost semantics to
write code that facilitates parallelism.

This course focuses on deterministic parallelism:

(Functional programming languages without
side-effects facilitate this approach.)

• Write code that does not bake in a schedule.
(Lists bake in sequential evaluation. Trees
facilitate parallelism. Today we will introduce
an abstract datatype called sequences.
Sequences have a linear structure like lists
but support the parallelism of trees.)

• Reason about time complexity (Work &
Span) to write fast parallel code. (You have
been doing that with recurrences. Today we
will introduce cost graphs as another tool.)

What can a programmer do to facilitate parallelism?

Cost Graphs

Cost graphs are a form of series-parallel graph.

Such a graph is a directed acyclic graph,
with designated source and sink nodes.
(Source means there are no incoming edges.
Sink means there are no outgoing edges.)
We draw graphs with source at top and sink at bottom.
All edges directed downward.)

We will use cost graphs to model computations
and to compute Work and Span.

Basic Constructions
Base Case: (single node, source=sink,

modeling no computation)

Basic Constructions
Base Case: (single node, source=sink,

modeling no computation)

Sequential
Composition:

(Edge from G1’s sink to G2’s source,
modeling sequential computation:

perform G1’s computation, then G2’s.

Basic Constructions
Base Case: (single node, source=sink,

modeling no computation)

Sequential
Composition:

(Edge from G1’s sink to G2’s source,
modeling sequential computation)

Special case: (one evaluation step)

Basic Constructions
Base Case: (single node, source=sink,

modeling no computation)

Sequential
Composition:

(Edge from G1’s sink to G2’s source,
modeling sequential computation)

Parallel
Composition:

Special case: (one evaluation step)

(Fork and Join: new source with edges
to original sources of G1 and G2, then
edges from their sinks to a new sink.
Models parallel computation.)

Has cost graph:

(Edges are implicitly directed downward.)

(1+2)
(1+2)3

We are being a little sloppy but it is fine.

We elide that to:

Work and Span
• We define the work of a cost graph G to be

the number of nodes in G.

• We define the span of a cost graph G to be
the number of nodes on the longest path
from G’s source to G’s sink.

• We now re-define the work and span of an
expression e to be the work and span of the
cost graph G representing e.
(These numbers differ by constant factors/terms from our

earlier definitions, but will be the same asymptotically.)

Work = 7 Span = 5

Brent’s Theorem

An expression e with work W and span S
can be evaluated on a p-processor
machine in time O(max(W /p, S)).

Scheduling

(There are various kinds of pebbling strategies.)

Breadth-First Pebbling Algorithm
This might be a cost graph for

Breadth-First Pebbling Algorithm
We wish to assign processors
to nodes at successive time steps.

[At each time step, the
processor assigned to a node
will perform the computation
represented by the node and
its incident edges

(e.g., fork, join, arithmetic).]

Breadth-First Pebbling Algorithm
Assume we have 2 processors.

processors

1 2

tim
e

1
2
3
4
5
6

Breadth-First Pebbling Algorithm

processors

1 2

tim
e

1
2
3
4
5
6

a

first pebble on node “a”

(idle)

Breadth-First Pebbling Algorithm

processors

1 2

tim
e

1
2
3
4
5
6

a
b g

visited

Breadth-First Pebbling Algorithm

processors

1 2

tim
e

1
2
3
4
5
6

a
b g

visited

visited visited

c d

Breadth-First Pebbling Algorithm

processors

1 2

tim
e

1
2
3
4
5
6

a
b g

visited

visited visited

c d
visited visited

h i

Breadth-First Pebbling Algorithm

processors

1 2

tim
e

1
2
3
4
5
6

a
b g

visited

visited visited

c d
visited visited

h i
e j

visited visited

Breadth-First Pebbling Algorithm

processors

1 2

tim
e

1
2
3
4
5
6

a
b g

visited

visited visited

c d
visited visited

h i
e j

visited visited

visited visited

f

processors

1 2

tim
e

1
2
3
4
5
6

a
b g
c d
h i
e j

f

visited

visited visited

visited visited visited visited

visited visited

visited

Sequences
• We will present (part of the) SEQUENCE signature.
• We will describe the work and span of some

sequence functions via cost graphs.
• Sequences are abstract. Hidden implementation.
• For reasoning purposes, we write a sequence of

length n containing elements x0, …, xn-1 as
<x0, …, xn-1> .

• Two sequence values are extensionally
equivalent iff they have the same length and
contain extensionally equivalent values at
corresponding positions.

signature SEQUENCE =
sig
type 'a seq (* abstract *)
exception Range of string
val empty : unit -> 'a seq
val tabulate : (int -> 'a) -> int -> 'a seq
val length : 'a seq -> int
val nth : 'a seq -> int -> 'a
val map : ('a -> 'b) -> 'a seq -> 'b seq
val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
val mapreduce :

('a -> 'b) -> 'b -> ('b * 'b -> 'b) -> 'a seq -> 'b
val filter : ('a -> bool) -> 'a seq -> 'a seq
...

end

Most of those functions should seem familiar
from lists.

One difference is that instead of foldr and
foldl we now have reduce. We will talk
more about that.

You probably never used List.tabulate.
We will discuss tabulate for sequences.

Unlike lists, sequences support parellization,
giving good span costs for many functions.

sequence type

<x0, …, xn-1> : t seq

if xi : t ,
for i = 0, ..., n-1.

empty
empty ()
returns a sequence of length 0,
containing no elements.

The type can be t seq, for any type t.

Cost Graph: So O(1) work and span.

tabulate
tabulate f n ≅ <f(0), …, f(n-1)>

Cost Graph: G1G0 Gn-1...

Here Gi is the cost graph for evaluating f(i).

If f(i) has O(1) work and span for all i, then
tabulate f n has O(n) work and O(1) span.

nth
nth <x0, …, xn-1> i ≅ xi , if 0 ≤ i < n,

raises Range otherwise.

Cost Graph: So O(1) work and span.

In other words, constant time access
to elements (unlike lists).

length
length <x0, …, xn-1> ≅ n .

Cost Graph: Again, O(1) work and span.

length
length <x0, …, xn-1> ≅ n .

Cost Graph: Again, O(1) work and span.

Question: How could one achieve this?

length
length <x0, …, xn-1> ≅ n .

Cost Graph: Again, O(1) work and span.

Question: How could one achieve this?

Answer: Keep track of length explicitly
in the underlying representation of sequences.

map
map f <x0,…,xn-1> ≅ <f x0 ,…, f xn-1>

Cost Graph: G1G0 Gn-1...

Here Gi is the cost graph for evaluating f(xi).

If f(x) has O(1) work and span for all x, then
map f <x0,…,xn-1> has O(n) work & O(1) span.

reduce

Recall the type:

That is more restrictive than the type of foldr was:

reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a

foldr : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b

Let’s explore that.

reduce
reduce g z <x0,…,xn-1> ≅ x0ʘ⋯ʘ xn-1ʘz

We assume that g is associative, meaning
g(g(x,y),w) ≅ g(x,g(y,w)), for all values x,y,w
of the correct type. So no parentheses are needed on
the right, where we represent g by the infix operator ʘ.

[In 15-210 you will generally assume as well
that z is an identity (also called a zero) for g, meaning
g(x,z) ≅ x ≅ g(z,x), for all values x of the correct type.
We do that sometimes in 15-150 but it can be useful to
allow more general z (thus mimicking a list foldr).]

reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a

reduce
reduce g z <x0,…,xn-1> ≅ x0ʘ⋯ʘ xn-1ʘz

x0 x1 x2 x3 xn-1 z
Cost Graph:

ʘ ʘ ʘ
ʘ ʘ

ʘ

(forking abbreviated)

⋯

⋯

reduce
reduce g z <x0,…,xn-1> ≅ x0ʘ⋯ʘ xn-1ʘz

x0 x1 x2 x3 xn-1 z
Cost Graph:

ʘ ʘ ʘ
ʘ ʘ

ʘ

(forking abbreviated)

⋯

⋯

If g is constant time on all arguments,

O(log(n)) levels)

then reduce g z <x0,…,xn-1>
has O(n) work and O(log(n)) span.

mapreduce

mapreduce f z g <x0,…,xn-1>
≅

(f x0) ʘ ⋯ ʘ (f xn-1) ʘ z

mapreduce combines map and reduce:

So, if f and g have O(1) work and span on all
arguments, then mapreduce f z g <x0,…,xn-1>
has O(n) work and O(log(n)) span.

(here we again represent g by the infix operator ʘ)

filter
filter p s ≅ s’,

with s’a sequence consisting of all xi in s
such that p(xi) ≅ true . The order of
retained elements in s’is the same as in s.

If p has O(1) work and span on all arguments,
then filter p s has O(n) work and
O(log(n)) span (this is not obvious; you will
learn more in 15-210).

Example (recall also Lecture 1):
fun sum (s : int Seq.seq) : int =

Seq.reduce (op +) 0 s
type row = int Seq.seq
type room = row Seq.seq
fun count (class : room) : int =

sum (Seq.map sum class)

(Here we are assuming a structure Seq
ascribing to signature SEQUENCE.)

Example (recall also Lecture 1):
fun sum (s : int Seq.seq) : int =

Seq.reduce (op +) 0 s
type row = int Seq.seq
type room = row Seq.seq
fun count (class : room) : int =

sum (Seq.map sum class)
Let value c:room contain n rows of length n each.
What is the work and span to evaluate count(c)?

Example (recall also Lecture 1):
fun sum (s : int Seq.seq) : int =

Seq.reduce (op +) 0 s
type row = int Seq.seq
type room = row Seq.seq
fun count (class : room) : int =

sum (Seq.map sum class)
Let value c:room contain n rows of length n each.
What is the work and span to evaluate count(c)?

Answer: O(n2) work and O(log(n)) span.

Answer: O(n2) work and O(log(n)) span.

To see that, construct a cost graph.

Suppose c = <row1, …, rown>:

sum row1 sum rown

sum
This subgraph represents
the summation over the results
of the previous summations.

⋯

Example (recall also Lecture 1):
fun sum (s : int Seq.seq) : int =

Seq.reduce (op +) 0 s
type row = int Seq.seq
type room = row Seq.seq
fun count (class : room) : int =

sum (Seq.map sum class)

We could also have implemented count as:
val count : room -> int =

Seq.mapreduce sum 0 (op +)

That is all.
Once, again, please have a good

Wednesday.

See you Thursday, when we will start
talking about games.

