15-150

Principles of Functional Programming

Slides for Lecture 19
Parallelism, Cost Graphs, Sequences
April 7, 2020
Michael Erdmann

Lessons:

- Cost Semantics / Cost Graphs
- Brent's Theorem
- Sequences

Parallelism:
Performing multiple computations simultaneously.
Scheduling:
Telling each processor what to do when.

This course focuses on deterministic parallelism:

- We allow independent expressions in a program to evaluate in parallel.
- We require parallel evaluation to have well-defined behavior.
- We do not worry explicitly about scheduling, but we use cost semantics to write code that facilitates parallelism.
(Functional programming languages without side-effects facilitate this approach.)

What can a programmer do to facilitate parallelism?

- Write code that does not bake in a schedule. (Lists bake in sequential evaluation. Trees facilitate parallelism. Today we will introduce an abstract datatype called sequences. Sequences have a linear structure like lists but support the parallelism of trees.)
- Reason about time complexity (Work \& Span) to write fast parallel code. (You have been doing that with recurrences. Today we will introduce cost graphs as another tool.)

Cost Graphs

Cost graphs are a form of series-parallel graph.
Such a graph is a directed acyclic graph, with designated source and sink nodes.
(Source means there are no incoming edges.
Sink means there are no outgoing edges.)
We draw graphs with source at top and sink at bottom. All edges directed downward.)

We will use cost graphs to model computations and to compute Work and Span.

Basic Constructions

Base Case:

(single node, source=sink, modeling no computation)

Basic Constructions

Base Case:

Sequential
Composition:
$\stackrel{\mathbf{G}_{1}}{\downarrow}{ }_{\mathbf{G}}^{\mathbf{G}}$
(Edge from \mathbf{G}_{1} 's sink to \mathbf{G}_{2} 's source, modeling sequential computation: perform \mathbf{G}_{1} 's computation, then $\mathbf{G}_{\mathbf{2}}$'s.

Basic Constructions

Base Case:

Sequential
Composition:
$\stackrel{\mathbf{G}_{1}}{\downarrow} \mathbf{G}_{\mathbf{2}}$
(Edge from \mathbf{G}_{1} 's sink to $\mathbf{G}_{\mathbf{2}}$'s source, modeling sequential computation)

Special case:

Basic Constructions

Base Case:

(single node, source=sink, modeling no computation)

Sequential
Composition:

Parallel
Composition: Ger $_{1}$
(Fork and Join: new source with edges to original sources of \mathbf{G}_{1} and \mathbf{G}_{2}, then edges from their sinks to a new sink. Models parallel computation.)

Example: $\quad(1+2) * 3$

Has cost graph:

(Edges are implicitly directed downward.)

We are being a little sloppy but it is fine.

Technically, $(1+2)$ has cost graph:

We elide that to:

Work and Span

- We define the work of a cost graph \mathbf{G} to be the number of nodes in \mathbf{G}.
- We define the span of a cost graph \mathbf{G} to be the number of nodes on the longest path from G's source to G's sink.
- We now re-define the work and span of an expression \mathbf{e} to be the work and span of the cost graph \mathbf{G} representing e.
(These numbers differ by constant factors/terms from our earlier definitions, but will be the same asymptotically.)

Example: $\quad(1+2) * 3$

Work $=7$
Span $=5$

Brent's Theorem

An expression e with work W and span S can be evaluated on a p-processor machine in time $O(\max (W / p, S))$.

Scheduling

- (This is a bit of side-topic, just to show you how one might use cost graphs to schedule.)
- We will use pebbling:
- p pebbles, with p the number of processors.
- Start with one pebble on cost graph G's source.
- Putting a pebble on a node visits the node.
- At each time step, pick up all pebbles and put at most p on the graph, no more than one per node. Can only put a pebble on an unvisited node all of whose ancestors have been visited.
(There are various kinds of pebbling strategies.)

Breadth-First Pebbling Algorithm

This might be a cost graph for

$$
(1+2) *(3+4)
$$

Breadth-First Pebbling Algorithm

[At each time step, the processor assigned to a node will perform the computation represented by the node and its incident edges
(e.g., fork, join, arithmetic).]

Breadth-First Pebbling Algorithm

Work $=10$, Span $=5$, so Brent's Theorem suggests $5=\max (10 / 2,5)$ time steps might be possible. But we have some idle times, so get 6 . (Also: Brent's Theorem is only an asymptotic assertion.)

Sequences

- We will present (part of the) SEQUENCE signature.
- We will describe the work and span of some sequence functions via cost graphs.
- Sequences are abstract. Hidden implementation.
- For reasoning purposes, we write a sequence of length \mathbf{n} containing elements $\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}-1}$ as

$$
\left\langle x_{0}, \ldots, x_{n-1}\right\rangle .
$$

- Two sequence values are extensionally equivalent iff they have the same length and contain extensionally equivalent values at corresponding positions.

```
signature SEQUENCE =
sig
type 'a seq (* abstract *)
exception Range of string
val empty : unit -> 'a seq
val tabulate : (int -> 'a) -> int -> 'a seq
val length : 'a seq -> int
val nth : 'a seq -> int -> 'a
val map : ('a -> 'b) -> 'a seq -> 'b seq
val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
val mapreduce :
    ('a -> 'b) -> 'b -> ('b * 'b -> 'b) -> 'a seq -> 'b
val filter : ('a -> bool) -> 'a seq -> 'a seq
end
```

Most of those functions should seem familiar from lists.

One difference is that instead of foldr and foldl we now have reduce. We will talk more about that.

You probably never used List. tabulate. We will discuss tabulate for sequences.

Unlike lists, sequences support parellization, giving good span costs for many functions.

sequence type

if $\mathbf{x}_{\mathbf{i}}$: \mathbf{t},
for $\mathbf{i}=0, \ldots, n-1$.

empty

empty ()

returns a sequence of length 0, containing no elements.

The type can be $\mathbf{t} \mathbf{s e q}$, for any type \mathbf{t}.

Cost Graph:
So O(1) work and span.

tabulate

tabulate $f(n \cong\langle f(0), \ldots, f(n-1)\rangle$

Cost Graph:

Here $\mathbf{G}_{\mathbf{i}}$ is the cost graph for evaluating $\mathbf{f}(\mathbf{i})$.
If $\mathbf{f}(\mathbf{i})$ has $\mathrm{O}(1)$ work and span for all \mathbf{i}, then tabulate $\mathbf{f} \mathbf{n}$ has $O(n)$ work and $O(1)$ span.

nth

nth $<x_{0}, \ldots, x_{n-1}>\mathbf{i} \cong \mathbf{x}_{\mathbf{i}}$, if $0 \leq \mathbf{i}<\mathbf{n}$, raises Range otherwise.

Cost Graph:

So O(1) work and span.

In other words, constant time access to elements (unlike lists).

length

length $<\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}-1}>{ }^{>} \cong \mathrm{n}$.

Cost Graph:

length

length $\left\langle x_{0}, \ldots, x_{n-1}\right\rangle n$.

Cost Graph:

Again, O(1) work and span.

Question: How could one achieve this?

length

length $<x_{0}, \ldots, x_{n-1}>n$.

Cost Graph: Again, O(1) work and span.

Question: How could one achieve this?
Answer: Keep track of length explicitly in the underlying representation of sequences.

map

$\operatorname{map} f\left\langle x_{0}, \ldots, x_{n-1}\right\rangle \cong\left\langle f x_{0}, \ldots, f x_{n-1}\right\rangle$ Cost Graph:

Here $\mathbf{G}_{\mathbf{i}}$ is the cost graph for evaluating $\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)$. If $f(x)$ has $O(1)$ work and span for all \mathbf{x}, then $\operatorname{map} \mathrm{f}<\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}-1}>$ has $\mathrm{O}(\mathrm{n})$ work $\& \mathrm{O}(1)$ span.

reduce

Recall the type:
reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
That is more restrictive than the type of foldr was:
foldr : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b Let's explore that.
reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a

reduce

reduce $g \mathrm{z}\left\langle\mathrm{x}_{0}, \ldots, \mathrm{X}_{\mathrm{n}-1}\right\rangle \cong \mathrm{X}_{0} \odot \cdots \odot \mathrm{x}_{\mathrm{n}-1} \odot z$

We assume that \mathbf{g} is associative, meaning $\mathbf{g}(\mathbf{g}(x, y), w) \cong \mathbf{g}(x, g(y, w))$, for all values x, y, w of the correct type. So no parentheses are needed on the right, where we represent \mathbf{g} by the infix operator \odot.
[In 15-210 you will generally assume as well
that \mathbf{z} is an identity (also called a zero) for \mathbf{g}, meaning
$\mathbf{g}(\mathbf{x}, \mathbf{z}) \cong \mathbf{x} \cong \mathbf{g}(\mathbf{z}, \mathbf{x})$, for all values \mathbf{x} of the correct type.
We do that sometimes in 15-150 but it can be useful to allow more general \mathbf{z} (thus mimicking a list foldr).]

reduce

reduce $\left.g z<x_{0}, \ldots, x_{n-1}\right\rangle \cong x_{0} \odot \cdots \odot x_{n-1} \odot z$
Cost Graph:
(forking abbreviated)

Y

reduce

reduce $\left.g z<x_{0}, \ldots, x_{n-1}\right\rangle \cong x_{0} \odot \cdots \odot x_{n-1} \odot z$

Cost Graph:
(forking abbreviated)

O(log(n)) levels)

If \mathbf{g} is constant time on all arguments, then reduce $\mathbf{g ~ z}\left\langle x_{0}, \ldots, x_{n-1}>\right.$ has $O(n)$ work and $O(\log (n))$ span.

mapreduce

mapreduce combines map and reduce:

$$
\begin{array}{rl}
\text { mapreduce } f & z g\left\langle x_{0}, \ldots, x_{n-1}\right\rangle \\
& \cong \\
\left(f x_{0}\right) \odot \cdots & \odot\left(f x_{n-1}\right) \odot z
\end{array}
$$

(here we again represent \mathbf{g} by the infix operator \odot)
So, if \mathbf{f} and \mathbf{g} have $\mathrm{O}(1)$ work and span on all arguments, then mapreduce $\mathbf{f} \mathbf{z g}\left\langle\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}-1}>\right.$ has $\mathrm{O}(\mathrm{n})$ work and $\mathrm{O}(\log (\mathrm{n}))$ span.

filter

filter $\mathbf{p} \mathbf{s} \cong \mathbf{s}^{\prime}$,
with \mathbf{s}^{\prime} a sequence consisting of all $\mathbf{x}_{\mathbf{i}}$ in \mathbf{s} such that $\mathbf{p}\left(\mathbf{x}_{\mathbf{i}}\right) \cong$ true. The order of retained elements in \mathbf{s}^{\prime} is the same as in \mathbf{s}.

If \mathbf{p} has $\mathrm{O}(1)$ work and span on all arguments, then filter p s has $O(n)$ work and O(log(n)) span (this is not obvious; you will learn more in 15-210).

Example (recall also Lecture 1):
fun sum (s : int Seq.seq) : int = Seq. reduce (op +) 0 s
type row = int Seq.seq
type room = row Seq.seq
fun count (class : room) : int = sum (Seq.map sum class)
(Here we are assuming a structure Seq ascribing to signature SEQUENCE.)

Example (recall also Lecture 1):
fun sum (s : int Seq.seq) : int = Seq. reduce (op +) 0 s
type row = int Seq.seq type room = row Seq.seq
fun count (class : room) : int = sum (Seq.map sum class)

Let value \mathbf{c} : room contain \mathbf{n} rows of length \mathbf{n} each. What is the work and span to evaluate count (c)?

Example (recall also Lecture 1):
fun sum (s : int Seq.seq) : int = Seq. reduce (op +) 0 s
type row = int Seq.seq
type room = row Seq.seq
fun count (class : room) : int = sum (Seq.map sum class)

Let value \mathbf{c} : room contain \mathbf{n} rows of length \mathbf{n} each. What is the work and span to evaluate count (c)?

Answer: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ work and $\mathrm{O}(\log (\mathrm{n}))$ span.

Answer: $O\left(n^{2}\right)$ work and $O(\log (n))$ span.

 To see that, construct a cost graph. Suppose c $=\left\langle\right.$ row $_{1}, \ldots$, row $\left._{n}\right\rangle$:

Example (recall also Lecture 1):
fun sum (s : int Seq.seq) : int = Seq. reduce (op +) 0 s
type row $=$ int Seq.seq
type room = row Seq.seq
fun count (class : room) : int = sum (Seq.map sum class)

We could also have implemented count as: val count : room -> int = Seq.mapreduce sum 0 (op +)

That is all.

Once, again, please have a good Wednesday.

See you Thursday, when we will start talking about games.

