Parallelism

15-150 Lec 2, Frank Pfenning Lecture 19 Tuesday April 7, 2020

Outline

- Cost Graphs as an abstract model of parallel evaluation
- Brent's Theorem for evaluation on p processors
- Sequences as a high-level abstraction for parallel programming
- Example: Parallelizing n-Queens

Deterministic Parallelism

- Outcome of computation is uniquely determined
- But not exactly how the computation proceeds
- Enabled by
 - Pure functions (no sharing, "race conditions")
 - High level abstraction: sequences
 - Complex compiler and runtime system

Cost Graphs

- Cost Graphs model the interactions between sequential and parallel computation
- Help us visualize
 - Work and span of a computation
 - Scheduling of computation (on a fixed number of processors)
- A cost graph is a directed acyclic graph with a source and a sink
 - We show the source (beginning of computation) at the top
 - We show the sink (end of computation) at the bottom

Cost Graph Constructions

Expression or Value

(single node = source = sink)

Sequential Composition

(edge from sink of G1 to source of G2)

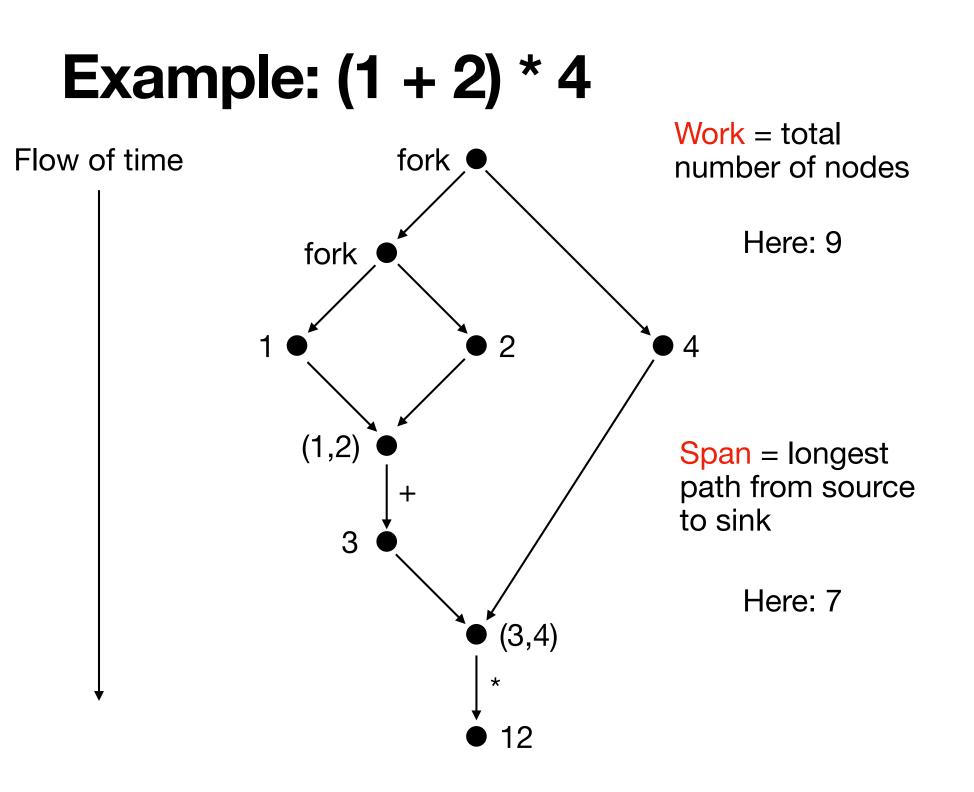
(first G₁, then G₂)

(new source and sink) (G₁ and G₂ in parallel)

fork / join

G₁

G₂

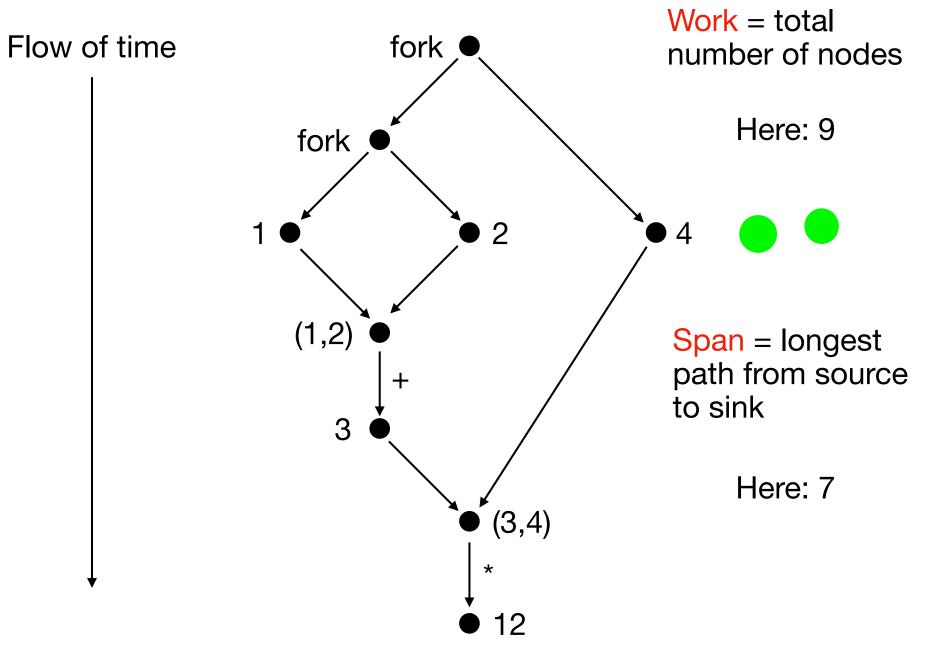


Brent's Theorem

Theorem: An expression e with work W and span S can be evaluated on a p-processor machine in time

O(max(W/p, S))

Scheduling with Pebbles



Sequences

- The Sequence library provides an abstract type of 'a seq
- Write sequences as

<**X**₀, ..., **X**_{n-1}>

- There are multiple different implementations (array-like, tree-like)
- Functions on sequences are given with the cost graphs / work and span
 - Not all implementations may achieve those exactly
 - Also remember Brent's Theorem!
- Idea: functions in the library are parallel to the extent possible!

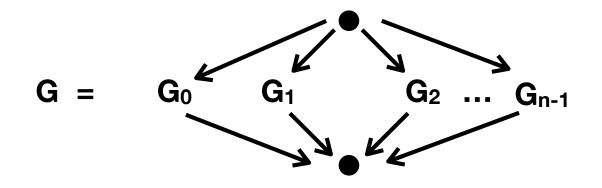
signature SEQUENCE =

sig

type 'a seq (* abstract)
val tabulate : (int -> 'a) -> int -> 'a seq
val map : ('a -> 'b) -> 'a seq -> 'b seq
val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
(* lots more stuff *)
end

tabulate f n == $\langle f(0), \ldots, f(n-1) \rangle$

• Cost graph **G**_i is the cost graph for evaluating f(i)

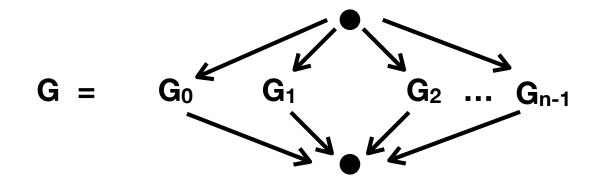


 $Work(G) = Sum(Work(G_i)) + 2$

 $Span(G) = Max(Span(G_i)) + 2$

map f $<x_0,...,x_{n-1}> == <f x_0, ..., f x_{n-1}>$

• Cost graph G_i is the cost graph for evaluating $f_i x_i$



 $Work(G) = Sum(Work(G_i)) + 2$

 $Span(G) = Max(Span(G_i)) + 2$

reduce

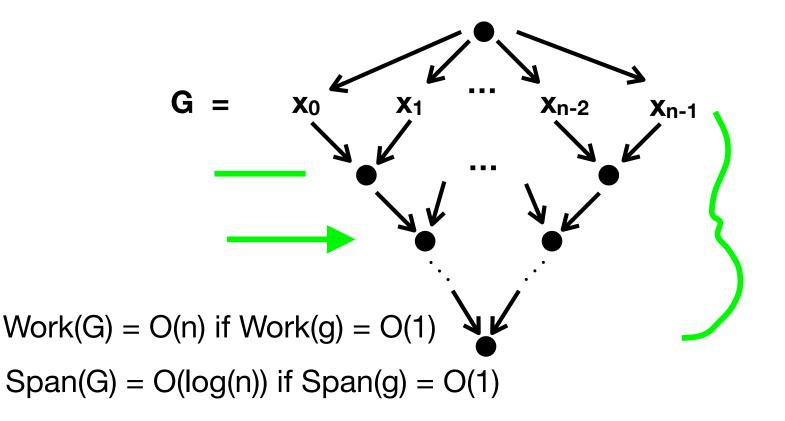
reduce $g z \langle x_0, ..., x_{n-1} \rangle == x_0 \odot ... \odot x_{n-1}$ reduce $g z \langle \rangle == z$

- Here, g must be an associative operator with unit z ("requires")
 - g(g(w,x),y) == g(w,g(x,y))
 - g(x,z) == x
- Write $x \odot y = g(x,y)$

reduce

reduce $g z \langle x_0, ..., x_{n-1} \rangle == x_0 \odot ... \odot x_{n-1}$ reduce $g z \langle \rangle == z$

• Cost graph



Summary

- Cost Graphs as an abstract model of parallel evaluation
- Brent's Theorem for evaluation on p processors
- Sequences as a high-level abstraction for parallel programming
- Example: Parallelizing n-Queens