Parallelism

15-150 Lec 2, Frank Pfenning
Lecture 19
Tuesday April 7, 2020



Outline

Cost Graphs as an abstract model of parallel evaluation

Brent’s Theorem for evaluation on p processors

Sequences as a high-level abstraction for parallel programming

Example: Parallelizing n-Queens



Deterministic Parallelism

e Outcome of computation is uniquely determined
e But not exactly how the computation proceeds
 Enabled by
e Pure functions (no sharing, “race conditions”)
* High level abstraction: sequences

 Complex compiler and runtime system



Cost Graphs

» Cost Graphs model the interactions between sequential and
parallel computation

e Help us visualize
 Work and span of a computation
« Scheduling of computation (on a fixed number of processors)
* A cost graph is a directed acyclic graph with a source and a sink
* \We show the source (beginning of computation) at the top

» \We show the sink (end of computation) at the bottom



Cost Graph Constructions

Expression or Value o (single node = source = sink)
G (edge from sink of G1 to
. .. source of Go)
Sequential Composition \l,

Go (first G1, then Go)

v \ (new source and sink)

Parallel Composition Gt (G1 and G2 in parallel)

\/

fork / join



Example: (1 +2) * 4

. Work = total
Flow of time fo‘r/kQ number of nodes
f‘?‘\ Here: 9
1 0\ /0 2 @4
(1,2) ® Span = longest
l+ path from source
to sink
3 @
\\ Here: 7
® (3,4)
® 12



Brent’s Theorem

Theorem: An expression e with work W and
span S can be evaluated on a p-processor
machine in time

O(max(W/p, S))




Scheduling with Pebbles

. Work = total
Flow of time fo‘r/k0 number of nodes
f‘?‘\ Here: 9
1 0\ /Q 2 @4
(1,2) ® Span = longest
l+ path from source
to sink
3 @
\ Here: 7
® (3,4)
® 12


fp

fp


Sequences

The Sequence library provides an abstract type of ‘a seq

Write sequences as
<x0, nmmy Xn-1>

There are multiple different implementations (array-like, tree-like)

Functions on sequences are given with the cost graphs / work and span
* Not all implementations may achieve those exactly

e Also remember Brent’s Theorem!

|dea: functions in the library are parallel to the extent possible!



signature SEQUENCE =
S1g
type ‘a seq (* abstract)
val tabulate : (int -> ‘a) -> 1nt -> ‘a seq
val map : (‘a -> ‘b) -> ‘a seq -> ‘b seq
val reduce : (‘a * ‘a -> ‘a) -> ‘a -> ‘a seq -> ‘a
(* lots more stuff *)

end



tabulate
tabulate f n == <f(@), ... , f(n-1)>

Gi is the cost graph for evaluating f(1)

//\\>
\>//

Work(G) = Sum(Work(Gi)) + 2

» Cost graph

Span(G) = Max(Span(G)) + 2


fp

fp


map

map f <XQ g e g Xn-1> == <f X0y «.o. f Xn-1>

Gi is the cost graph for evaluating f Xx;

//\\>
\>//

Work(G) = Sum(Work(Gi)) + 2

» Cost graph

Span(G) = Max(Span(G)) + 2



reduce

reduce g z <Xg@,..,Xn-1> == X0 ® .. O Xn-1
reduce g z < > ==

* Here, g must be an associative operator with unit z (“requires”)

* 9(9(w,x),y) == g(w,g(x,y))

* g(x,2) ==X

© Write x 0 y = g(X,y)



reduce

reduce g z <Xg,..,Xn-1> == X0 O ..

reduce g z < > ==
» Cost graph

//\\>

G = Xn-2 Xn-1
\uf’ .o N
\J \ /
Work(G) = O(n) if Work(g \l l/

Span(G) = O(log(n)) if Span(g) O(1)

® Xn-1


fp

fp

fp


Summary

Cost Graphs as an abstract model of parallel evaluation

Brent’s Theorem for evaluation on p processors

Sequences as a high-level abstraction for parallel programming

Example: Parallelizing n-Queens



