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• Cost Graphs as an abstract model of parallel evaluation


• Brent’s Theorem for evaluation on p processors


• Sequences as a high-level abstraction for parallel programming


• Example: Parallelizing n-Queens

Outline



• Outcome of computation is uniquely determined


• But not exactly how the computation proceeds


• Enabled by


• Pure functions (no sharing, “race conditions”)


• High level abstraction: sequences


• Complex compiler and runtime system

Deterministic Parallelism



• Cost Graphs model the interactions between sequential and 
parallel computation


• Help us visualize


• Work and span of a computation


• Scheduling of computation (on a fixed number of processors)


• A cost graph is a directed acyclic graph with a source and a sink


• We show the source (beginning of computation) at the top


• We show the sink (end of computation) at the bottom

Cost Graphs



Cost Graph Constructions
Expression or Value (single node = source = sink)

Sequential Composition
G1

G2

(edge from sink of G1 to 
source of G2)

(first G1, then G2)

Parallel Composition G1 G2 (G1 and G2 in parallel)
(new source and sink)

fork / join



Example: (1 + 2) * 4
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fork

fork

Work = total 
number of nodes

Span = longest 
path from source 
to sink

Here: 9

Here: 7
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*

Flow of time



Brent’s Theorem

Theorem: An expression e with work W and 
span S can be evaluated on a p-processor 
machine in time


                     O(max(W/p, S))



Scheduling with Pebbles
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number of nodes

Span = longest 
path from source 
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Flow of time

fp

fp



• The Sequence library provides an abstract type of ‘a seq

• Write sequences as


• There are multiple different implementations (array-like, tree-like)


• Functions on sequences are given with the cost graphs / work and span


• Not all implementations may achieve those exactly


• Also remember Brent’s Theorem!


• Idea: functions in the library are parallel to the extent possible!

Sequences

<x0, …, xn-1>



signature SEQUENCE =

sig

  type ‘a seq  (* abstract)

  val tabulate : (int -> ‘a) -> int -> ‘a seq

  val map : (‘a -> ‘b) -> ‘a seq -> ‘b seq

  val reduce : (‘a * ‘a -> ‘a) -> ‘a -> ‘a seq -> ‘a

  (* lots more stuff *)

end



• Cost graph

tabulate f n == <f(0), ... , f(n-1)>
tabulate

G1 G2G0 Gn-1…

Gi is the cost graph for evaluating f(i)

Work(G) = Sum(Work(Gi)) + 2

Span(G) = Max(Span(Gi)) + 2

G   =

fp

fp



• Cost graph

map f <x0,…,xn-1> == <f x0, ... , f xn-1>
map

G1 G2G0 Gn-1…

Gi is the cost graph for evaluating f xi

Work(G) = Sum(Work(Gi)) + 2

Span(G) = Max(Span(Gi)) + 2

G   =



• Here, g must be an associative operator with unit z (“requires”)


• g(g(w,x),y) == g(w,g(x,y))


• g(x,z) == x


• Write   x ⊙ y = g(x,y)

reduce g z <x0,…,xn-1> == x0 ⊙ … ⊙ xn-1
reduce g z < > == z

reduce



• Cost graph

reduce

xn-2x0 xn-1

…

G   =

reduce g z <x0,…,xn-1> == x0 ⊙ … ⊙ xn-1
reduce g z < > == z

x1

⋱ ⋰

Work(G) = O(n) if Work(g) = O(1)
Span(G) = O(log(n)) if Span(g) = O(1)

…

fp

fp

fp



• Cost Graphs as an abstract model of parallel evaluation


• Brent’s Theorem for evaluation on p processors


• Sequences as a high-level abstraction for parallel programming


• Example: Parallelizing n-Queens

Summary


