
Parallelism
15-150 Lec 2, Frank Pfenning
Lecture 19
Tuesday April 7, 2020

• Cost Graphs as an abstract model of parallel evaluation

• Brent’s Theorem for evaluation on p processors

• Sequences as a high-level abstraction for parallel programming

• Example: Parallelizing n-Queens

Outline

• Outcome of computation is uniquely determined

• But not exactly how the computation proceeds

• Enabled by

• Pure functions (no sharing, “race conditions”)

• High level abstraction: sequences

• Complex compiler and runtime system

Deterministic Parallelism

• Cost Graphs model the interactions between sequential and
parallel computation

• Help us visualize

• Work and span of a computation

• Scheduling of computation (on a fixed number of processors)

• A cost graph is a directed acyclic graph with a source and a sink

• We show the source (beginning of computation) at the top

• We show the sink (end of computation) at the bottom

Cost Graphs

Cost Graph Constructions
Expression or Value (single node = source = sink)

Sequential Composition
G1

G2

(edge from sink of G1 to
source of G2)

(first G1, then G2)

Parallel Composition G1 G2 (G1 and G2 in parallel)
(new source and sink)

fork / join

Example: (1 + 2) * 4

1 2 4

3

(1,2)

(3,4)

12

fork

fork

Work = total
number of nodes

Span = longest
path from source
to sink

Here: 9

Here: 7

+

*

Flow of time

Brent’s Theorem

Theorem: An expression e with work W and
span S can be evaluated on a p-processor
machine in time

 O(max(W/p, S))

Scheduling with Pebbles

1 2 4

3

(1,2)

(3,4)

12

fork

fork

Work = total
number of nodes

Span = longest
path from source
to sink

Here: 9

Here: 7

+

*

Flow of time

fp

fp

• The Sequence library provides an abstract type of ‘a seq

• Write sequences as

• There are multiple different implementations (array-like, tree-like)

• Functions on sequences are given with the cost graphs / work and span

• Not all implementations may achieve those exactly

• Also remember Brent’s Theorem!

• Idea: functions in the library are parallel to the extent possible!

Sequences

<x0, …, xn-1>

signature SEQUENCE =

sig

 type ‘a seq (* abstract)

 val tabulate : (int -> ‘a) -> int -> ‘a seq

 val map : (‘a -> ‘b) -> ‘a seq -> ‘b seq

 val reduce : (‘a * ‘a -> ‘a) -> ‘a -> ‘a seq -> ‘a

 (* lots more stuff *)

end

• Cost graph

tabulate f n == <f(0), ... , f(n-1)>
tabulate

G1 G2G0 Gn-1…

Gi is the cost graph for evaluating f(i)

Work(G) = Sum(Work(Gi)) + 2

Span(G) = Max(Span(Gi)) + 2

G =

fp

fp

• Cost graph

map f <x0,…,xn-1> == <f x0, ... , f xn-1>
map

G1 G2G0 Gn-1…

Gi is the cost graph for evaluating f xi

Work(G) = Sum(Work(Gi)) + 2

Span(G) = Max(Span(Gi)) + 2

G =

• Here, g must be an associative operator with unit z (“requires”)

• g(g(w,x),y) == g(w,g(x,y))

• g(x,z) == x

• Write x ⊙ y = g(x,y)

reduce g z <x0,…,xn-1> == x0 ⊙ … ⊙ xn-1
reduce g z < > == z

reduce

• Cost graph

reduce

xn-2x0 xn-1

…

G =

reduce g z <x0,…,xn-1> == x0 ⊙ … ⊙ xn-1
reduce g z < > == z

x1

⋱ ⋰

Work(G) = O(n) if Work(g) = O(1)
Span(G) = O(log(n)) if Span(g) = O(1)

…

fp

fp

fp

• Cost Graphs as an abstract model of parallel evaluation

• Brent’s Theorem for evaluation on p processors

• Sequences as a high-level abstraction for parallel programming

• Example: Parallelizing n-Queens

Summary

