
Functors
15-150 Lec 2, Frank Pfenning


Lecture 17

Tuesday, March 24, 2020



Learning Objectives



Learning Objectives
• Why and how to parameterize modules



Learning Objectives
• Why and how to parameterize modules

• In SML



Learning Objectives
• Why and how to parameterize modules

• In SML

• Expressing parameters in signatures



Learning Objectives
• Why and how to parameterize modules

• In SML

• Expressing parameters in signatures

• Instantiating signatures



Learning Objectives
• Why and how to parameterize modules

• In SML

• Expressing parameters in signatures

• Instantiating signatures

• Type classes as certain signatures



Learning Objectives
• Why and how to parameterize modules

• In SML

• Expressing parameters in signatures

• Instantiating signatures

• Type classes as certain signatures

• Functors as parameterized structures



Review
Core Language Module Level

Type Signature

Expression Structure

Function Functor



Review



Review

• Abstract and concrete types in signatures



Review

• Abstract and concrete types in signatures

• Transparent and opaque signature ascription



Review

• Abstract and concrete types in signatures

• Transparent and opaque signature ascription

• Persistent data structures



Partial Summary



Partial Summary

• Every type in a signature is one of



Partial Summary

• Every type in a signature is one of

• Concrete: implementation and client both know



Partial Summary

• Every type in a signature is one of

• Concrete: implementation and client both know

• Abstract: client does not know, implementation defines



Partial Summary

• Every type in a signature is one of

• Concrete: implementation and client both know

• Abstract: client does not know, implementation defines

• Parameter: client defines, implementation doesn’t know



Module Constructs



Module Constructs

signature <sig> = sig … end



Module Constructs

signature <sig> = sig … end

<sig> where type <tp1> = <tp2>



Module Constructs

signature <sig> = sig … end

<sig> where type <tp1> = <tp2>

structure <str> :> <sig> = struct … end



Module Constructs

signature <sig> = sig … end

<sig> where type <tp1> = <tp2>

structure <str> :> <sig> = struct … end

functor <fctr> (<args>) :> <sig> = struct … end



Why Parameterize 
Modules?



Why Parameterize 
Modules?

• Client has an implementation that library needs


• Example: structure K : ORDERED



Why Parameterize 
Modules?

• Client has an implementation that library needs


• Example: structure K : ORDERED

• Library has an implementation that client needs


• Example: insert : ‘a dict * ‘a entry -> ‘a dict



Why Parameterize 
Modules?

• Client has an implementation that library needs


• Example: structure K : ORDERED

• Library has an implementation that client needs


• Example: insert : ‘a dict * ‘a entry -> ‘a dict

• Unfortunately, the syntax is the same!



Summary
Core Language Module Level

Type Signature

Expression Structure

Function Functor


