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Learning Objectives
• Why and how to parameterize modules

• In SML

• Expressing parameters in signatures

• Instantiating signatures

• Type classes as certain signatures

• Functors as parameterized structures
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Review

• Abstract and concrete types in signatures

• Transparent and opaque signature ascription

• Persistent data structures
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Partial Summary

• Every type in a signature is one of

• Concrete: implementation and client both know

• Abstract: client does not know, implementation defines

• Parameter: client defines, implementation doesn’t know
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Module Constructs

signature <sig> = sig … end

<sig> where type <tp1> = <tp2>

structure <str> :> <sig> = struct … end

functor <fctr> (<args>) :> <sig> = struct … end
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Why Parameterize 
Modules?

• Client has an implementation that library needs


• Example: structure K : ORDERED

• Library has an implementation that client needs


• Example: insert : ‘a dict * ‘a entry -> ‘a dict

• Unfortunately, the syntax is the same!
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