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1 Topics

• Using modules to design large programs

• Using modules to encapsulate common idioms

• Signatures and structures

• Information hiding and abstract types

A signature describes an interface. It can include types, values, and exceptions.
A structure describes an implementation. SML determines types for all of the components of a

structure, and checks that they are consistent with a given signature.
Components of a structure may be hidden (if they are not in the given signature) or visible. To

implement an abstract data type one keeps the type implementation hidden, and only makes visible
the operations that users need to build and manipulate values of that type. (The writeup for the
next lecture will include further discussion of this idea.)

2 Background

SML has a module system that helps when designing large programs. With good modular design,
you can

• divide your program up into smaller, more easily manageable, chunks called modules (or
structures);

• for each chunk, specify an interface (or signature) that limits the way it interacts with the
rest of the program.

Modularity can bring practical benefits:

• separate development – modules can be implemented independently

∗Adapted with small changes from a document by Stephen Brookes.
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• clients have limited access, which may prevent misuse of data

• easy maintenance – we can recompile one module without disrupting others, as long as we
obey the interface constraints.

One can also use modules to group together related types and functions, and to encapsulate a
commonly occurring pattern, such as a type equipped with certain operations. A good example of
this is an abstract data type. Using modular design one can ensure that users of an abstract data
type are only allowed to build values that are guaranteed to obey some desired properties, such as
being a binary search tree. One may thus ensure that users never break the invariants associated
with an implementation of the abstract data type. In turn, that facilitates design of efficient and
correct code.

3 Main Ideas

A signature is an interface specification that lists some types, functions, and values. For example,

signature ARITH =

sig

type integer (* abstract *)

val rep : int -> integer

val display : integer -> string

val add : integer * integer -> integer

val mult : integer * integer -> integer

end

is an interface that includes

• a type named integer

• a function value named rep, of type int -> integer

• a function value named display, of type integer -> string

• function values named add and mult, each of type integer * integer -> integer.

Just introducing this signature by itself doesn’t actually cause the creation or availability of any
such types or values. (The SML REPL will just parrot back to us the signature definition.) To
generate data we need to implement the signature, by building a structure that fills in the missing
details. There are many different ways to do this, as we will see. Here is one, which we will refer to
as the “standard” implementation, because it implements the type integer as the SML type int.

Before continuing, note that we included in the signature ARITH a type called integer for rep-
resenting integers (in ways we will discuss), a function rep to create a representation for an integer
from a value of type int, operations called add and mult for combining integer representations, and
a function display that can be used to generate a string from an integer representation. To keep
things clear, we use the term “integer representation” for a value of type integer, and “integer”
for a value of type int.
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structure Ints =

struct

type integer = int

fun rep (n:int):integer = n

fun display (n:integer):string = Int.toString n

val add:integer * integer -> integer = (op +)

val mult:integer * integer -> integer = (op * )

end

(In the last line, observe the space between "*" and ")" to avoid confusion with comments.)

If we enter this into the SML REPL we get the response

structure Ints :

sig

type integer = int

val rep : int -> integer

val display : integer -> string

val add : integer * integer -> integer

val mult : integer * integer -> integer

end

and again this looks suggestively like a typing statement: the structure Ints has the signature
reported above. In fact this is almost the same signature as the one we called ARITH, and SML
discovered this signature automatically, just as it figures out most general types for expressions.
The only difference is that here we see that the type integer is known to be int and this is
reported in the signature above.

It would have been just as acceptable to write

structure Ints =

struct

type integer = int

fun rep (n:int):integer = n

fun display (n:int):string = Int.toString n

val add:int * int -> int = (op +)

val mult:int * int -> int = (op * )

end

because the SML type inference engine works equally well.
We can indicate our intention to use this structure as an implementation of the ARITH signature,

by writing

structure Ints : ARITH =

struct

type integer = int

fun rep (n:int):integer = n

fun display (n:integer):string = Int.toString n

val add:integer * integer -> integer = (op +)

val mult:integer * integer -> integer = (op * )

end
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From this example you may see that signatures can play a similar role for structures as types do
for values. This time the SML REPL will respond

structure Ints : ARITH

and we must go back and look at the signature to see that SML is telling us that Ints makes visible
the following:

type integer

val rep : int -> integer

val display : integer -> string

val add : integer * integer -> integer

val mult : integer * integer -> integer

but not the fact that integer is implemented as the type int. The SML results confirm our
feeling that Ints really does implement ARITH, because inside the body of the Ints structure are
declarations of exactly the things required, with types consistent with those in the signature.

Having made this structure definition, we can use the data defined inside, but because they
appear inside the structure body we need to use “qualified names”. For example, Ints.add is a
name we can use to call the add function defined inside Ints.

We’ve already seen some uses of this kind of qualified name. The SML implementation contains
several built-in structures with standard signatures – the SML Basis Library. Among these are
structures such as String, and the signature for String includes

compare : string * string -> order

Similarly there is a structure called Int, whose signature includes

compare : int * int -> order

To disambiguate between these two functions we call them

String.compare : string * string -> order

Int.compare : int * int -> order

(We chose to name our structure Ints, to avoid clashing with Int.)
We could have ascribed to a different signature that makes fewer things visible to users of the

structure. For example, the signature

signature ARITH2 =

sig

type integer

val add : integer * integer -> integer

val mult : integer * integer -> integer

end

doesn’t include rep or display.

If we now define Ints2 as on the next page, then we are only allowed to use Ints2.add,
Ints2.mult, and the type Ints2.integer, but Ints2.rep and Ints2.display would be disal-
lowed. They are invisible to a user outside the structure Ints2, since the signature ARITH2 does
not mention rep or display.
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structure Ints2 : ARITH2 =

struct

type integer = int

fun rep (n:int):integer = n

fun display (n:integer):string = Int.toString n

val add:integer * integer -> integer = (op +)

val mult:integer * integer -> integer = (op * )

end

The same restrictions hold if we define

structure Ints2 : ARITH2 = Ints

Side note: Observe how we can define a structure by binding a name (Ints2) to an existing structure
(Ints) and constrain its use to a given signature (ARITH2).

Decimal digit representation of integers

Now let’s look at another way to implement ARITH: representing “integer” values as lists of decimal
digits (in reverse order, with least significant digit first; this order makes digitwise arithmetic
operations easy). We’ll define a structure Dec, and give it the signature ARITH. Inside this structure
we’ll include some local functions and local type declarations, which we use inside the structure
to help with the code implementation, but which (being locally scoped and not included in the
signature ARITH) are not available to users of the Dec structure. This illustrates the usefulness of
signatures as a way of hiding information that we don’t want to be seen. We can easily prevent users
from having access to helper functions that are needed inside the structure, simply by omitting
them from the signature that we “ascribe” to the structure. In the example above we ascribed the
signature ARITH to the structure named Int.

structure Dec : ARITH =

struct

type digit = int (* use only digits 0,1,2,3,4,5,6,7,8,9 *)

type integer = digit list

fun rep 0 = [ ] | rep n = (n mod 10) :: rep (n div 10)

(* carry : digit * integer -> integer *)

fun carry (0, ps) = ps

| carry (c, [ ]) = [c]

| carry (c, p::ps) = ((p+c) mod 10) :: carry ((p+c) div 10, ps)

fun add ([ ], qs) = qs

| add (ps, [ ]) = ps

| add (p::ps, q::qs) =

((p+q) mod 10) :: carry ((p+q) div 10, add(ps,qs))
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(* times : digit -> integer -> integer *)

fun times 0 qs = [ ]

| times k [ ] = [ ]

| times k (q::qs) =

((k * q) mod 10) :: carry ((k * q) div 10, times k qs)

fun mult ([ ], _) = [ ]

| mult (_, [ ]) = [ ]

| mult (p::ps, qs) = add (times p qs, 0 :: mult (ps, qs))

fun display [ ] = "0"

| display L = foldl (fn (d, s) => Int.toString d ^ s) "" L

end

Notice that the structure Dec does indeed conform to the signature ARITH: it does define

• a type named integer (NOTE: This type is now implemented as digit list not as int)

• a function value named rep, of type int -> integer

• a function value named display, of type integer -> string

• function values named add and mult, each of type integer * integer -> integer.

The functions carry and times, and the type digit, are local to the structure, not part of
the signature, so they are not visible externally. This means, for instance, that a user can refer to
Dec.add, but Dec.carry makes no sense.

Examples:

Dec.rep 123 ==> [3,2,1]

Dec.rep 0 ==> [ ]

Dec.rep 000 ==> [ ]

Dec.rep (12+13) ==> [5,2]

Dec.add([2,1], [3,1]) ==> [5,2]

Dec.display(Dec.add([2,1], [3,1])) ==> "25"

Every value of type Dec.integer built from Dec.rep, Dec.add, Dec.mult is a list of decimal digits.
Explain why.

To establish the “correctness” of this implementation, we introduce the following helper func-
tions:

(* inv : int list -> bool *)

fun inv [ ] = true

| inv (d::L) = 0 <= d andalso d <= 9 andalso inv L

(* eval : int list -> int

For all non-negative integers n, eval(rep n) ==> n *)

fun eval [ ] = 0

| eval (d::L) = d + 10 * eval(L)
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The purpose of these functions is to help us make a sensible specification of what it means for this
implementation to be “correct”.

First, one can establish the following facts (e.g., by induction):

• For all L:int list, inv(L) ∼= true iff L is a list of decimal digits.

• For all non-negative integers n, rep(n) evaluates to a list L such that inv(L) ∼= true.

• For all L:int list such that inv(L) ∼= true, i.e., for all lists L of decimal digits, eval L is
a non-negative integer. We call this the integer represented by L.

• For all non-negative integers n, rep(n) is a list of decimal digits such that eval(rep(n))

==> n.

Some examples:

Dec.rep 1230 ==> [0,3,2,1]

eval [0,3,2,1] ==> 0 + 10 * (eval [3,2,1])

==> 0 + 10 * (3 + 10 * (2 + 10 * (1 + 10 * eval [ ])))

==> 0 + 10 * (3 + 10 * (2 + 10 * (1 + 10 * 0)))

==> 0 + 10 * (3 + 10 * (2 + 10 * (1 + 0)))

==> 1230

eval [0,3,2,1,0] ==> 1230

Dec.display(Dec.mult(Dec.rep 10, Dec.rep 20)) ==> "200"

We have introduced some tools (eval and inv) to help us talk accurately about what it means
for a value of type Dec.integer to be a list of decimal digits, and for such a value to “represent”
a given integer n. We can also use these tools to define “correctness” for the operations Dec.add
and Dec.mult:

• For all values L,R:int list, if inv(L) ∼= true and inv(R) ∼= true, then Dec.add(L, R)

evaluates to a list A such that inv(A) ∼= true, and eval(A) ∼= eval(L) + eval(R).

• For all values L,R:int list, if inv(L) ∼= true and inv(R) ∼= true, then Dec.mult(L, R)

evaluates to a list A such that inv(A) ∼= true, and eval(A) ∼= eval(L) * eval(R).

To prove these results about Dec.add and Dec.mult we’ll need lemmas about the behavior of carry
and times. What lemmas? We need the following, which one may prove by induction: (here carry
and times refer to the function implementations within structure Dec).

• For all values L:int list and c:int, if inv(L) ∼= true then
inv(carry(c, L)) ∼= true and eval(carry(c, L)) ∼= c + eval(L).

• For all values L:int list and c:int, if inv(L) ∼= true then
inv(times(c, L)) ∼= true and eval(times(c, L)) ∼= c * eval(L).

Exercise: prove these lemmas, and use them to prove the above properties of Dec.add and Dec.mult.
You may need the following fact: for all n:int,

n ∼= 10 * (n div 10) + (n mod 10).
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We can use the Dec structure to perform arithmetic calculations on integer representations
that would, if done directly using the built-in type int, encounter overflow problems. Here is an
example: computing the factorial of an integer (e.g., 100) whose factorial is too large to be an
allowed value of type int.

(* fact : int -> Dec.integer *)

fun fact n =

if n=0 then Dec.rep 1 else Dec.mult (Dec.rep n, fact (n-1))

Note the type: fact takes an SML integer and returns a list of decimal digits.
For all non-negative n, eval(fact n) represents the factorial of n.

List.rev(fact 100) ==>

[9,3,3,2,6,2,1,5,4,4,3,9,4,4,1,5,2,6,8,1,6,9,9,2,3,8,8,5,6,2,6,6,7,0,0,

4,9,0,7,1,5,9,6,8,2,6,4,3,8,1,6,2,1,4,6,8,5,9,2,9,6,3,8,9,5,2,1,7,5,9,

9,9,9,3,2,2,9,9,1,5,6,0,8,9,4,1,4,6,3,9,7,6,1,5,6,5,1,8,2,8,6,2,5,3,6,

9,7,9,2,0,8,2,7,2,2,3,7,5,8,2,5,1,1,8,5,2,1,0,9,1,6,8,6,4,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

(Note: we reverse the list, because when we write out a number in decimal notation the least
significant digits go on the right, not the left.)

Thus, the factorial of 100 is

93326215443944152681699238856266700490715968264

38162146859296389521759999322991560894146397615

6518286253697920827223758251185210916864000000000000000000000000

Dec.display(fact 100) ==>

"93326215443944152681699238856266700490715968264

38162146859296389521759999322991560894146397615

6518286253697920827223758251185210916864000000000000000000000000"
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Binary representation

Actually, there is nothing special about decimal: we could use binary just as well.
The following structure is a binary digit implementation of ARITH:

structure Bin : ARITH =

struct

type digit = int (* use only 0 and 1 *)

type integer = digit list

fun rep 0 = [ ] | rep n = (n mod 2) :: rep (n div 2)

(* carry : digit * integer -> integer *)

fun carry (0, ps) = ps

| carry (c, [ ]) = [c]

| carry (c, p::ps) = ((p+c) mod 2) :: carry ((p+c) div 2, ps)

fun add ([ ], qs) = qs

| add (ps, [ ]) = ps

| add (p::ps, q::qs) =

((p+q) mod 2) :: carry ((p+q) div 2, add (ps,qs))

(* times : digit -> integer -> integer *)

fun times 0 qs = [ ]

| times k [ ] = [ ]

| times k (q::qs) =

((k * q) mod 2) :: carry ((k * q) div 2, times k qs)

fun mult ([ ], _) = [ ]

| mult (_, [ ]) = [ ]

| mult (p::ps, qs) = add (times p qs, 0 :: mult (ps,qs))

fun display [ ] = "0"

| display L = foldl (fn (d, s) => Int.toString d ^ s) "" L

end

We could again compute factorials, now in binary representation:

(* fact : int -> Bin.integer *)

fun fact n = if n=0 then Bin.rep 1 else Bin.mult (Bin.rep n, fact (n-1))

Bin.display(fact 100) ==>

"110110011000010010110010011101100001110010101110111000010010000000110100

101010010100011010101010010111011110110100100000011010001011011101001011

001101110111110011010011100001110101100100001101101011011001010010100001

110100011001000011100110111110001000000111001000101110100010101010111000

011001100101010010100001000001100011011101100101100111011011100101110110

100101110111010001011000000101110101000100111001101011100011000011010000

000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000"
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4 Binary Search Trees

Now we revisit binary search trees of integers, to reinforce the benefits of information hiding. Recall
that a binary search tree is a binary tree that is sorted, as defined in the lecture on tree sorting.
For simplicity we do not include deletion as an allowed operation, but it is not difficult to augment
the signature and structures to incorporate deletion.

signature TREE =

sig

datatype tree = Leaf | Node of tree * int * tree (* concrete *)

val empty : tree

val insert : int * tree -> tree

val trav : tree -> int list

end

The type tree and the constructors Leaf and Node will be visible to users. So will be the
functions insert and trav.

structure Bst : TREE =

struct

datatype tree = Leaf | Node of tree * int * tree

val empty = Leaf

fun insert (x, Leaf) = Node(Leaf, x, Leaf)

| insert(x, Node(T1, y, T2)) =

(case Int.compare(x,y) of

LESS => Node(insert(x, T1), y, T2)

| EQUAL => Node(T1, y, T2) (* we do not keep duplicates *)

| GREATER => Node(T1, y, insert(x, T2)))

fun trav Leaf = [ ]

| trav (Node(T1, x, T2)) = trav T1 @ (x :: trav T2)

end

To a user outside the structure Bst, the names Bst.tree, Bst.empty, Bst.insert, and
Bst.trav are in scope. Perhaps less obviously, so are Bst.Leaf and Bst.Node.

Every tree built from Bst.empty using the Bst.insert operation is guaranteed to be a valid
binary search tree, because Bst.Leaf is a binary search tree, and Bst.insert(x, T) is a binary
search tree whenever T is a binary search tree.

However, since Bst.Node and Bst.Leaf are in scope outside the structure, a user could construct
a value of type Bst.tree that is not a valid binary search tree. Example:

2

Bst.Node(Bst.Leaf, 2, Bst.Node(Bst.Leaf, 1, Bst.Leaf)) i.e., \

1

We can revise our signature and structure design to prevent this. See next page.
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signature TREE =

sig

type tree (* abstract *)

val empty : tree

val insert : int * tree -> tree

val trav : tree -> int list

end

For any structure Bst ascribing to this revised signature, Bst.empty, Bst.insert, and Bst.trav
are in scope for external users, as is the type Bst.tree. But, that’s all! The specific tree

implementation is not available for use since it is not even specified in the signature. One says that
the tree implementation is abstract.

structure Bst : TREE =

struct

datatype tree = Leaf | Node of tree * int * tree

(* The datatype constructors Leaf and Node are not in TREE, *)

(* so will not be in scope outside of this structure body. *)

val empty = Leaf

fun insert (x, Leaf) = Node(Leaf, x, Leaf)

| insert(x, Node(T1, y, T2)) =

(case Int.compare(x,y) of

LESS => Node(insert(x, T1), y, T2)

| EQUAL => Node(T1, y, T2) (* we do not keep duplicates *)

| GREATER => Node(T1, y, insert(x, T2)))

fun trav Leaf = [ ]

| trav (Node(T1, x, T2)) = trav T1 @ (x :: trav T2)

end

The structure implementation above looks identical to what we had before, but now the signa-
ture is different. Bst.Node and Bst.Leaf are not in scope for an external user. Thus the signature
prevents a user from inventing bogus tree values.

A user still can see that trees are constructed via Node and Leaf but cannot pattern-match on
or use those constructors directly. For instance, in the REPL:

- val T = Bst.insert(2, Bst.empty);

val T = Node (Leaf,2,Leaf) : Bst.tree

However, an attempt to use Bst.Leaf or Bst.Node is now an error:

- Bst.Leaf;

stdIn:94.1-94.5 Error: unbound variable or constructor: Leaf in path Bst.Leaf

The writeup for next lecture will discuss opaque ascription as an even stronger method for
hiding data, in which a user would not even be able to see that trees are constructed using Node

and Leaf.
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We could have achieved something similar as follows:

structure Bst : TREE =

struct

datatype foo = Leaf | Node of foo * int * foo

type tree = foo

(* Again, the datatype constructors Leaf and Node are not in TREE, *)

(* so will not be in scope outside of this structure body. *)

val empty = Leaf

fun insert (x, Leaf) = Node(Leaf, x, Leaf)

| insert(x, Node(T1, y, T2)) =

(case Int.compare(x,y) of

LESS => Node(insert(x, T1), y, T2)

| EQUAL => Node(T1, y, T2) (* we do not keep duplicates *)

| GREATER => Node(T1, y, insert(x, T2)))

fun trav Leaf = [ ]

| trav (Node(T1, x, T2)) = trav T1 @ (x :: trav T2)

end

Every value of type Bst.tree built from Bst.empty and Bst.insert is guaranteed to be a
valid binary search tree. These are the ONLY ways users can build values of type Bst.tree.

5 Functors

The discussion of decimal digitwise arithmetic, and the very similar code dealing with binary arith-
metic, is an example of a rather common occurrence: there may be an entire family of closely
related ways to do something (here, arithmetic on integers), parameterized by some easily identi-
fiable feature (here, the choice of base for the digits: 10 or 2, but any positive integer would work
just as well).

Soon we will see that the SML module system offers an elegant way to take advantage of
recurring common patterns in code design. We do not have to write an entire family of structures,
one for each choice of base. Instead, we will be able to write a “function” that operates on structures,
called a functor.
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