
Modules
15-150	Lec	2,	Frank	Pfenning	

Lecture	16	
Thursday,	March	19,	2020

1



Learning Objectives

2



Learning Objectives

• What	is	a	module?

2



Learning Objectives

• What	is	a	module?
• Which	properties	may	a	module	possess	or	not?

2



Learning Objectives

• What	is	a	module?
• Which	properties	may	a	module	possess	or	not?
• What	are	the	consequences	for	the	programmer?

2



Learning Objectives

• What	is	a	module?
• Which	properties	may	a	module	possess	or	not?
• What	are	the	consequences	for	the	programmer?

• signatures	and	structures	in	SML

2



Learning Objectives

• What	is	a	module?
• Which	properties	may	a	module	possess	or	not?
• What	are	the	consequences	for	the	programmer?

• signatures	and	structures	in	SML
• Implementing	data	structures

2



Learning Objectives

• What	is	a	module?
• Which	properties	may	a	module	possess	or	not?
• What	are	the	consequences	for	the	programmer?

• signatures	and	structures	in	SML
• Implementing	data	structures

2



Learning Objectives

• What	is	a	module?
• Which	properties	may	a	module	possess	or	not?
• What	are	the	consequences	for	the	programmer?

• signatures	and	structures	in	SML
• Implementing	data	structures

• Next	lecture:	functors

2



Outline

3



Outline

• Module	concepts	
• Transparent	and	opaque	signature	ascription	
• Name	space	management	
• Data	abstraction	/	representation	independence	
• SML	Standard	Basis	Library

3



Outline

• Module	concepts	
• Transparent	and	opaque	signature	ascription	
• Name	space	management	
• Data	abstraction	/	representation	independence	
• SML	Standard	Basis	Library

• Data	structures	
• Representation	invariants	
• Persistent	vs.	ephemeral	data	structures	
• Queues,	Binary	search	trees

3



Units of Code

4



Units of Code

• Expression	(command)

4



Units of Code

• Expression	(command)
• Function	(procedure)

4



Units of Code

• Expression	(command)
• Function	(procedure)
• Structure	(module,	library)

4



Units of Code

• Expression	(command)
• Function	(procedure)
• Structure	(module,	library)

Type	as	interface	to	compiler/runtime	system

4



Units of Code

• Expression	(command)
• Function	(procedure)
• Structure	(module,	library)

Type	as	interface	to	compiler/runtime	system

Type	as	interface	to	function

4



Units of Code

• Expression	(command)
• Function	(procedure)
• Structure	(module,	library)

Type	as	interface	to	compiler/runtime	system

Type	as	interface	to	function

Signature	as	interface	to	structure

4



Units of Code

• Expression	(command)
• Function	(procedure)
• Structure	(module,	library)

Type	as	interface	to	compiler/runtime	system

Type	as	interface	to	function

Signature	as	interface	to	structure

Typing	at	each	level	accomplishes	different	
things	but	bigger	units	rely	on	properties	
established	for	smaller	units	

4



Name Space Management

5



Name Space Management

• structure <struct> : <sig> = struct … end

5



Name Space Management

• structure <struct> : <sig> = struct … end
• Only	types	and	values	in	signature	can	be	mentioned	

• <struct>.<type> or		<struct>.<value>

5



Name Space Management

• structure <struct> : <sig> = struct … end
• Only	types	and	values	in	signature	can	be	mentioned	

• <struct>.<type> or		<struct>.<value>
• But	type	definitions	are	transparent		

• Lack	of	data	abstraction	
• Only	name	space	management

5



Name Space Management

• structure <struct> : <sig> = struct … end
• Only	types	and	values	in	signature	can	be	mentioned	

• <struct>.<type> or		<struct>.<value>
• But	type	definitions	are	transparent		

• Lack	of	data	abstraction	
• Only	name	space	management

I	never	use	transparent	ascription	for	
structures	(too	easy	to	get	tripped	up	
because	of	the	illusion	of	abstraction)

5



Name Space Management

• structure <struct> : <sig> = struct … end
• Only	types	and	values	in	signature	can	be	mentioned	

• <struct>.<type> or		<struct>.<value>
• But	type	definitions	are	transparent		

• Lack	of	data	abstraction	
• Only	name	space	management

I	never	use	transparent	ascription	for	
structures	(too	easy	to	get	tripped	up	
because	of	the	illusion	of	abstraction)Need	to	reconsider	in	

next	lecture	for	functors
5



Data Structure Persistence

6



Data Structure Persistence

• Pure	data	structures	are	persistent	
• “Old	generations”	of	a	data	structure	may	remain	accessible	
• “Garbage	collection”	deallocates

6



Data Structure Persistence

• Pure	data	structures	are	persistent	
• “Old	generations”	of	a	data	structure	may	remain	accessible	
• “Garbage	collection”	deallocates

• Mutable	data	structures	are	ephemeral	
• Old	versions	are	no	longer	accessible	
• Need	to	track	state	and	state	changes	globally	
• May	need	to	deallocate	manually

6



Data Structure Persistence

• Pure	data	structures	are	persistent	
• “Old	generations”	of	a	data	structure	may	remain	accessible	
• “Garbage	collection”	deallocates

• Mutable	data	structures	are	ephemeral	
• Old	versions	are	no	longer	accessible	
• Need	to	track	state	and	state	changes	globally	
• May	need	to	deallocate	manually

• Ephemeral	data	structures	are	a	significant	source	of	bugs

6



Data Abstraction

7



Data Abstraction

• Client	cannot	tell	or	exploit	representation

7



Data Abstraction

• Client	cannot	tell	or	exploit	representation
• Does	this	remind	you	of	anything?

7



Data Abstraction

• Client	cannot	tell	or	exploit	representation
• Does	this	remind	you	of	anything?

Yes!	It	lifts	parametric	polymorphism	at	
the	level	of	functions	to	structures

7



Data Abstraction

• Client	cannot	tell	or	exploit	representation
• Does	this	remind	you	of	anything?

• For	example,		? : ‘a -> ‘a -> ‘a

Yes!	It	lifts	parametric	polymorphism	at	
the	level	of	functions	to	structures

7



Data Abstraction

• Client	cannot	tell	or	exploit	representation
• Does	this	remind	you	of	anything?

• For	example,		? : ‘a -> ‘a -> ‘a
• Important	consequence	

• We	can	replace	an	implementation	with	a	better	one!	
• As	long	as	that	is	(also)	correct,	the	client	will	continue	to	work	
• Very	few	languages	support	this	form	of	guarantee

Yes!	It	lifts	parametric	polymorphism	at	
the	level	of	functions	to	structures

7



Summary

8



Summary

• Signatures	are	interfaces	to	structures	
• Contain	concrete	and	abstract	types	
• Contain	declarations	of	types	for	values	(including	functions,	of	course)

8



Summary

• Signatures	are	interfaces	to	structures	
• Contain	concrete	and	abstract	types	
• Contain	declarations	of	types	for	values	(including	functions,	of	course)

• Transparent	signature	ascription	provides	name	space	management

8



Summary

• Signatures	are	interfaces	to	structures	
• Contain	concrete	and	abstract	types	
• Contain	declarations	of	types	for	values	(including	functions,	of	course)

• Transparent	signature	ascription	provides	name	space	management
• Opaque	signature	ascription	provides	data	abstraction	

• Reap	the	full	benefits	of	a	well-designed	language	and	type	system	
• Guarantees	for	every	program,	automatically,	rather	than	conventions

8



Summary

• Signatures	are	interfaces	to	structures	
• Contain	concrete	and	abstract	types	
• Contain	declarations	of	types	for	values	(including	functions,	of	course)

• Transparent	signature	ascription	provides	name	space	management
• Opaque	signature	ascription	provides	data	abstraction	

• Reap	the	full	benefits	of	a	well-designed	language	and	type	system	
• Guarantees	for	every	program,	automatically,	rather	than	conventions

• Only	data	abstraction/representation	independence	makes	
programming	truly	modular

8


