
1 What Are Lists?

A list of integers (a value of type int list) is either

[], or

x :: xs where x : int and xs : int list.

And that’s it!

[] is pronounced “nil” or “the empty list”; :: is pronounced “cons”. Therefore, the values of type
int list are lists like these:

1 :: (2 :: (3 :: (4 :: [])))

This can also be written without the parens as

1 :: 2 :: 3 :: 4 :: []

because :: is right-associative. For a particular list with a fixed number of elements, you can also
write the elements inside of square-brackets separated by commas, as in

[1,2,3,4]

This is just a convenient notation from SML; it’s short hand for the above form.

The operation on lists is case analysis (and recursion):

case l of

[] => <branch1>

| x :: xs => <branch2, with (x : int) and (xs : int list) in scope>

giving a branch for [] and a branch for ::. In the body of the :: branch, the variable x stands
for the first element of the list, and the variable xs stands for the rest of the list.

Note that :: is being used both to create lists, in value declarations, and take lists apart, in
the part of the :: branch to the left of =>.

(by Ian Voysey, Spring 2012)


