
15-150

Principles of Functional Programming
Michael Erdmann Frank Pfenning

Miranda Lin Helen Li Harrison Grodin

Aditi Gupta, Alexander Liao, Ariel Davis, Ashwin Srinivasan,
Brandon Wu, Brian Scheuermann, Disha Das, Elliot Spargo,

Emma Cohron, Ethan Rosenthal, Eunice Chen,
Gabriel Chuang, George Ralph, Henry Nelson,

Isabel Gan, Isabelle Augensen, Jacob Neumann, Julia Gu,
Kalvin Chang, Kaz Zhou, Keshav Narayan, Kevin Grosman,

Matthew McQuaid, Mia Tang, Michael Zhang, Minji Kim,
Minji Lee, Nathan Walker, Nikhita Subbiah,

Samarth Malhotra, Shyam Sai, Siddharth Girdhar, Sue Lee,
Timothy Ganger

Course Webpage

http://www.cs.cmu.edu/~15150/

Policies: http://www.cs.cmu.edu/~15150/policy.html

Lectures: http://www.cs.cmu.edu/~15150/lect.html

http://www.cs.cmu.edu/~15150/
http://www.cs.cmu.edu/~15150/policy.html
http://www.cs.cmu.edu/~15150/lect.html

Parallelism
/\

< 1, 0, 0, 1, 1 > 3,
< 1, 0, 1, 1, 0 > 3,
< 1, 1, 1, 0, 1 > 4,
< 0, 1, 1, 0, 0 > 2,

\/
↓
12

Parallelism

sum : int sequence → int
type row = int sequence
type room = row sequence

fun count (class : room) : int =
sum (map sum class)

Parallelism
• Work:

• Sequential Computation
• Total sequential time;

number of operations

• Span:
• Parallel Computation
• How long would it take if one could have as

many processors as one wants;
length of longest critical path

Types

A type is a prediction about the kind of value an
expression will have if it winds up reducing to a value.

An expression is well-typed if it has at least one type,
and ill-typed otherwise.

(We may also say that an expression type-checks,
meaning that it is well-typed.)

First, type-check an expression.

If the expression is well-typed,

then evaluate the expression.

(The ML compiler does that.)

n,
with n the sum of the
integer values n and n .1 2

Example of a well-typed

expression with no value

5 div 0 : int

Extensional Equivalence

=~

An equivalence relation on expressions
(of the same type).

• Expressions are extensionally equivalent if they
have the same type and one of the following is true:

both expressions reduce to the same value,

or both expressions raise the same exception,

or both expressions loop forever.

• Functions are extensionally equivalent if they map equivalent
arguments to equivalent results.

• In proofs, we use as shorthand for “is equivalent to”.

• Examples:

• Functional programs are referentially transparent, meaning:
– The value of an expression depends only on the values of its sub-expressions.
– The type of an expression depends only on the types of its sub-expressions.

21 + 21 42 6 ∗ 7
[2, 7, 6] [1+1, 2+5, 3+3]
(fn x => x + x) (fn y => 2 ∗ y)

Extensional Equivalence

=~

=~
=~ =~

=~

DO NOT USE!

 You will learn how to extract
components using pattern matching

*

*

Functions
In math, one talks about a function f
mapping between spaces X and Y,

f : X → Y
In SML, we will do the same, with X and Y being types.

Definition: A function f is total if f(x) returns
a value for all values x in X.

Issue: Computationally, a function may not always
return a value. That complicates checking equivalence.

(Totality is a key difference between math and computation.)

Sample Function Code

Sample Function Code

keyword function
name

argument
name & type

result
type

body of function

function type

Five-Step Methodology

keyword function
name

argument
name & type

result
type

body of function

function type1
2

3

4

5

Closures
Function declarations also create value bindings:

binds a closure to the identifier square.

Closures
Function declarations also create value bindings:

binds a closure to the identifier square.
The closure consists of two parts:

 A lambda expression (anonymous function value):

 An environment (all prior value bindings).

keyword argument
name & type

body of function

Closures
Function declarations also create value bindings:

binds a closure to the identifier square.

Course Tasks

• Assignments 35%
• Labs 10%
• Midterm 1 15%
• Midterm 2 15%
• Final 25%

Roughly one assignment per week, one lab per week.

Collaboration

Be sure to read the
course and university webpages

regarding academic integrity.

	Functions.pdf
	Functions
	Functions
	Functions

	Types.pdf
	Types

	Types.pdf
	Types

	Types.pdf
	Types

	Types.pdf
	Types

	Title.pdf
	15-150�Principles of Functional Programming
	15-150�Principles of Functional Programming

	CourseTasks.pdf
	Course Tasks

	Title.pdf
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming

	Integrity.pdf
	Collaboration

	Title.pdf
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming

