## $15-150$

## Principles of Functional Programming

Michael Erdmann Frank Pfenning

## Miranda Lin Helen Li Harrison Grodin

Aditi Gupta, Alexander Liao, Ariel Davis, Ashwin Srinivasan, Brandon Wu, Brian Scheuermann, Disha Das, Elliot Spargo,

Emma Cohron, Ethan Rosenthal, Eunice Chen, Gabriel Chuang, George Ralph, Henry Nelson, Isabel Gan, Isabelle Augensen, Jacob Neumann, Julia Gu, Kalvin Chang, Kaz Zhou, Keshav Narayan, Kevin Grosman, Matthew McQuaid, Mia Tang, Michael Zhang, Minji Kim, Minji Lee, Nathan Walker, Nikhita Subbiah, Samarth Malhotra, Shyam Sai, Siddharth Girdhar, Sue Lee, Timothy Ganger

## Course Webpage

## http://www.cs.cmu.edu/~15150/

Policies: http://www.cs.cmu.edu/~15150/policy.htm|
Lectures: http://www.cs.cmu.edu/~15150/lect.htm|
1
$=:$
$=$
$=:$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=$

Computation is Functional
values: types expressions
Functions map values to values

| Imperative | vs. |
| :---: | :---: |
| Functional |  |
| Command | Expression |
| $\downarrow$ | $\downarrow$ |
| - executed | - evaluated |
| - has an effect | - no effect |
| $x:=5$ | $3+4$ |
| (state) | (value) |

Programming as Explanation
Problem statement
high expectation - invariants
to explain $\{$ - specifications
precisely concisely . proofs of correctness

- code

Analyze, Decompose Fit, Prove

## Parallelism

$$
\begin{array}{lll} 
& & \Lambda \\
<1,0,0,1,1\rangle & \rightarrow & 3, \\
<1,0,1,1,0\rangle & \rightarrow & 3, \\
\langle 1,1,1,0,1\rangle & \rightarrow & 4, \\
\langle 0,1,1,0,0\rangle & \rightarrow & 2, \\
& & V \\
& & \downarrow \\
& & 12
\end{array}
$$

## Parallelism

sum : int sequence $\rightarrow$ int
type row = int sequence
type room = row sequence
fun count (class : room) : int = sum (map sum class)

## Parallelism

- Work:
- Sequential Computation
- Total sequential time; number of operations
- Span:
- Parallel Computation
- How long would it take if one could have as many processors as one wants; length of longest critical path


## Defining ML (Effect-Free Fragment)

- Types $t$
- Expressions $e$
- Values $v$ (subset of expressions)

Examples:

$$
\begin{aligned}
& (3+4) * 2 \\
& \stackrel{1}{\Rightarrow} \quad 7 * 2 \\
& \Rightarrow \quad 14 \\
& (3+4) *(2+1) \\
& \stackrel{3}{\Rightarrow} \quad 21
\end{aligned}
$$

"the " 1 "walrus"
$\stackrel{ }{ }{ }^{( }$"the walrus"

The expression "the " A "walrus" reduces to the value "the walrus".

It has type string.
"the walrus" +1

$$
\Rightarrow \quad ? ?
$$

The expression "the walrus" +1 does not have a type and it clos not reduce to a value.

## Types

A type is a prediction about the kind of value an expression will have if it winds up reducing to a value.

An expression is well-typed if it has at least one type, and ill-typed otherwise.
(We may also say that an expression type-checks, meaning that it is well-typed.)

# First, type-check an expression. 

If the expression is well-typed, then evaluate the expression.

(The ML compiler does that.)

## Expressions

Every well-formed ML expression e

- has a type t , written as e : t
- may have a value v , written as $\mathrm{e} \hookrightarrow \mathrm{v}$.
- may have an effect (not for our effect-free fragment)

$$
\text { Example: } \quad(3+4) * 2: \text { int }
$$

$$
(3+4) * 2 \Longleftrightarrow 14
$$

## Integers, Expressions

Type int

Values ..., ${ }^{\sim} 1,0,1, \ldots$,
that is, $\quad$ every integer $n$.

Expressions $\quad e_{1}+e_{2}, \quad e_{1}-e_{2}, \quad e_{1} * e_{2}$, $e_{1} \operatorname{div} e_{2}, \quad e_{1} \bmod e_{2}, \quad$ etc.


Typing Rules

- $n$ : int
- $e_{1}+e_{2}$ : int
if $e_{1}$ :int and $e_{2}$ : int
similar for other operations.

Example:

$$
(3+4) * 2: \operatorname{int}
$$

Why?

$$
3+4: \operatorname{int} \text { and } 2: \text { int }
$$

Why?
3: int and 4 : int

## Integers, Evaluation

Evaluation Rules

$$
e_{1}+e_{2} \stackrel{1}{\Longrightarrow} e_{1}^{\prime}+e_{2} \quad \text { if } e_{1} \xrightarrow{1} e_{1}^{\prime}
$$

$$
n_{1}+e_{2} \stackrel{1}{\Longrightarrow} n_{1}+e_{2}^{\prime} \quad \text { if } e_{2} \xrightarrow{1} e_{2}^{\prime}
$$

$$
n_{1}+n_{2} \stackrel{1}{\Longrightarrow} n
$$ with $n$ the sum of the integer values $n_{1}$ and $n_{2}$.

## Example of a well-typed expression with no value

$$
5 \text { div } 0 \text { : int }
$$

$5 \operatorname{div} O: \operatorname{in} t$
because 5 :int
\& $O: \operatorname{int}$
and because div expects two int and returns an int.

However, 5 div 0 does not reduce to a value.

Notation Recap
$e: t$ "e has type $t$ "
$e \Rightarrow e^{\prime}$ "e reduces to $e^{"}$
$e \hookrightarrow v$ "e evaluatestov"

# Extensional Equivalence 

An equivalence relation on expressions (of the same type).

## Extensional Equivalence

- Expressions are extensionally equivalent if they have the same type and one of the following is true: both expressions reduce to the same value, or both expressions raise the same exception, or both expressions loop forever.
- Functions are extensionally equivalent if they map equivalent arguments to equivalent results.
- In proofs, we use $\cong$ as shorthand for "is equivalent to".
- Examples: $21+21 \cong 42 \cong 6 * 7$

$$
\begin{aligned}
& {[2,7,6] \underset{\sim}{\cong}[1+1,2+5,3+3]} \\
& (\mathrm{fn} \mathrm{x}=>\mathrm{x}+\mathrm{x}) \stackrel{(\mathrm{fn} \mathrm{y}=>2 * \mathrm{y})}{ }
\end{aligned}
$$

- Functional programs are referentially transparent, meaning:
- The value of an expression depends only on the values of its sub-expressions.
- The type of an expression depends only on the types of its sub-expressions.

Types in ML
Basic types:
int, real, bool, char, string
Constructed types:
product types
function types user-defined types

## Products, Expressions

Types $\quad t_{1} * t_{2}$ for any type $t_{1}$ and $t_{2}$.
Values $\quad\left(v_{1}, v_{2}\right)$ for values $v_{1}$ and $v_{2}$.

Expressions $\left(e_{1}, e_{2}\right), \# 1 e, \# 2 e$
DO NOT USE!
Examples: $(3+4$, true $)$
$(1.0, \sim 15.6)$
( 8,5, false, $\sim 2$ )
You will learn how to extract components using pattern matching

## Products, Typing

Typing Rules<br>- $\left(e_{1}, e_{2}\right): t_{1} * t_{2}$<br>if $e_{1}: t_{1}$<br>and $e_{2}: t_{2}$

Example: $(3+4$, true $)$ : int $\times$ boot

## Products, Evaluation

## Evaluation Rules

$$
\left(e_{1}, e_{2}\right) \stackrel{1}{\Longrightarrow}\left(e_{1}^{\prime}, e_{2}\right) \quad \text { if } e_{1} \xrightarrow{1} e_{1}^{\prime}
$$

$$
\left(v_{1}, e_{2}\right) \stackrel{1}{\Longrightarrow}\left(v_{1}, e_{2}^{\prime}\right) \quad \text { if } e_{2} \stackrel{1}{\Longrightarrow} e_{2}^{\prime}
$$

## Functions

In math, one talks about a function $f$ mapping between spaces $X$ and $Y$,

$$
f: X \rightarrow Y
$$

In SML, we will do the same, with $X$ and $Y$ being types.
Issue: Computationally, a function may not always return a value. That complicates checking equivalence.

## Definition: A function $f$ is total if $f(x)$ returns a value for all values $x$ in $X$.

(Totality is a key difference between math and computation.)

## Sample Function Code

(* square : int -> int REQUIRES: true ENSURES: square(x) evaluates to $\mathbf{x}$ * $\mathbf{x}$ *)
fun square ( $x$ :int) $:$ int $=\mathbf{x} * x$
(* Testcases: *)
val $0=$ square 0
val $49=$ square 7
val $81=$ square (~9)

## Sample Function Code

(* square : int -> int function type REQUIRES: true ENSURES: square(x) evaluates to $\mathbf{x}$ * $\mathbf{x}$ *)
fun square (x:int) : int $=\mathbf{x} * \mathbf{x}$

| keyword function argument |  |
| :---: | :---: |
| name | result |
| name \& type | body of function |

(* Testcases: *)
val $0=$ square 0
val $49=$ square 7
val $81=$ square (~9)

## Five-Step Methodology

( $*$ square : int $->$ int function type REQUIRES: true
ENSURES: square (x) evaluates to $\mathbf{x}$ * $\mathbf{x}$ *)
(4 )fun square ( $x$ :int) : int $=x * x$
Keyword function argument result body of function name name \& type type
(5)(* Testcases: *)

$$
\begin{aligned}
& \text { val } 0=\text { square } 0 \\
& \text { val } 49=\text { square } 7 \\
& \text { val } 81=\text { square }(\sim 9)
\end{aligned}
$$

Declarations
Environments

Scope

Declaration


Introduces binding of 3.14 to pi (sometimes written $\left[3.14 / \mathrm{Pi}_{i}\right]$ )

Lexically statically scoped.

Val $x: \operatorname{int}=8-5$
val $y: \operatorname{int}=x+1$
val $x: \operatorname{int}=10$
val $z: \operatorname{int}=x+1$$\left\{\begin{array}{l} \\ {[3 / x]} \\ {[4 / y]} \\ {[10 / x]} \\ {[11 / z]}\end{array}\right.$
second binding of $x$
shadows first binding.
First binding has been shadowed.

Local Declarations
let ... in ... end
let
val $m: \operatorname{int}=3$
val $n: \operatorname{int}=m * m$
in end $m+n$

This is an expression. What type does it have? int What value? 12

Local Declarations
val $k: \operatorname{in} t=4$
$\left.\begin{array}{l}\text { let val } k: \text { real }=3.0 \\ \text { in } k * k \\ \text { end } \hookrightarrow 9.0: \text { real }\end{array}\right\} \begin{aligned} & \text { Type? } \\ & \text { Value? }\end{aligned}$
$K \leftharpoonup$ Type? $\hookrightarrow 4$ :int Value?

Concrete Type Def type float $=$ real type point $=$ float float
val $p:$ point $=(1.0,2.6)$

## Closures

Function declarations also create value bindings:
fun square (x:int) : int = x * x binds a closure to the identifier square.


## Closures

## Function declarations also create value bindings:

fun square (x:int) : int = x * x
binds a closure to the identifier square.
The closure consists of two parts:

- A lambda expression (anonymous function value):

$$
\underset{\text { keyword }}{\text { fn }} \underset{\substack{\text { argument } \\ \text { name \& type }}}{\text { : int })} \quad=>\underset{\text { body of function }}{\boldsymbol{x}}
$$

- An environment (all prior value bindings).


## Closures

Function declarations also create value bindings:
fun square (x:int) : int = x * x binds a closure to the identifier square.


## Course Tasks

- Assignments
- Labs
- Midterm 1
- Midterm 2
- Final

35\%
10\%
15\%
15\%
25\%

Roughly one assignment per week, one lab per week.

## Collaboration

Be sure to read the

## course and university webpages regarding academic integrity.

