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Parallelism
/\

< 1, 0, 0, 1, 1 >     3,
< 1, 0, 1, 1, 0 >     3,
< 1, 1, 1, 0, 1 >     4,
< 0, 1, 1, 0, 0 >     2,

\/
↓
12



Parallelism

sum : int sequence  → int
type row  =  int sequence
type room = row sequence

fun count  (class : room) : int =
sum (map sum class)



Parallelism
• Work:

• Sequential Computation
• Total sequential time;

number of operations

• Span:
• Parallel Computation
• How long would it take if one could have as 

many processors as one wants;
length of longest critical path











Types

A  type is a prediction about the kind of value an 
expression will have if it winds up reducing to a value. 

An expression is well-typed if it has at least one type,
and ill-typed otherwise.

(We may also say that an expression type-checks,
meaning that it is well-typed.)



First, type-check an expression.

If the expression is well-typed, 

then evaluate the expression.

(The ML compiler does that.)









n,
with n the sum of the
integer values  n  and  n  .1 2



Example of a well-typed 

expression with no value

5 div 0 : int







Extensional Equivalence

=~

An equivalence relation on expressions
(of the same type).



• Expressions are extensionally equivalent if they 
have the same type and one of the following is true:

both expressions reduce to the same value, 

or both expressions raise the same exception,

or both expressions loop forever.

• Functions are  extensionally equivalent if they map equivalent 
arguments to equivalent results.

• In proofs, we use        as shorthand for “is equivalent to”.

• Examples:

• Functional programs are referentially transparent, meaning:
– The value of an expression depends only on the values of its sub-expressions.
– The type of an expression depends only on the types of its sub-expressions.

21 + 21        42         6 ∗ 7
[2, 7, 6]         [1+1, 2+5, 3+3]
(fn x => x + x)        (fn y => 2 ∗ y)

Extensional Equivalence

=~

=~
=~ =~

=~





DO NOT USE!

      You will learn how to extract
components using pattern matching

*

*







Functions
In math, one talks about a function f
mapping between spaces X and Y,

f  :  X  → Y
In SML, we will do the same, with X and Y being types.

Definition:   A function f is total if  f(x)  returns
a value for all values x in X.

Issue:  Computationally, a function may not always
return a value.   That complicates checking equivalence.

(Totality is a key difference between math and computation.)



Sample Function Code 



Sample Function Code 

keyword function
name

argument
name & type

result
type

body of function

function type



Five-Step Methodology

keyword function
name

argument
name & type

result
type

body of function

function type1
2

3

4

5















Closures
Function declarations also create value bindings:

binds a closure to the identifier square.



Closures
Function declarations also create value bindings:

binds a closure to the identifier square.
The closure consists of two parts:

 A lambda expression (anonymous function value):

 An environment (all prior value bindings).

keyword argument
name & type

body of function



Closures
Function declarations also create value bindings:

binds a closure to the identifier square.



Course Tasks

• Assignments          35%
• Labs                             10%
• Midterm 1                     15%
• Midterm 2                     15%
• Final                             25%

Roughly one assignment per week, one lab per week.



Collaboration

Be sure to read the 
course and university webpages

regarding academic integrity.
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