Please be aware:

- There will be no resubmission opportunity for this assignment. The three problems below are implementations. You will know yourself whether you have produced a successful solution.
- You will likely need to create some data structures to represent and manipulate polygons. Do/use whatever is convenient. Of course, don’t use built-in convex hull functions, etc.
- You may assume that input is in general position if that is convenient.
- You do not need to implement optimally efficient algorithms. Implement whatever you find convenient (and correct).
- Demonstrate the correctness of your code with appropriate pictures of sample runs: In Problem 1, show some examples of points and their convex hulls (some examples with just a few points and some examples with many points; for fun, see how many points your algorithm can handle; several tens of thousands should be possible). In Problem 2, show paths found for environments. In Problem 3, show paths found for some robots and environments.

1. Implement two-dimensional (2D) convex hull.

Your algorithm should take as input a finite set of 2D points and produce as output a polygon constituting the boundary of the minimal convex set containing all the input points. (“minimal convex set” means that the set is a subset of any other convex set that contains all the input points.)

2. Implement an algorithm for finding shortest paths in 2D polygonal environments.

The input to your algorithm should consist of a collection of nondegenerate convex polygons, a start location, and a goal location. The output should be a piecewise linear path that does not pass through the interior of any polygon and is as short as possible, if such a path exists. (Otherwise, your algorithm should indicate that no path exists.) One situation in which no path exists is if the start or goal is in the interior of a polygon.

Notes: (i) The polygons are allowed to overlap. (ii) The solution path is allowed to touch the boundaries of polygons, but is not allowed to pass through any polygon’s interior.

3. Combine your code for parts (1) and (2), along with some additional code, to implement shortest-path motion planning for convex polygons in two dimensions (translations only, no rotations).

Specifically, the input to your algorithm should consist of a “robot” and its environment, along with start and goal configurations for the robot. The output should be a piecewise linear path as described below.

The robot should be a nondegenerate convex polygon. The environment should consist of a collection of nondegenerate (possibly overlapping) convex polygons. Given start and goal configurations of the robot, your algorithm should produce a shortest intersection-free path between the start and goal, if such a path exists. “Intersection-free” means that the robot may touch obstacle boundaries, even slide along obstacle boundaries, but may not touch the interior of any obstacle. If no such path exists, your algorithm should report that fact.