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Abstract—In this paper we consider the problem of maximizing
wireless network capacity (a.k.a. one-shot scheduling) in both the
protocol and physical models. We give the first distributed algo-
rithms with provable guarantees in the physical model, and show
how they can be generalized to more complicated metrics and
settings in which the physical assumptions are slightly violated.
We also give the first algorithms in the protocol model that do
not assume transmitters can coordinate with their neighbors in
the interference graph, so every transmitter chooses whether to
broadcast based purely on local events. Our techniques draw
heavily from algorithmic game theory and machine learning
theory, even though our goal is a distributed algorithm. Indeed,
our main results allow every transmitter to run any algorithm it
wants, so long as its algorithm has a learning-theoretic property
known as no-regret in a game-theoretic setting.

I. INTRODUCTION

In this paper we are concerned with maximizing the trans-
mission capacity of wireless networks. In the basic model
we are given a collection of transmitter/receiver pairs in the
Euclidean plane, and the goal is to maximize the number of suc-
cessful instantaneous transmissions. Maximizing transmission
capacity has been studied in many contexts, and while many
variants have been considered, there are two axes along which
much of the work can be partitioned. The first axis is random
vs. arbitrary networks. If we consider random networks, then
the goal is typically to give bounds on the expected capacity,
and study how this changes with the density of the network
(or with some other interesting parameter). Another option,
which is what we consider in this work, is to study arbitrary
or worst-case topologies. In this setting it makes no sense to
study the “average” capacity, since that could depend heavily
on the actual structure of the network. Instead, the goal is to
study the problem of maximizing capacity as an optimization
problem, and give hardness results, centralized algorithms, and
distributed protocols given an arbitrary network as input.

The second axis is the protocol model vs. the physical
model, and is concerned with how we model interference and
define a successful transmission. In the protocol model there
is some interference graph on the desired transmissions, and a
transmission is successful if and only if none of the neighbors
of the transmission in this graph also chose to transmit. It is
obvious from this definition that maximizing network capacity
is the same problem as finding a maximum independent set
in the interference graph, which is a famous and well-studied
problem in its own right. In the context of this problem,
further assumptions are usually made about the structure of the

interference graph, since physical constraints make it unlikely
that this graph is totally arbitrary. One typical assumption is
that it is a unit disk graph (UDG), which basically means that
transmitters interfere if they are too close to each other. There
has also been a considerable line of work on weakening this
assumption or on variants of it, including the Tx model of [20]
and the growth-bounded model of [18] and [11].

In the physical model, on the other hand, we do not assume
the existence of an interference graph. Instead we let every
transmitter choose a power to broadcast at, give a rule for how
that power fades with distance, and say that a transmission has
been successful if and only if the received signal divided by the
sum of the interference and background noise is at least some
threshold. This model is significantly more complicated than
the protocol model, for a variety of reasons. In the protocol
model the success of a transmission depends only on the OR
of its neighbors; if any of its neighbors transmit then it fails,
irrespective of whether one or 10 transmitted, and any number
of transmitters outside of its neighborhood can transmit without
affecting its success. But in the physical model interference
accumulates and normally spreads out to infinity, so not only
is the decision function more complicated than an OR of
neighbors it actually depends on every transmitter in the entire
network. While not all of the assumptions in the physical
model are absolutely true, it is commonly thought to be a more
accurate model of reality than the protocol model. In this paper
we will consider both the protocol and the physical models.

Furthermore, there is a difference between centralized and
distributed algorithms. While studying the fundamental com-
putational problem is interesting, in many (perhaps most)
real world situations there is no central authority to run the
algorithm and tell all of the transmitters what to do. Ideally
each transmitter would make its own decisions about whether
to broadcast (and in the physical model, how much power to
use). In the protocol model, since we have an interference graph
we can simply abstract out to the graph and run a normal
distributed protocol on this graph, and indeed this problem
is usually classified under “distributed maximum independent
set”. In the physical model, however, there is no underlying
communication or interference graph so coordination is more
complicated. And even in the protocol model, using standard
models for distributed algorithms are problematic: do trans-
mitters really know their neighbors? Can they send different
messages to different transmitters? Can a transmitter receive
multiple messages at the same time?
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In this paper we try to work in a more general model that
assumes less about inter-node communication: we consider
arbitrary networks in both the physical and protocol models,
where every transmitter knows only what happens to its trans-
missions. We do not even assume that neighbors in the protocol
model can communicate (although our assumption about recep-
tion knowledge is equivalent to every node knowing whether
or not at least one of its neighbors attempted to transmit),
and in fact we design algorithms assuming that they cannot.
We show that even in this extremely general model, there are
simple algorithms that can guarantee that the average number
of successful transmissions is a good approximation to the op-
timal solution. While distributed approximation algorithms for
maximum independent set are well studied (e.g. [18]), this is, to
the best of our knowledge, the first result that does not include
communication among nodes, just information about the result
of a transmission. This is also the first decentralized algorithm
with provable approximation guarantees in the physical model,
which is perhaps a more interesting result as until recently we
did not even know of a good centralized algorithm in this model
[7], [6], [1].

Moreover, the inspiration and techniques we use come not
from the distributed computing literature, but instead from
the algorithmic game theory and learning theory literature. In
particular, we study a notion that generalizes the famous price
of anarchy: the price of total anarchy, originally defined by [3]
as a way of weakening the rationality assumption behind the
price of anarchy. But by definition there are algorithms that do
almost as well as the price of total anarchy, unlike the price
of anarchy. So by proving that the price of total anarchy is
small we have actually proved that if every transmitter runs a
no-regret algorithm then the average performance will be good.
This is a powerful tool when designing distributed algorithms
since it allows the algorithm designer to prove approximation
guarantees for distributed algorithms simply by proving no-
regret for a centralized algorithm. We hope that this technique
for designing distributed algorithms will prove useful for other
problems, and believe that maximizing network capacity is
simply one of a number of problems in which the price of
total anarchy can be bounded.

A. Wireless Models

As discussed, in the protocol model every transmitter can
either transmit or not transmit, and a particular transmitter is
successful if and only if it chooses to transmit and none of the
neighbors of its connection in the interference graph choose
to transmit. We will briefly consider general graphs, but spend
most of our time on locally growth-bounded graphs, which are
a generalization of the growth-bounded graphs of [11]:

Definition 1: A graph G = (V,E) is locally growth-
bounded if there is some constant k such that for every node
v ∈ V the size of a maximum independent set in N(v) ∪ {v}
is at most k, where N(v) denotes the set of neighbors of v in
G.

We note that, as pointed out by [18], growth-bounded
graphs generalize unit disk graphs, quasi-unit disk graphs, unit
ball graphs, and other popular generalizations of UDGs, and

therefore locally growth-bounded graphs also generalize these
models.

For the physical model we use a combination of the model
used by Andrews and Dinitz in [1] and the generalized physical
model of Moscibroda, Wattenhofer, and Zollinger [14]. In par-
ticular, we consider a set of n connections in the plane, where
each connection has a transmitter ti and a receiver ri. For two
points u and v in the plane, let d(u, v) be the normal Euclidean
distance between them. Suppose that u is broadcasting with
power p. Following the model from [16] and [1], the theoretical
signal strength at v is p·min{(d0/d(u, v))α, 1}, where α and d0

are some parameters that we assume are constants. We will also
make the standard assumption that α > 2 (this assumption was
used in [7], [6], [1], among others). Note that this model allows
nodes to be arbitrarily close together, and just caps the received
power by what happens at distance d0. This model generalizes
the model from much of the previous work in which d0 = 1
and all distances are at least 1 [13], [14], [7].

However, it has long been observed that the theoretical re-
ceived power is not perfectly accurate in practice, since it does
not take into account obstructions, terrain, etc. To take this into
account, Moscibroda, Wattenhofer, and Zollinger introduced the
generalized physical model. In this generalization, there is some
constant parameter θ ≥ 1 such that the actual received signal
strength is within 1/θ and θ times the predicted theoretical
received signal strength. More formally, if a node u transmits
at power p, then the received signal strength Pr(u, v) at another
node v is in the interval[

1
θ
pmin

{(
d0

d(u, v)

)α
, 1
}
, θpmin

{(
d0

d(u, v)

)α
, 1
}]

We do assume, however, that the distortion from the theoret-
ical signal strength does not depend on the choice of power. So
if when u broadcasts at power p the received signal strength
is γpmin{1, (d0/d(u, v))α} then the received signal strength
if u broadcasts at power p′ is γp′min{1, (d0/d(u, v))α}.

A transmission from tu to ru is successful if the ratio of
the received signal strength to the interference is at least some
threshold τ ; that is, if

Pr(tu, ru)∑
v 6=u Pr(tv, ru)

≥ τ

We will sometimes call this an SINR constraint.
For ease of presentation, we will assume throughout this

paper that the maximum power of a transmitter is 1. All of
our results hold for an arbitrary maximum power. We will
make the simplifying assumption that there is no background
noise, i.e. the only causes of interference at a receiver are
the signals of other transmitters. Our results still hold with
nonzero background noise as long as we are guaranteed that
every transmitter-receiver pair is at a distance bounded away
from their absolute physical limit assuming signal weaken-
ing by θ; that is, there is some constant δ > 0 such that
d(ti, ri) ≤ (1−δ)( 1

τθW )1/α where W is the background noise.
We will let dmax = maxi d(ti, ri) be the maximum distance
between any transmitter-receiver pair.
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B. Game Theory Basics
Before we can state our results we first need a few basic

definitions about games. In this paper the only games we will
care about will be games with n players in which every player
has exactly two possible actions. Let A = {0, 1}n be the space
of possible strategy profiles for the game, i.e. given a point
A ∈ A, the ith coordinate ai represents the action used by
player i in profile A. Each player i will have a function αi :
A → R that assigns a utility to each strategy profile. We will
sometimes want to consider modifications of strategy profiles:
given A ∈ A, let A⊕ a′i be the strategy set obtained if player
i changed its action from ai to a′i. We will use superscripts to
denote time, so At will be the action set at time t and ati will
be the action taken by player i at time t.

The following definition will play a central role in this paper:
Definition 2: The regret of player i at time T given strategy

profiles A1, A2, . . . , AT is

max
ai∈{0,1}

1
T

T∑
t=1

αi(At ⊕ ai)−
1
T

T∑
t=1

αi(At)

Intuitively, having low regret means that you do almost as
well as on average as the best single action would have done.
This notion of regret has been studied extensively, especially in
two different models: the experts model and the bandit model.
The difference between the two models lies in the knowledge
gained by a player after each round: in the bandit model a
player only finds out the utility that it gained, while in the
experts model players also find out the utility they would have
gained if they had played the other action. Since the results that
we care about are similar in both models, we will choose the
more general one and be in the bandit model. In the wireless
setting, this means that if a transmitter chooses to transmit then
it will find out whether or not it succeeded, but if it chooses
not to transmit then it gains no information.

The price of total anarchy was introduced by Blum et
al. [3] as a way of generalizing the price of anarchy. The
price of anarchy of a game is the ratio of the value of the
worst Nash equilibrium to the social optimum. It is, as the
name suggests, supposed to quantify the “price” that is being
paid by allowing each player to be a separate rational agent
rather than simply being controlled by a centralized authority.
Unfortunately there are various problems with this definition,
one of which is that, since finding a Nash equilibrium is PPAD-
complete [4], it is not clear that rational agents will actually
play a Nash equilibrium. In particular, if they always do then
we could find a Nash equilibrium simply by letting rational
agents play. Blum et al. [3] proposed weakening this rationality
assumption by assuming only that the agents use strategies with
regret tending to 0 as time goes to infinity (called no-regret
algorithms). They chose this assumption because it generalizes
the Nash assumption, and is plausible since such algorithms
actually do exist so smart players should do at least as well.
They call the ratio of the average social welfare obtained
by players using no-regret algorithms to the optimum social
welfare the price of total anarchy. We will use this not as a
tool for weakening rationality assumptions, but rather as a tool
for designing distributed algorithms, since by definition we are

guaranteed the existence of algorithms that achieve the price
of total anarchy (any no-regret algorithm).

C. Results

In all of our results we let OPT denote the optimal solution,
i.e. a set of transmitters forming a maximum independent set
(in the protocol model) or for which an appropriate setting of
powers maximizes the number of successful connections (in the
physical model). Our main results are proofs that the price of
total anarchy is small in certain games that we have designed
for the protocol and physical models. This immediately implies
that if every transmitter uses a no-regret algorithm then the
average performance over time is good. In particular, in the
protocol model we design a game that gives the following
result:

Theorem 3: In the protocol model in locally growth-bounded
graphs, if all transmitters have regret at most ε then the average
number of successful connections is at least Ω(|OPT | − εn).

We design a similar game for the physical model; in fact,
we use a game introduced by Andrews and Dinitz [1], who
showed that its price of anarchy is small. We leave as open
the question of whether or not there are algorithms for this
game that converge to a Nash equilibrium, but we do show
that the price of total anarchy is within a constant of the price
of anarchy proved in [1].

Theorem 4: In the physical model, if all transmitters have
regret at most ε, then the average number of successful trans-
missions is Ω(|OPT |/d2α

max − εn), where dmax is the largest
distance between any transmitter and its own receiver.

Thus if every transmitter has regret less than 1/n, the average
number of successful connections is within a constant of the
optimal solution. The algorithm that we will use to achieve this
is that of Auer, Cesa-Bianchi, Freund, and Schapire [2], who
gave an algorithm with the following guarantee:

Theorem 5 ([2]): There is an algorithm that has regret at

most O
(√

log(T/δ)
T

)
with probability at least 1 − δ for any

δ > 0, for any game with a constant number of possible actions
per player.

A similar guarantee was given for the Randomized Weighted
Majority Algorithm by Littlestone and Warmuth [12], which is
the algorithm that we will use later in simulation.

If δ = 1
n2 and T ≥ Ω(n2 log n) then this regret is at most 1

n
with probability at least 1− 1

n2 , and thus with high probability
every transmitter will have regret at most 1

n . This immediately
yields the following corollaries:

Corollary 6: In the protocol model in locally growth-
bounded graphs, if every transmitter uses the algorithm of
Theorem 5 then after O(n2 log n) rounds the average number
of successful connections is Ω(|OPT |) with high probability.

Corollary 7: In the physical model, if every transmitter uses
the algorithm of Theorem 5 then after O(n2 log n) rounds the
average number of successful connections is Ω(|OPT |/d2α

max)
with high probability.

While the O(n2 log n) bound on the number of rounds is
rather large, if the rounds are short (i.e. transmitters update
their powers often) then it is still reasonable. Furthermore, in
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Section V we show by simulation that in practice the number
of rounds required is small.

We believe that this is the first distributed algorithm that
provably approximates the maximum capacity in the physical
model. In the protocol model the current state of the art
for distributed approximations to the maximum independent
set is the algorithm of Schneider and Wattenhofer [18] who
obtain a (1 + ε)-approximation after O(log∗ n/εO(1)) rounds
on bounded-growth graphs. Our approximation is not as good
and we take many more rounds, but on the other hand their
algorithm assumes that every transmitter knows who interferes
with it and can communicate with them, whereas our algorithm
requires only that in each round every transmitter knows
whether or not its broadcast succeeded (if it tried to broadcast).
This is a significantly weaker model of distributed computation
since it explicitly disallows the complex communication among
nodes that is usually a hallmark of distributed protocols, so
it is interesting that we can still obtain good approximation
guarantees. However, in light of [18] we feel that the main
takeaway from our result in the protocol model is that our
general technique (bounding the price of total anarchy) can be
applied to more than just one problem in one model.

D. Related Work
The capacity of random networks in both the physical and the

protocol models (for UDGs) was examined in the seminal paper
of Gupta and Kumar [8]. The capacity of arbitrary networks
in the protocol model has traditionally been considered in
the special case when the interference graphs are UDGs; in
this case, (1 + ε)-approximations were obtained in [5], [15].
There has also been significant work on designing distributed
algorithms for finding large independent sets in UDGs and
generalizations of UDGs, most recently the work of Schneider
and Wattenhofer [18] who gave a (1 + ε)-approximation for
growth-bounded graphs.

In the physical model, the problem of maximizing capacity
in arbitrary networks has only recently been considered. The
first to do so were Goussevskaia, Oswald, and Wattenhofer
[7], who gave an O(log dmax)-approximation but assumed that
transmitters could only broadcast at full power or not at all.
Goussevskaia, Halldórson, Wattenhofer, and Welzl [6] then
improved this to give a O(1)-approximation. Andrews and
Dinitz [1] considered the general power setting, and proved a
O(log dmax)-approximation using techniques similar to [7]. Re-
cently, Halldórson and Wattenhofer [9] showed how to extend
the techniques of [6] to the general scheduling problem, instead
of the one-shot capacity. However, all of this work is extremely
centralized; this paper is, to the best of our knowledge, the first
to consider the distributed problem.

There has, however, been a significant amount of work on
distributed algorithms for related problems, and in fact much
of it has used game-theoretic techniques. For example, Stol-
yar and Viswanathan [19] studied fractional frequency reuse
algorithms for joint channel assignment and power control in
cellular OFDM systems, and provided a game theoretic solution
that always leads to a stable solution. Saraydar, Mandayam,
and Goodman [17] designed a game theoretic algorithm for
choosing powers on the uplink of a single cell wireless system.

However, while both of these examples (and much previous
work on similar problems) give algorithms that provably con-
verge to a stable solution, neither of them study the quality of
that solution compared to the global optimum.

A different approach was taken by Andrews and Dinitz [1],
who designed a game (in fact, the game we will be analyzing in
this paper) for wireless network capacity in the physical model
but did not prove convergence. In fact, they showed a simple
example on which natural rational play will never converge.
On the other hand, they showed that all Nash equilibria, both
pure (in which case the players converged) and mixed, have an
expected number of successful transmissions within O(d2α

max)
of optimal. They left designing a distributed algorithm that
actually converged to a pure Nash equilibrium (or even a mixed
Nash) as an open problem. While we do not answer this, we
show that their game actually has the additional property that
low-regret algorithms result in solutions that are almost as good
as Nash equilibria from an approximation standpoint. This is
not always the case, as many games have the property that
all Nash equilibria are close to optimal while low-regret play
can be arbitrarily bad (see [3] for some examples). But in this
case the game is robust enough that, after overcoming some
technical difficulties, the techniques from [1] can be used to
prove that low-regret play is close to optimal.

II. BASIC GAME THEORY

Some of the basic game theory underlying our results is the
same in both the protocol model and the physical model. In
particular, the basic game is the same. Each transmitter is a
player, with two possible strategies: broadcast at power 0 (i.e.
do not broadcast) or broadcast at power 1 (full power). Note
that in the physical model we are competing with the optimum
solution that can use any power between 0 and 1, but we will
only be using powers 0 and 1. A transmitter has utility 1 if
it broadcasts successfully, i.e. meets its SINR requirement in
the physical model or has no neighbors broadcasting in the
protocol model. It has utility −1 if it broadcasts unsuccessfully,
and utility 0 if it does not broadcast at all.

Let T be some time at which all transmitters have regret
at most ε. Our goal is to prove that the average number of
successful connections up to time T has been close to |OPT |.
For each transmitter u, let qu be the fraction of times at which u
chose to transmit (i.e. played action 1), and let su be the fraction
of times at which u transmitted successfully. Then Q =

∑
u qu

is the average number of attempted transmissions and S =∑
u su is the average number of successful transmissions, so

we are trying to prove that S is close to |OPT |. The following
lemma shows that S can be bounded by Q, and thus will allow
us to only look at attempted broadcasts rather than successful
broadcasts:

Lemma 8: S ≤ Q ≤ 2S + εn
Proof: The first inequality is obvious from the definitions,

since the average number of successful transmissions is clearly
at most the average number of attempted transmissions. For the
second inequality, it is sufficient to show that si ≥ 1

2 (qi − ε)
for all senders i. Suppose that si < 1

2 (qi− ε) for some i. Then
i’s average utility is si−(qi−si) = 2si−qi < −ε. But i could
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have had average utility of 0 by never broadcasting, which is
a contradiction since i has regret at most ε.

III. PHYSICAL MODEL

We first consider the physical model. Our main theorem is
that the price of total anarchy is small; in particular, we show
that if all transmitters have low regret then the average number
of successful transmissions is close to optimal:

Theorem 9: Suppose that at time T every sender has regret
at most ε. Then the average number of successful transmissions
is Ω(|OPT |/d2α

max)− εn.
In this section we first prove some useful lemmas, then move

on to the proof of Theorem 9, and then discuss some interesting
extensions.

A. Density Lemmas

The following lemmas were proved in the pure physical
model in [1]. We will use them extensively, so give proofs
here in the generalized model (i.e. when the received signal
strength might be off from the theoretical signal strength by
up to a θ factor in either direction). We note that they are
trivial from volume arguments in the physical model used in
most previous work (e.g. [13], [7], [6]), in which the minimum
distance between any pair of points is assumed to be at least
1.

Lemma 10: Consider a square S with side-length d0. In any
feasible solution the maximum number of connections with a
receiver in square S is θ23α/τ .

Proof: Suppose that all nodes in the feasible solution
transmit at a power such that the theoretical received signal
strength is a constant p̄, i.e. pi min{1, (d0/d(ti, ri))α} = p̄.
Let i and i′ be two connections such that both ri and ri′ lie in
S.

The interference caused by connection i at receiver
ri′ is at least 1

θpi · min{1, (d0/d(ti, ri′))α} ≥
1
θpi min{1, (d0/(d(ri, ri′) + d(ti, ri)))α}. By the geometry
of the square S we know that d(ri, ri′) ≤ 2d0, which
implies that 1

θpi min{1, (d0/(d(ri, ri′) + d(ti, ri)))α} ≥
1
θ3α pi min{1, (d0/d(ti, ri))α} ≥ p̄

θ3α . Since the actual signal
received signal strength of a connection is at most θp̄, if
there are more than θ23α/τ such connections the interference
experienced by all of them would be enough to prevent the
SINR constraint being satisfied for all connections.

We now remove the condition that the received powers for
every connection are the same. However, in this case the SINR
value for some connection must be worse than it was when the
received signal powers were the same, since we assume the
distortion from the theoretical strength does not depend on the
chosen power. This implies that if there are more than 3α/τ
connections, then for any set of transmission powers there will
be some connection whose SINR constraint is not satisfied.

Corollary 11: Suppose now that square S has side-length d.
In any feasible solution the maximum number of connections
with a receiver in square S is θ23αd2/τd2

0.
Proof: Divide square S up into subsquares of size d0 and

then apply Lemma 10.

Lemma 12: Now consider a ball B of radius d. In any
feasible solution the maximum number of connections with a
receiver in ball B is θ23α · 4d2/τd2

0.
Proof: Follows immediately from the fact that any circle

with radius d is contained in a square with side-length 2d.

B. Proof of Theorem 9

Before we dive into technical details we first give some
intuition. We first find some receiver whose transmitter only
rarely broadcasts but has “small” interference, where our notion
of small is something that increases as S gets closer to OPT (so
if the approximation is extremely bad then the interference is
extremely small). Since its transmitter does not broadcast very
often, but has low regret compared to the strategy of always
broadcasting, this small interference must be enough to kill
the transmission much of the time. Thus this interference must
actually be quite large, so S must be close to OPT .

Let L = {i : qi ≥ 1/2 − ε} be the set of transmitters
that broadcast at least 1/2 − ε fraction of the time. Consider
the following procedure. For each receiver x in OPT \ L we
will keep track of how much it is “bought” with a variable
b(x), initially set to 0. Now we order all transmitters in the
instance (or just all transmitters with non-zero qi) arbitrarily.
We examine the transmitters one by one in this order. Say we
are on transmitter i. Let Φ = b |OPT\L|−kkQ c (for some parameter
k to be defined later) and let R(i) be the Φ closest receivers
in OPT \ L to i that are currently bought to less than 1,
i.e. have b(x) < 1. We now increase their b values by qi, so
b(x) := b(x) + qi.

Since each transmitter i increases the sum of the b values by
qiΦ, at the end of this process we know that∑

x

b(x) =
∑
i

qiΦ ≤
|OPT \ L| − k

k
<
|OPT \ L|

k

since by definition Q =
∑
i qi. This means that there is some

receiver a that is in OPT but whose transmitter is not in L
that has b(a) < 1/k.

Let M ′ be the set of transmitters that contributed to b(a)
during the above process. Note that since b(a) ≤ 1/k we
know that

∑
x∈M ′ qx ≤ 1/k; we will use this later. Let M

be all other transmitters, and for every distance d let z(d) =∑
x∈M :d(a,x)≤d qx be the average number of transmissions

from transmitters in M located inside B(a, d). Consider some
transmitter x ∈ M . Since a 6∈ R(x) and b(a) < 1, any
receiver y ∈ R(x) must have d(x, y) ≤ d(x, a), or else a
would be in R(x). So by the triangle inequality we know that
d(a, y) ≤ 2d(a, x), and thus that any transmitter x at distance
at most d from a must have its entire R(x) at distance at most
2d from a.

We will now bound z(d). Since every transmitter x in M ∩
B(a, d) contributes qxΦ to the sum of the b values, and each
receiver that it contributes to must be in B(a, 2d), the sum of
the b values of receivers in B(a, 2d) is at least z(d)Φ. Since a
receiver’s b value only increases if it is less than 1, and then
only increases by at most 1, we know that the b value of any
receiver is at most 2. Thus the number of receivers from OPT
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in B(a, 2d) is at least z(d)
2 Φ. By Lemma 12, this implies that

cd2 ≥ z(d)
2 Φ and thus that

z(d) ≤ 2cd2

Φ
(1)

for some constant c depending only on α, τ , and d0.
Now that we have a bound on the average number of

transmissions inside a ball around a, we want to bound the
average interference at a. To do this, we will first bound the
average number of transmissions in an annulus of radius d0,
i.e. z(d+ d0)− z(d). We first note that the interference at a is
at most the interference caused if every ball around a actually
meets the bound given by (1) and the received strength at a is
θ times the theoretical strength. This is easily proved: let d be
the first ball that doesn’t meet the bound of (1). If there are
no transmitters at distance greater than d from a, then clearly
the average interference could be increased by adding more
transmitters to every annulus past d so that the bound of (1)
is met. If there are transmitters at distance greater than d from
a, then clearly the average interference would be increased by
moving enough of them into B(a, d) to meet the bound. Now
we can just keep repeating this process until there are no more
transmitters past the first distance that fails to meet (1), reducing
to the first case.

This now implies that we can treat inequality (1) as a lower
bound as well as an upper bound, and thus the average number
of transmissions coming from senders between distance d and
d+ d0 is at most

2c
Φ

((d+ d0)2 − d2) ≤ 6cd0d

Φ

when d ≥ d0, and is at most 2c/Φ when d = 0. Since the
interference from a transmitter at distance d from a is at most
θmin{1, (d0d )α}, this means that the average interference at a
caused by transmitters at distance between d and d+d0 from a
is at most (6cdα+1

0 /Φ) · θ
dα−1 for d ≥ d0. For d = 0, since the

interference caused by a transmitter is at most θ the average
interference from transmitters between distances 0 and d0 from
a is at most 2cθ/Φ. Using linearity of expectations, we can sum
over the annuli to get that the expected interference at a is at
most

2cθ
Φ

+
6cθdα+1

0

Φ

∞∑
i=1

1
(id0)α−1

=
2cθ(1 + 3d2

0ζ(α− 1))
Φ

≤ 8cθζ(α− 1)
Φ

where ζ(α − 1) is the Riemann zeta function (which will be
constant for α > 2) and we are assuming d0 ≤ 1. If d0 > 1
then we will simply have d2

0 as a constant to carry through the
rest of the calculations, which will not matter since we are not
attempting to optimize constants anyway.

This gives us a bound on the average interference at a caused
by transmitters in M . What about the transmitters in M ′? Since
we know that

∑
x∈M ′ qx ≤

1
k , it is obvious that they cause at

most θ
k average interference (which is what would happen if

they were all at distance d0 or less from a). Thus the total

expected interference is at most

8cθζ(α− 1)
Φ

+
θ

k

So now we have a bound on the average interference. Let
pbad(a) denote the fraction of times in which a’s transmitter
could not succeed in transmitting, whether it tried or not. If
pbad(a) < 1

4 , then sending at every time would give average
utility greater than 3

4 −
1
4 = 1

2 . But when we chose a we made
sure that its transmitter (call it t) was from OPT \ L, so we
know that qt < 1

2 − ε. Thus t only tries to transmit less than
1
2 − ε the time, and hence it has an average utility of less than
1
2 − ε. This is a contradiction since we are assuming that t has
regret at most ε, and thus pbad(a) ≥ 1

4 .
So a’s transmitter would fail at least 1

4 of the time if it
tried to send every time, and the average interference is at
most (8cθζ(α− 1)/Φ) + θ

k . By Markov’s inequality we know
that the fraction of times at which a hears interference at
least four times the average interference is at most 1

4 , so the
interference at a is at least (32cθζ(α− 1)/Φ) + 4θ

k at most 1
4

of the time. So this amount of interference must be enough to
make it impossible for a to successfully receive (i.e. the SINR
constraint would be violated), or else pbad(a) would be less than
1
4 . Since a is at distance at most dmax from its transmitter,
the strength of its signal is at least dα0

θdαmax
. Thus we get that

32cθζ(α− 1)/Φ ≥ dα0
τθdαmax

− 4θ
k . We will now finally set k, to

8θ2τdαmax/d
α
0 , giving us that

32cζ(α− 1)⌊
|OPT\L|−8τdαmax

8τdαmaxQ

⌋ ≥ dα0
2θτdαmax

. (2)

Solving for Q in this equation, and assuming constant α, τ ,
and d0, gives us that Q ≥ Ω(|OPT \ L|/d2α

max). To compare
Q to |OPT | instead of |OPT \ L|, we note that if |OPT \
L| < 1

2 |OPT |) then at least half of the transmitters in OPT
are broadcasting at least 1

2 − ε of the time, and thus Q ≥
1
2 |OPT |(

1
2 − ε) = Ω(|OPT |). On the other hand, if |OPT \

L| ≥ 1
2 |OPT | then we get that Q ≥ Ω(|OPT |/d2α

max). Now we
can simply apply Lemma 8 to prove that the average number of
successful connections is at least Ω(|OPT |/d2α

max − εn), thus
proving the theorem.

C. Other Metrics

While the generalized physical model allows for signal
strength to vary by θ, it still assumes that the fundamental
underlying metric is the Euclidean plane. However, we only
used this assumption in one place: the proof of Lemma 12,
the main density lemma, which proved that the number of
receivers from any feasible set of transmissions contained in
a ball of radius d is at most O(d2). We then used this lemma
to bound the average interference, which will work whenever
the exponent in the density lemma is strictly less than the
path-loss exponent α. So actually our proof will work in any
metric in which the number of receivers from a feasible solution
contained in a ball of radius d is o(dα).

One example of this is true three-dimensional space. In this
case, it makes sense to assume that α > 3, since power is being
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dissipated in three dimensions (so α ≥ 3) and some is probably
being lost due to being absorbed by objects (or just the air). On
the other hand, a sphere of radius d can clearly be covered with
O((d/d0)3) spheres of radius d0, and thus we can immediately
derive the appropriate density lemma from Lemma 10 (which
still holds as stated).

But even making only the weakest standard assumption, that
α > 2, we can still handle extra metrics; for example, any
metric with doubling dimension 2. The doubling dimension of
a metric is defined to be the smallest number k for which for
all distances d ∈ R≥0, any ball of radius d can be covered by
2k balls of radius d/2. Suppose we have a metric with doubling
dimension k. Then by recursive applications of the definition
of doubling dimension we get that any ball of radius d can be
covered by 2k log(d/d0) = (d/d0)k balls of radius d0, and thus
we can once again apply Lemma 10 to get Lemma 12, and as
long as α > k the rest of the proof will go through as before.

Finally, we consider one class of metrics for which a good
density lemma does not hold, but for intuitively unrealistic
reasons: the wireless manifold, introduced by Kanade and
Vempala [10]. Intuitively, they define the class of wireless
manifolds as the class of distorted two-dimensional grids. In
particular, consider a k× k grid, with an arbitrary nonnegative
length assigned to every grid edge. Now let the distance
between two points be the length of the shortest path between
them in this weighted graph. In their paper [10], Kanade and
Vempala give heuristics for finding the best such manifold
given signal strength data, and show that for existing data
sets the best wireless manifold is significantly more accurate
than the best embedding into the Euclidean plane. Thus it is
natural to ask whether our techniques extend to these manifolds.
Unfortunately they do not: the following theorem shows that
the density lemma we require for our proof to work is not true.

Theorem 13: For any d > 0 there is a wireless manifold and
a set of Ω(dα) feasible transmissions on this manifold such that
all receivers are in a ball of radius d.

Proof: We first note that we can embed uniformly
weighted complete graphs into a wireless manifold. To see
this, suppose that we want to embed a complete graph with
k vertices and weight d on every edge. We first create a square
S with dk/4e vertices on each side, and set the length of all
edges with both endpoints in S to 0. We can then take k edges
with one endpoint in S and the other outside of S and set their
lengths to d/2. All other edges will have weight M for some
M � d. The resulting metric is clearly the required complete
graph, where the non-S endpoints of the k edges we chose are
the vertices.

Now that we can embed complete graphs, consider the same
complete graph on k vertices with distance d between them.
Put a transmitter/receiver pair on each vertex of the complete
graph (so ti and ri are co-located). Set θ = 1. If all transmitters
broadcast at power 1, the signal at ri is 1 and the interference
is (k − 1) 1

dα . So as long as k ≤ dα

τ + 1 the SINR at receiver
ri is at least τ , and thus the connection is supported. Thus in
a ball of radius d we can support Ω(dα) connections.

D. Byzantine Transmitters

In many cases it is not realistic to assume that every single
transmitter will be running a no-regret algorithm, so when
designing a distributed algorithm we would like to be robust to
some fraction of the transmitters behaving in arbitrary ways. We
manage to achieve this, but only if the number of transmitters
that are Byzantine is a fraction of |OPT |, not if it depends on
n.

We generalize the proof of Theorem 9 in a straightforward
way. First, let B be the set of Byzantine transmitters, and let
OPT be optimal relative to whatever the Byzantine transmitters
do (but OPT is still a fixed set that would be feasible at every
time point if not for B). Let Q be defined as before, but let Q̄
be the part of the sum that comes only from transmitters not in
B. Note that Q ≤ Q̄+ |B|. Also note that Lemma 8 still holds,
except with Q̄ instead of Q and where S is only summed over
transmitters not in B.

It is easy to see that the analysis of Theorem 9 holds as
stated for Q, since the node a we find will be in OPT and thus
non-Byzantine and the packing argument works as before since
OPT is feasible on its own. So Q = Ω(|OPT |/d2α

max). If |B| ≤
(1−δ)Q then we know that Q̄ ≥ δQ ≥ Ω(δ|OPT |/d2α

max), and
can apply Lemma 8 to finish the proof. In particular, by setting
δ to 1/2 we see that there is some constant k such that if at
most k|OPT |/d2α

max transmitters are Byzantine then we still get
a O(d2α

max) approximation to |OPT |.

IV. PROTOCOL MODEL

As discussed, in the protocol model each transmission is
a node in an interference graph, and a transmission is suc-
cessful if none of its neighbors are also transmitting. Clearly
maximizing capacity is just the same problem as finding a
maximum independent set in the interference graph. The classic
theoretical model used for these graphs are unit disk graphs,
but we will generalize to all locally growth bounded graphs.
We show how to use the same basic technique as in the
SINR model, i.e. proving that the price of total anarchy is
small for a particular game, to give a distributed algorithm
that has good average performance. While we will not obtain
either as good an approximation or as small a running time as
[18], our algorithm is totally distributed in the sense that the
only information each node gets is whether or not any of its
neighbors tried to join the independent set in the last round.

We first show that in general graphs the average number
of successful transmissions when every transmitter uses a no-
regret algorithm can be arbitrarily far from the size of even
the smallest maximal independent set. We then show that for
growth bounded graphs, after a sufficient number of rounds,
the average number of nodes that broadcasted successfully in
a round is within a constant of the size of the the maximum
independent set.

A. General Graphs

Consider the following interference graph: there are two
special nodes u and v that are adjacent. The node u is also
adjacent to (n − 2)/2 nodes x1, x2, . . . , x(n−2)/2, none of
which are adjacent to v, and v is also adjacent to (n − 2)/2
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u v

x’s y’s

Fig. 1. Bad interference graph

nodes y1, y2, . . . , y(n−2)/2, none of which are adjacent to u (see
Figure 1). Clearly the smallest maximal independent set has
size n−2

2 +1 = n/2, as it consists of either u with all the y’s or
v with all the x’s. On the other hand, suppose that u and v each
choose to broadcast independently with probability 1/2 and all
of the xi’s and yi’s never broadcast. Obviously the expected
number of successful transmissions given these strategies is
1/2, so it is only an Ω(n)-approximation. We claim that in this
case, every transmitter is using a no-regret algorithm.

To see this, first consider some xi. Since u broadcasts with
probability 1/2, the expected average utility of xi if it chose
to broadcast every time is 0, and obviously never broadcasting
has average payoff 0. Thus never broadcasting is a no-regret
algorithm. The same argument can be used for any yi, with v
taking the place of u. Now consider u. It too is adjacent to
one node v that broadcasts with probability 1/2, so both of
its actions would give average utility 0. Clearly randomizing
independently over these two actions also has an average utility
of 0, and thus is a no-regret strategy. The same argument
obviously works for v as well, finishing the proof.

B. Growth-Bounded Graphs

When we restrict to growth bounded graphs, no-regret algo-
rithms actually do result in good behavior. This is essentially
because the bad example we designed for general graphs can’t
occur, since in growth bounded graphs the number of neighbors
of a node that are in an independent set is at most a constant.
In other words, the definition of growth bounded graphs get us
the equivalent of the density lemmas of Section III-A.

Theorem 14: In growth-bounded graphs in which at most
k neighbors of any node are in an independent set, if all
transmitters have regret at most ε then the average number of
successful connections is at least Ω(|OPT |)− εn.

Proof: Let x0 be some node, with neighbors x1, . . . , xm.
We first claim that

∑m
i=0 qxi ≥

1
3−

ε
2 . The first case is if qx0 ≥

1/3, in which case the claim is trivially true. So suppose that
qx0 < 1/3. Let pbad be the fraction of times that x0 would be
unsuccessful if it chose to broadcast, i.e. the fraction of times at
which at least one of its neighbors broadcasts. Then the average
utility from always broadcasting is 1− pbad− pbad = 1− 2pbad.
If pbad ≤ 1/3 − ε/2, then the average utility is from always
broadcasting is at least 1/3 + ε. But this is a contradiction
since x0 has average utility at most q0 < 1/3 but also has ε-
regret. Thus we know that pbad > 1/3−ε/2. But clearly pbad ≤∑m
i=1 qxi by definition, since in order for a time to contribute

to pbad at least one of the xi’s need to be broadcasting. Hence
we have proved that

∑m
i=0 qxi ≥

1
3 −

ε
2 .

Now we relate |OPT | to Q. For nodes x ∈ OPT , let
b(x) =

∑
y∈N(x)∪{x} qy . By the above claim we know that

b(x) ≥ 1
3 −

ε
2 , and thus

∑
x∈OPT b(x) ≥ |OPT |( 1

3 −
ε
2 ). But

every node is adjacent to at most k nodes from OPT by the
growth-boundedness of the graph, and thus

∑
x∈OPT b(x) ≤

k
∑
u qu = kQ. Putting these together, we get that Q ≥

1
k ( 1

3 −
ε
2 )|OPT |. We now apply Lemma 8 to get that

S ≥ 1
2

(Q− εn) ≥ 1
2

((
1
3k
− ε

2k

)
|OPT | − εn

)
≥ Ω(|OPT | − εn)

as claimed.

V. SIMULATIONS

While the main contributions of this work are theoretical, we
also performed simulations to show how no-regret algorithms
do in practice. There are two aspects that we would like to
test: the quality of the algorithm (i.e. the average number of
successful transmissions) and the speed at which the algorithm
converges on that average. Our simulations will be in the vanilla
physical model, where transmitters and receiver are points in
the Euclidean plane and θ = 1. We will be using random
topologies, in which n transmitter-receiver pairs are placed
uniformly at random in a square of size of size 100×100 in the
Euclidean plane, subject to each receiver being at distance at
most dmax from its transmitter. Throughout these simulations
we will set α = 2.1 and τ = 0.5, since it turns out that changing
these parameters does not change the trends by very much.

For the quality simulations, we will compare our algorithm to
the Best Response distributed algorithm proposed by Andrews
and Dinitz in [1], as it seems to be the only proposed dis-
tributed algorithm with worst case guarantees in the literature.
In particular, we will compare what happens when every
transmitter uses Best Response to what happens when every
transmitter uses the classic no-regret algorithm Randomized
Weighted Majority (WMR) of Littlestone and Warmuch [12].

Our quality simulation shows the relationship between the
number of nodes and the average number of successful trans-
missions per round after simulating for 100 rounds. We did this
on 100 instances for each value of n and averaged the results.
Figure 2 shows that as n gets larger our algorithm does better,
while Best Response does about the same (or slightly worse).
Note that large n is the only interesting regime, since only when
n is large is there a lot of interference from other transmitters.
This figure also shows that the approximation bound we proved,
O(d2α

max), is overly pessimistic, since for all three values of
dmax that we tested the actual performance is significantly
better than n/d2α

max, and clearly n is an upper bound on |OPT |.
For example, when dmax = 8 and n = 1000, we observed an
average of 138.861 successful transmissions, while 1000/82.1

is only 12.69.
For the convergence speed simulations, instead of comparing

to the Best Response algorithm we just test the average number
of successful transmissions after various iterations. Our analysis
requires Ω(n2 log n) iterations before the approximation guar-
antee can be made, but our simulations show that in practice
this number of iterations is not necessary. As shown in Figure 3,
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substantially fewer than n iterations are required before the
average is basically stable. The time to stability is not constant,
as it does seem to grow with n, but it is certainly substantially
smaller than the Ω(n2 log n) bound required by the analysis.

VI. CONCLUSIONS

In this paper we have designed distributed algorithms for
maximizing wireless network capacity in both the physical
and the protocol models. Our main techniques were game
theoretic, namely proving that the price of total anarchy of
an appropriately defined game is small. We hope that this
technique will prove fruitful when considering other distributed
problems, especially when only extremely limited feedback
is allowed. We also showed by simulation that low-regret
algorithms do even better in practice than the theoretical worst
case, both in terms of their approximation to optimal and the
time it takes to achieve this approximation.

However, a number of open problems remain even in the
realm of network capacity. Most obviously, in the physical
model we only get an O(d2α

max)-approximation, and a natural
question is whether this dependence on the distance could be
removed, resulting in an O(1)-approximation. It would also
be interesting to try to decrease the time necessary before
the approximation holds from O(n2 log n) to something more
reasonable, perhaps linear or even polylogarithmic.
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