
Distributed Watchpoints: Debugging Very Large
Ensembles of Robots (Extended Abstract)

Michael De Rosa
Seth Goldstein

Peter Lee
School of Computer Science
Carnegie Mellon University

[mderosa,seth,petel]@cs.cmu.edu

Jason Campbell
Padmanabhan Pillai

Intel Research Pittsburgh
[jason.campbell,padmanabhan.s.pillai]@intel.com

Abstract— We describe a debugging tool for modular robotics
that introduces the concept of distributed watchpoint triggers.
This technique can initiate debugging actions (system halt,
global snapshot, logging, etc.) in an ensemble of robots based
on temporal, physical, and logical conditions distributed over
multiple robots. Our technique is specifically designed to be
effective in debugging modular robotic ensembles, where many
important types of failure conditions can be detected within small,
physically connected subsets of the total ensemble.

I. INTRODUCTION

The task of debugging algorithms on modular robotic en-
sembles presents a number of challenges, because modular
robots are parallel elements operating asynchronously. Unlike
traditional parallel processing nodes, modular robots operate
in a bandwidth-limited, highly reconfigurable network. As a
result, many of the traditional tools for parallel debugging are
impractical in the context of modular robotics. Debugging a
modular robotic ensemble is, at least in the general case, much
more difficult than debugging a super-computing cluster or
multicore CPU of comparable scale.

II. MOTIVATION & APPROACH

We need tools that mitigate the complexities inherent in
programming robotic systems with thousands to millions of
autonomous agents. One of the key elements to this is debug-
ging support, both for simulated ensembles and real hardware.
When examining the current state-of-the-art in distributed and
parallel debuggers, one finds them inadequate for the task of
debugging large ensembles of robots. Most debugging tools,
such as gdb [1] and TotalView [2] (a distributed debugger),
focus on analysis of one thread at a time. They provide little or
no assistance in locating fault conditions that may span mul-
tiple threads. Even for a multithreaded simulator running on
one machine, gdb can take several hours to load the contexts
for the thousands of threads used in large simulations. In the
absence of better tools, programmers are forced to fall on back
on techniques such as printf, which can generate confusing
output, lead quickly to information overload, and may even
introduce inadvertent synchronization into the system through
the presence of I/O flush and locking routines.

1 4 6 1 7 1 1

5 3 5 2 1 4

2 1 1 4 3 5

3 5 3 3 2 6

Fig. 1. An ensemble of modular robots with an active distributed watchpoint.
State values are shown as the contents of each circle, and dotted regions
represent subsets of modules that match the watchpoint:
neighbors(x,y) && (x.current.var == 1) && (y.current.var == 1)

Distributed debugging presents a number of challenges,
including coherent snapshotting, specification of error condi-
tions, combinatorial state explosion, and detection of timing-
sensitive errors. A true distributed debugger must solve many
problems to be useful. It must be able to operate as if it pos-
sessed a coherent picture of the ensemble’s global state, when
the modules are operating independently and asynchronously.
To detect error conditions that may involve arbitrary nodes
spread throughout the ensemble, it faces a combinatorial
explosion of states that must be searched. Finally, a distributed
debugging system must minimize the effect that its operation
will have on timing-sensitive errors, or heisenbugs.

We introduce a useful construct for such debugging tasks
which we call a distributed watchpoint: a triggering mecha-
nism for some arbitrary action, based on a function of the
states of several physically connected modular robots. The
action that a distributed watchpoint can trigger is deliberately
decoupled from the trigger mechanism, and can include such
actions as halting the system, triggering a global snapshot, or
enabling some expensive logging functionality on the trigger-
ing modules. The functions over module state and connectivity
that serve as trigger conditions are expressed in terms of
simple predicates over state variables and boolean connectivity
relations. This provides an easy to use, powerful technique for
identifying multi-robot errors in ensembles of modular robots.



III. RELATED WORK

Existing literature on distributed debugging provides many
useful techniques that have varying degrees of applicability
to modular robotics. Message-tracing algorithms [3] allow
one to trace the causal effect of messages on multiple pro-
grams, which is sufficient if such message passing is the only
causal channel between processes. (However, note that because
modular robots have both physical and network interactions,
such is not the case.) Global snapshot algorithms [4], [5] can
provide the ability to obtain a consistent global view of a
distributed system’s state, but require time proportional to the
number of nodes [6], making them unsuitable for continuous
use in debugging very large ensembles of robots. (Although,
global snapshots can be useful as a trigger action for watch-
points.) Finally, global predicate evaluation algorithms [7],
[8] allow one to determine if an entire ensemble matches a
boolean predicate expression. While many of the techniques
used to implement global predicate evaluation may be of use
to us, the problem of distributed watchpoints translates to one
of evaluating multiple overlapping local predicates, rather than
one global predicate.

IV. DESIGN

In designing our distributed watchpoints, we consider a
simplified machine model for each modular robot: each robot
is represented by a number of named state variables, and
an array of neighbors. We assume that each robot is an
asynchronous state machine that iterates through three atomic
phases: computation, state variable assignment, and commu-
nication.

As a general-purpose distributed debugging system poses
many challenges, we consider what classes of errors a limited
debugger should detect in order to provide a useful service
to developers of modular robotic applications. Errors that are
confined to a single module can be easily detected with a
debugging or monitoring process that runs concurrently with
the main thread of execution on each robot. Detecting errors
that span multiple modules requires the capability to capture
and reason about the state of multiple robots over time. To
make this problem more tractable, we take advantage of certain
common assumptions about modular robotic systems. First,
we assume that all robots are running identical programs,
though each copy of the program may be in a different state.
We also assume that robots can only communicate with their
neighbors, which greatly limits the complexity of the network.
As an additional limitation, we assume that most errors can
be detected by physically connected subsets of the ensemble.
This dramatically reduces the search space for the debugger,
and removes the requirement to gather globally consistent data
at some centralized location.

We use a simple grammar for the description of watchpoint
trigger criteria, which is inspired by a subset of linear tem-
poral logic. This description language allows programmers to
specify, at run time, what distributed condition they wish to
detect. The language consists of comparison predicates over
named state variables, temporal modal operators to provide

access to a module’s previous and future state, module-
module connectivity tests, and boolean connectives. With these
simple constructs, we can describe target configurations along
the axes of network connectivity, logical state, and temporal
separation.

To implement distributed watchpoints, we first convert the
textual representation of the target function to a simple pattern-
matching automata. In our multi-robot simulator, we allow
each robot to carry a set of such pattern matchers, representing
the robot’s potential membership in multiple instances of the
distributed criteria. At each simulator timestep, the system
determines if each pattern matcher should spread to a module’s
neighbors, match the condition, or be deleted.

Finally, to lower the memory and computational costs
associated with the watchpoint system, we have developed
a number of optimizations that reduce the number of active
pattern matchers in the system, and limit how fast they spread.

V. CONCLUSION

We have described the motivation and initial design of
a distributed debugging tool for modular robotic ensembles.
With such distributed watchpoints, programmers can more
easily debug error conditions which involve incorrect state
configurations over multiple modules. We are currently imple-
menting distributed watchpoints in our multi-robot simulator,
and plan to create a fully distributed version of the algorithm
for use in real ensembles of robots.

REFERENCES

[1] GDB: The GNU Project Debugger. [Online]. Available: http://www.gnu.
org/software/gdb/

[2] Etnus TotalView. [Online]. Available: http://www.etnus.com/
[3] R. Wismüller, “Debugging message passing programs using invisible

message tags,” in Proceedings of the 4th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machine and
Message Passing Interface. London, UK: Springer-Verlag, 1997, pp.
295–302.

[4] O. Babaoglu and K. Marzullo, “Consistent global states of distributed
systems: Fundamental concepts and mechanisms,” in Distributed Systems,
S. Mullender, Ed. Addison-Wesley, 1993, pp. 55–96.

[5] Z. Yang and T. A. Marsland, “Global snapshots for distributed debug-
ging,” in International Conference on Computing and Information, 1992,
pp. 436–440.

[6] C. M. Chase and V. K. Garg, “Detection of global predicates: Techniques
and their limitations,” Distributed Computing, vol. 11, no. 4, pp. 191–201,
1998.

[7] E. Fromentin, M. Raynal, V. K. Garg, and A. I. Tomlinson, “On the fly
testing of regular patterns in distributed computations,” in International
Conference on Parallel Processing, 1994, pp. 73–76.

[8] V. K. Garg and B. Waldecker, “Detection of weak unstable predicates
in distributed programs,” in Zhonghua Yang and T. Anthony Marsland
(Eds.), Global States and Time in Distributed Systems, IEEE Computer
Society Press, 1994.


