
Scalable Shape Sculpting via Hole Motion: Motion
Planning in Lattice-Constrained Modular Robots

Michael De Rosa
Seth Goldstein

Peter Lee
School of Computer Science
Carnegie Mellon University

[mderosa,seth,petel]@cs.cmu.edu

Jason Campbell
Padmanabhan Pillai

Intel Research Pittsburgh
[jason.campbell,padmanabhan.s.pillai]@intel.com



Scalable Shape Sculpting via Hole Motion: Motion
Planning in Lattice-Constrained Modular Robots

Abstract— We describe a novel shape formation algorithm
for ensembles of 2-dimansional lattice-arrayed modular robots,
based on the manipulation of regularly shaped voids within the
lattice (“holes”). The algorithm is massively parallel and fully
distributed. Constructing a goal shape requires time propor-
tional only to the complexity of the desired target geometry.
Construction of the shape by the modules requires no global
communication nor broadcast floods after distribution of the
target shape. Results in simulation show 97.3% shape compliance
in ensembles of approximately 60,000 modules, and we believe
that the algorithm will generalize to 3D and scale to handle
millions of modules.

This paper is submitted to Invited Session: New Trends
in Modular Robotics.

I. INTRODUCTION

Modular robotics has been the subject of much interest
in the research community [1]. Using large numbers of
simple modules to replace one complicated, special-purpose
device provides benefits in terms of flexibility, robustness, and
manufacturing cost. The challenge in these systems lies in
controlling large numbers of low-powered, unreliable modules.
Motion planning and shape formation for these systems is
a good example of such a difficult challenge. Traditional
motion-planning algorithms typically require an exploration
of the robot’s potential state-space. This state-space grows
exponentially with the number of degrees of freedom in the
system, which in turn can be a linear function of the number
of modules in the ensemble. While motion constraints and
isomorphisms may dramatically reduce the size of this state-
space [2], exploring it for an array of thousands of modules
is an infeasible proposition.

Our algorithm uses the randomized motion of regular holes
in a lattice as primitive operations for 2D shape formation.
These holes can be considered as quanta of negative volume
(Figure 1). The creation of a hole, via the enclosure of empty
space at the perimeter, increases the contour of the object
(Figure 2). Conversely, the capture and deletion of a hole
at a site on the perimeter reduces the contour at that point
(Figure 3). To ensure that repeated creations and deletions
do not create an unsuitable edge, we employ a smoothing
technique derived from [3] as a subprocess. Planning for
a macroscale shape transformation is then just a matter of
designating regions of the perimeter as regions that create or
delete holes, a process which depends only on the geometry
of the source and target shapes, and not on the number of
modules involved.

II. RELATED WORK

The problem of reconfiguration in lattice-arrayed modular
robots has received considerable attention in the literature. The
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Fig. 1. Basic Layout: a) hole, b) shepherd group module, c) direction of
motion

intractably large state space of an array’s potential motions
has led to the development of many algorithms based on
local decisions and control for reconfiguration. These algo-
rithms may be broadly categorized into gradient-based [4]–
[11] and graph-grammar [12]–[15] algorithms. Early gradient-
based algorithms suffered from either a lack of expressivity
[6], or tended to become stuck in state-space minima [4],
[5]. Later work by Støy [7]–[9] allowed for the creation of
arbitrary shapes, without the danger of getting “stuck” in min-
ima. Additionally, gradient-based algorithms require broadcast
flooding to disseminate gradient values, a bandwidth-intensive
process involving roughly

√
n hops for n modules. Graph-

grammar based algorithms can be constructed without the need
for broadcast flooding, but the number of states in the graph
grammar is in many cases a linear function of the number of
modules in the ensemble [14], [15]. In other grammar-based
approaches the self-assembly process relies on the random
addition of modules at the perimeter of the object [12], [13], an
assumption that does not hold in ensembles with fixed numbers
of modules.

Claytronics [16] provides inspiration for our work, postu-
lating the existence and utility of massively scaled ensembles
of modular robots for such applications as telepresence, re-
mote manipulation, and programmable antennas. The work
of Reshko [17] provides us with a means to establish and
maintain a shared coordinate space between modules in the
array, and allows us to assume that modules have current
knowledge of their relative positions at any point in time.

III. DESIGN

The ideal shape formation algorithm possesses several char-
acteristics. The planning phase of the algorithm would be
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Fig. 2. Hole Creation (modules are labeled for illustrative purposes only)

able to represent an arbitrary 2-dimensional shape, and the
time required to generate the plan would not depend on the
number of modules in the target ensemble. Once the algorithm
began executing on the modules, it would not require global
communication (either through a broadcast channel or hop-
to-hop flooding), and would produce an exact rendering of
the target geometry. Finally, the algorithm would not be
susceptible to entrapment in local minima.

We note that in many modular robotic systems, motion con-
straints may prevent a single module from moving in desired
directions. However, we note that when a sufficiently large
void or empty space in a lattice is present, movement in the
immediate neighborhood is always possible. Hence, by treating
a canonical hole as first-class entity, and solving the problem
of moving holes, we can avoid the motion constraints that
plague single-module planning. We note that by inserting these
holes into an ensemble, we increase total volume. Specifically,
insertion of a hole at a surface causes the contour to expand
at the point of insertion, as in Figure 2. Similarly, deletion or
extraction of a hole at the surface causes the contour to lower,
and the local density to increase, as in Figure 3. Randomly
moving holes at all times ensures that the density of the entire
array will converge to a uniform value. This will ensure a ready
supply of holes for deletion. We conclude that the primitive
operations of hole movement, creation, and deletion, provide
the necessary capabilities for the formation and transformation
of arbitrary shapes.

To implement this idea, there are several practical matter
that must be addresses. First, we require a scalable planner
for determining regions of growth and deletion. Second, we
must ensure that conditions for hole creation and deletion
are always present at the surface. In particular, hole deletion
and creation increase surface roughness, which may preclude
further operations on that surface. Techniques to maintain
smoothness are needed. Finally, we will need to coordinate the
overall growth or deletion to avoid topological changes (e.g.
regions breaking free from the main mass). We have designed a
set algorithms that allow arbitrary shape transformation while
addressing these concerns.
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Fig. 3. Hole Deletion (modules are labeled for illustrative purposes only)
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Fig. 4. Two growth tri-regions (left), one deletion tri-region, and their
associated gravity directions

IV. ALGORITHM DESCRIPTION

A. Layout and Definitions

Modules are arranged in a hexagonally packed array, with
each module having 6 possible locations for neighbors. We
denote the neighbors of a module k by k[0] · · · k[5]. We
define the set of modules containing k, its neighbors, and their
neighbors as the 2-hop radius of k.

We define a hole as the logical entity formed by the absence
of a module h and its six neighbors h[0] · · ·h[5]. A hole
is surrounded by a shepherd group, consisting of the 12
modules bordering the hole. The shepherd group modules
share common state which identifies the presence of a hole,
as well as its direction of motion, defined as one of the six
cardinal directions in the hexagonal lattice. These concepts are
illustrated in Figure 1.

We further define the target geometry as the desired final
shape, represented in a scale-independent coordinate system. A
tri-region is a triangular region in this same coordinate system,
plus a gravity direction and a growth/deletion flag (Figure 4).

B. Basic Concepts

To plan a transformation from the source to the target
geometry, the 2-dimensional coordinate space is tiled with
equilateral triangles of a specific size. A triangle is the smallest
unit of resolution that the planner can represent. Triangles
that overlap regions in the source and target geometries
where there is no change between the two representations are



removed from consideration. Other triangles become growth or
deletion tri-regions, based on whether the region they enclose
is predominantly being filled or emptied during the transition
from source to target geometry. These tri-regions are then
transmitted to every module in the ensemble, and their location
and state determine the roles that each module will assume.

In the “steady state” where no plan is being executed, holes
inside the ensembles will move through the mass, colliding and
reflecting off of each other and the surface of the ensemble,
much like the molecules of an ideal gas. The presence of
an active tri-region causes modules at the surface to begin
producing or consuming holes. By producing a hole, the local
contour of the surface is raised. Consuming a hole likewise
lowers the local contour of the surface. These two operations
alone are insufficient to effect macroscale shape change, as
unrestricted deletion of holes can lead to a scenario where
deletion sites that are closer to the center of mass preferentially
bind to holes, starving deletion sites that are farther away
(Figure 5). Additionally, creation and deletion create a rough
surface, which must be smoothed to provide suitable locally
flat sites for hole creation and deletion.

To solve the problem of holes preferentially being consumed
near the center of mass (as opposed to the ends of contracting
extremities), we introduce a technique inspired by simulated
annealing [18]. Holes will not always bind to a deletion site,
but rather will do so with a probability dependent on the
distance between the site and the closest point on the target
geometry’s perimeter, modified by a decay value that increases
binding probability with time. We refer to this technique as
the temperature test, and it is described more fully in Section
IV-E.

To solve the surface roughness issue, we introduce the
notion of a gravity-driven collapse. In each tri-region, we
define one of the lattice directions as “down”, and all modules
form virtual columns along that direction. Columns which are
taller than their neighbors collapse, moving the top modules
from a tall column to a shorter one nearby. This process,
known as self-organized criticality [3], is analogous to the
collapse of piles of sand or rice under gravity, and maintains
a smooth surface for the ensemble.

C. Gravity and Tri-regions

We use the following algorithm to set the gravity direction
for each tri-region:

• create a representation R of the source geometry
• create a worklist, add all tri-regions to it
• for each tri-region T in the worklist. . .

– if no point in T is on the perimeter of R, place T on
the end of the worklist and continue on to the next
tri-region

– for every point in T that is on the perimeter, find the
directions with filled neighbors. Keep a running total
for all points in T , and set T ’s gravity to the most
common direction for filled neighbors (after 3-way
moving average of the totals)

– if T is a creation region, fill the region completely
(in R)
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Fig. 5. Starvation occuring in the absence of smoothing. Regions a and b
will prevent region c from activating.

– else empty the region completely (in R)
Once gravity directions have been assigned to each tri-

region, the tri-regions and the target geometry are distributed
(either via broadcast or local flood) to each module in the
ensemble. From this point on, each module acts independently.

At each timestep, the following actions occur:
• holes move
• creation/deletion regions activate
• smoothing occurs

D. Hole Movement

At each timestep, each hole attempts to shift the three
modules at the leading edge of the shepherd group (designated
by the direction of motion) from the leading to the trailing
edge, thus shifting the entire hole one module in the direction
of motion. If such a move would cause the hole to disrupt
another hole’s shepherd group, or to disrupt its own shepherd
group (by moving outside the ensemble), then the move is
not performed, and a new random direction is picked for
the hole. Holes can ensure that a move is safe by reserving
modules before movement, and respecting the reservation
status established by other holes. As this motion requires
the cooperation of a small number of nearby modules, it
can be performed using local coordination,without any global
synchronization. The same is true for growth, deletion, and
smoothing.

E. Creation/deletion regions activate

If a module detects that it is on the perimeter (i.e. it has
unfilled neighbors that are not part of a hole) and that it is
inside a tri-region, it becomes a growth or deletion node (based
on the growth/deletion flag of the relevant tri-region). If a
module is a growth node, it checks to see if all of the following
conditions hold:

• the node is inside the perimeter of the target geometry
• there are no holes in the nodes 2-hop radius
• there are exactly 11 other modules in the node’s 2-hop

radius
If all of these conditions are true, the growth node rearranges
its 2-hop radius to create a shepherd group, and generates a
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Fig. 6. Modules being abandoned during deletion of protruding element: a)
initial configuration, with high binding probability sites circled, b) pinch-off
beginning, c) region disconnected by pinch-off

new hole with a random direction of motion (Figure 2). The
conditions for the activation of a deletion node are slightly
more complicated, as we must counter the system’s tendency
to delete holes close to the center of the structure, potentially
disconnecting small numbers of devices (Figure 6). A deletion
node must satisfy the following conditions:

• the node is outside the perimeter of the target geometry
• exactly one hole is in the node’s 2-hop radius
• the hole must contain at least one of the node’s neighbors
• there are exactly 12 other modules in the 2-hop radius of

that hole’s center
• the node satisfies the temperature test (see below)
• the hole (if present) cannot move against the local tri-

region’s gravity
If all of these conditions are true, the deletion node destroys
the hole, and lowers the contour of the object by using the
portion of the hole’s shepherd group closest to the perimeter
to fill the hole (Figure 3).

If a hole is present, but the last condition was not met,
then the hole’s direction of motion is set to be against the
local region’s gravity. This forces holes to move along the
surface, against gravity, which will encourage binding at the
far extremities of deletion regions.

Temperature test: The probability of a hole being bound by
a particular active region r is given by:

p = 1.0 + log(
dnear

max(dmax − cdecay · t, 1)
)

Where dnear is the distance (in diameters) between r and the
closest point on the target geometry’s perimeter, dmax is the
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Fig. 7. Surface Smoothing: a) before smoothing b) after smoothing
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Fig. 8. Source and Target shapes: square,T,rectangle,and circle

maximum distance between the perimeters of the source and
target geometries, cdecay is a time decay constant (typically
[15, 50]), and t is the time elapsed (in unit timesteps). This
provides a simple logarithmic decay function which favors
hole binding at the extremities of deletion regions.

F. Smoothing

Every module which is a growth or deletion node also
participates in the smoothing process (Figure 7), in order to
maintain a smooth surface for additional growth or deletion.
Each module on the perimeter is the head of a virtual column
of modules that extends down into the ensemble along the di-
rection of the local tri-region’s gravity direction. Each column-
head checks its neighbors at +120° and -60° from the gravity
direction. If one of these neighbors is empty, the column-head
begins a search downwards along the gravity direction, for
up to 3 hops. If the number of hops from the column head
to the head of a neighboring column exceeds 1, the column-
head moves to become the head of the neighboring column
instead (provided that this move will not disconnect any of its
neighbors from the ensemble). This movement may create an
imbalance in another column, requiring more smoothing. The
process continues for a finite number of iterations, or until the
system stabilizes.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We implemented the algorithm in a Java-based event simula-
tor, executing the algorithm via a single omnipotent controlling
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Fig. 9. Motion completeness of experiments over time

agency. The atomic unit of motion in the simulator was the
transition of a module from one lattice point to an adjacent
one. The simulator’s inputs were the size of the array, the
source and target geometries, and the resolution of the tri-
regions. Note that no intermediate keyframes were generated;
all motion planning was directly from the source to the target
geometry. We selected four simple shapes (Figure 8) for the
source and target geometries. From these shapes, we derived
three plans: from a square to a T shape, from a T shape to a
square, and from a rectangle to a circle. These three plans show
respectively the creation of corners, the deletion of corners,
and the creation of curvature. Each plan was executed on
square arrays of 100, 200, 300, and 400 lattice points per side,
yielding simulations with approximately 3,000-62,000 active
modules (Table I). Each of these 12 experiments was repeated
10 times with random initial hole placement and start times,
and the arithmetic mean of the results was reported. Standard
deviations on all error measures were low (typically below
2.0). Simulations ran for 10,000 timesteps, where one timestep
was sufficient time to perform hole creation or deletion,
followed by smoothing.

During the simulation, three metrics were evaluated every
timestep. The first metric, motion completeness, was the per-
centage of lattice points which need to be emptied or filled
which had been successfully emptied or filled at that point
in the simulation. The second metric, stability maintenance,
was the fraction of lattice points designated to remain filled
or empty that did so. The final metric, shape compliance was
the fraction of lattice points that had the same status as the
target geometry called for. In all cases, lattice points occupied
by a hole were considered filled.

B. Completion Time & Correctness

Motion completeness over all 12 experiments showed sev-
eral general trends (Figure 9). For a given shape transforma-
tion, experiments at larger scales approached their maximal
motion completeness (mmax) more slowly than at smaller
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Fig. 10. Example frames from simulator
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Fig. 11. Stability Maintenance of experiments over time

scales. This is expected behavior, as the number of mod-
ules which must be moved increases with the experiment’s
scale. Additionally, motion completeness for the square to T
transformation was significantly lower than that of the other
experiments at scales greater than 100x100. We attribute this
to the increasing coarseness of the fixed number of tri-regions
used in the experiments. As the scale increases, each tri-region
controls a larger number of perimeter modules, leading to a
decrease in the control of local curvature. This was especially
apparent in the square to T case, as the decrease in control
manifested itself as “islands” of modules that were abandoned
during the removal of the square’s upper-right corner (Figure
10).

Stability maintenance was consistently high, with values
never dipping below 97.2% (Figure 11). As stability violations
typically manifested themselves via one-module disturbances
on the surface, larger scales (with larger stable volumes)
exhibited higher levels of stability maintenance.

Finally, shape compliance in all experiments was uniformly
high, with all configurations achieving at least 95% maximum
compliance (cmax). As shape compliance is merely a weighted
sum of motion completeness and stability maintenance, the
factors which affected those metrics were visible to varying
extents in the shape compliance results (Figure 12).
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Fig. 12. Shape Compliance of experiments over time

TABLE I
SUMMARY OF EXPERIMENTAL RESULTS (MEAN OVER 10 RUNS)

Experiment # modules mmax cmax

100x100 Square/T 3109.2 94.70 97.34

100x100 T/Square 3029.1 96.55 98.07

100x100 Rect/Circle 3916.2 93.45 96.70

200x200 Square/T 12331.1 77.92 95.36

200x200 T/Square 11929.5 98.0 98.99

200x200 Rect/Circle 15491.9 84.25 96.10

300x300 Square/T 27737.8 84.87 96.84

300x300 T/Square 26606.0 97.30 99.11

300x300 Rect/Circle 34805.5 87.14 97.00

400x400 Square/T 49169.7 78.41 95.91

400x400 T/Square 47194.4 93.57 98.54

400x400 Rect/Circle 61714.9 87.38 97.26

VI. FUTURE WORK

Several obvious extensions to this work present themselves.
The first is the improvement of the planning algorithms to
eliminate the occasional disconnection of modules during
shape transformation. Additionally, there currently exists no
provision for modifying the topological genus of the shape,
therefore a method for creating and destroying macroscale
holes in the ensemble is required. A fully distributed imple-
mentation of the algorithm would provide a more compelling
case for the utility of the algorithm. Finally, the extension of
the algorithm into 3-space would allow for the rendering of
arbitrary volumes. This extension could use hexagonally close-
packed modules, and holes that encompassed a module and its
12 kissing point neighbors.

VII. CONCLUSION

We have successfully designed and implemented a novel
shape formation algorithm for ensembles of lattice-arrayed
modular robots. The algorithm is massively parallel and fully

distributed. Constructing a goal representation requires time
proportional only to the complexity of the desired target
geometry. Construction of the shape by the modules requires
no global communication or broadcast floods after distribution
of the target shape. Results in simulation show high shape
compliance and stability maintenance. We believe that this
algorithm represents an initial step in the creation of fully-
scalable motion-planning algorithms for modular robotics.
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